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Construction of an optical quantum computer (OQC)
1  

is finished by implementing 

all necessary ingredients
2,3

 with light (photon). There is, however, one more hurdle to 

clear. It is scalability
4
, which is easily lost when accommodating many qubits by 

densely nesting quantum circuits. Any of the reported OQC schemes
4-7

 is not neces-

sarily best placed in this regard. Here we demonstrate the power of “frequency” de-

gree of freedom of light, which outperforms others with its potentially infinite basis 

states: as multiple qubits share the same “one-photon” superposition state all along, a 

realistic OQC design in frequency basis adopts only one port each for input and out-

put. As such quantum logic gates are configurable in a cascade of compact in-line 

modules, which ensures scalable computing. Finally, our implementation of 

Deutsch-Jozsa’s algorithm
8
 using standard laboratory laser demonstrates that fre-

quency-basis OQC is ideally suited for such tasks even without help of nonclassicality 
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of light. 

Quantum computer (QC)
9
 will find such immediate applications as large number fac-

toring
10

 and rapid database search
11

. A universal QC consists of two basic quantum logic 

gates (QLGs), i.e., Hadamard gate
2
 and controlled-not (CNOT) gate

2,3
, acting on a register 

of information bits called “qubits”
3
. In pursuit of appropriate basis set

5,7,12
, light (photon) 

holds promise as many of the properties essential to QC are already equipped and conve-

niently accessed in experiment. Moreover, absence of direct light-light coupling warrants 

decoherence-free computing, which is an advantage over solid-state QCs
13

. However, from 

the scalability perspective, none of the known degrees of freedom of light, i.e., polarization
5
, 

momentum
12

, and photon number
7
, seems to be eligible; an exponential increase of paths 

with increasing qubits in momentum basis compromises the scalability while polarization 

basis does not permit multi-qubits itself, and a QC using photon-number qubits can be a 

challenge
1
.  

Here we develop a one-photon optical QC (OQC) architecture by implementing mul-

tiple qubits utilizing frequency (standing for “angular frequency” throughout the work) de-

gree of freedom of light (photon)
14

. With many qubits encoded in the same photon on their 

common path, one can design compact in-line QLG modules to be plugged in series as op-

posed to nesting, which allows for the scalability. These QLGs are operable upon photon 

frequency qubits (PFQs) created by laboratory lasers, which is exploited to demonstrate the 

power of one-photon OQC in implementing a quantum algorithm using frequency protocol. 

A photon frequency superposition state carrying n-qubits of information, i.e., n-PFQ, 
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can be expanded in terms of a basis set containing 



2
n discrete frequencies 



1

2n 2
0  k

k0

2
n
1

  where 



0
 is the base frequency and 



  is the frequency interval (see 

Supplementary Figure 1S). For example, a three-PFQ is a linear combination of 



0
 

through 



0  7 , or equivalently 



000  through 



111 .  

A Hadamard rotation acting on the second qubit maps 000  to



1

2
000  010  or 



1

2
0  0  2 . Fig. 1a shows the generic frequency Hadamard gate (FHG) consist-

ing of two cascaded asymmetric Mach-Zehnder interferometers (MZIs) where CF denotes 

the comb filter. 

CF plays a pivotal role in our one-photon frequency OQC design. Although yet to be 

developed, it is essentially a “multi-chroic” edge mirror with alternate stop- and pass-bands 

centered at the 



2
n
 frequencies. To suppress crosstalk, Rugate filter design

15
 is more ap-

propriate than stacked Bragg mirrors or a multiple splice of fiber Bragg gratings, which 

admit sidebands and fringes. Compared in Fig. 1b are the simulated reflectance spectra of 

CF1 and CF2 implemented in FHG of Fig. 1a (see Supplementary Figure 2S). 

Consider entry to the FHG input of one-PFQ, i.e., a superposition state 

0,0, 10    where left (right) index refers to path 1 (2). CF1 discriminates frequency 

states and redirects them so that 



0 (
1 ) takes path 1(2) whereas CF2 is used to recom-

bine light along two paths. FSD (FSU) placed halfway down path 1 (2) represents the fre-

quency shifter which downconverts 
1  to 



0
 (upconverts 



0
to 

1 ). To put either 



 1,  0  or 



  0, 1  in the output 



1

2
  0,0     1,0  yields a 

Hadamard transform without loss, i.e., unitary. Note that FHG generates multi-qubits, i.e., 
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n-PFQ, simply by inserting FHG n-times. 

A quantum phase gate (QPG) is a variant of conditional two-qubit gate
3
 equivalent to a 

CNOT gate
16

. FQPG is conditioned on the status of control qubit that is built in the n-PFQ 

itself as prepared and taken along with the rest of (data) qubits. This allows FQPG to act 

upon n-PFQ on its path: there is no extra path just for the control qubit unlike conventional 

QPG. The generic frequency QPG (FQPG) is illustrated in Fig. 1c. PS is the phase shifter 

that flips the sign of all qubits on path 2 at once so that one-PFQ 0,0, 10    is 

mapped to 0,0, 10    at the output. Thus FQPG operates at a 100-% throughput, 

i.e., unitary.  

In experiment, the following points are noted. First, the frequency QLGs are designed to 

act upon one-photon states, with their operation and detection building upon first-order in-

terference as described later. This makes their implementation easier as coherent states de-

livered from standard laboratory lasers are eligible, which holds a competitive advantage 

over the QC schemes where the nonclassical nature such as bipartite entanglement
17

 argua-

bly plays a major role. Second, a special read-out technique must be adopted in frequency 

basis as time-varying amplitudes that occur due to mixing of light with unlike frequencies 

smear out stationary fringes over an ensemble. We herewith attempt direct capture of hete-

rodyne beats, i.e., one-photon interference fringes in time domain. Lastly, we must be able 

to demonstrate frequency QLGs and OQC even without CFs.  

Figure 2a shows a realistic experimental setup to emulate FHG implementation without 

CFs, which contrasts with the model case shown in Fig. 1a though the essence remains the 
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same. A superposition state of identical frequency with a relative phase shift 



  is prepared 

within first MZI equipped with PS, i.e., a wedge prism on a translation stage providing a 

phase lag along path 1. It is then sent to the two input ports of second MZI where two fre-

quency shifters, FS1 and FS2, driven at the frequencies at a small detuning, 



  1 2
, 

should generate one-photon beats at the output. The normalized light intensity at the detec-

tor for input of 1 is 

 



1

4
1 sint cos .     (1) 

 

Thus the Hadamard rotation is manifest as modulation of amplitude as 



  varies. The pre-

factor 1/4 accounts for the loss due to the choice of half mirror (NPBS) instead of CF at the 

exit. Figure 2b shows the as-captured beat traces as a function of 



 . There is essentially no 

shift in the phase of heterodyne beats as 



  is varied. The beat amplitude is plotted in Fig. 

2c versus displacement proportional to 



  where the solid line is a fit using Equation (1). 

The near perfect match clearly supports that FHG operates as theory predicts.  

Next, the implementation of FQPG was attempted. Once FQPG is available, a compo-

site CNOT gate is ready to be constructed by putting FQPG in between two FHGs in series 

with a bypass loop (see Supplementary Figure 3S). Similarly to FHG, the experimental cir-

cuit design of Fig. 3a was modified from Fig. 1c to emulate FQPG without CFs. FS1 and 

FS2 in first MZI cause beats at a frequency detuning 



  1 2
. The idea here is that en-

tanglement allows FQPG to function even without CFs, i.e., the only point the nonclassical 

properties of light enter. We place a half-wave plate (HWP1) on the same arm as FS1 
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(path1), which rotates the horizontal polarization of light by 90 degrees. The superposition 

state after first MZI is thereby tagged with polarization, and hence gets hyper-entangled
18

 

with path (momentum), frequency and polarization such that 

 



i

2
0,0

H

i

2
1,0

V

.         (2) 

 

The frequency states are now distinguishable by referring only to polarization, which 

enables us to design polarization-entangled FQPG without CFs. We used polarization beam 

splitters (PBSs) are used to separate and combine light of orthogonal polarizations. 

A second HWP (HWP2) placed after PS on path 2 of second MZI is a disentangler, 

which flips vertical polarization back to horizontal. The light intensity at the detector reads 

   



1

4
1 cos t    .    (3) 

 

Thus FQPG operation simply changes the phase of the heterodyne beats. The prefactor 1/4 

appears again as before. Figure 3b shows the beats recorded as a function of relative phase 

shift 



  controlled by variable delay as light passes through a quartz wedge prism (lower 

panel of Fig. 3c). As visible in the upper panel of Fig. 3c, the beat amplitude is leveled off 

regardless of wedge displacement and hence 



  values. This is what Eq. 3 predicts and 

taken as evidence for successful implementation of FQPG. 

Finally, one-qubit frequency OQC was constructed to implement the Deutsch-Jozsa’s 

algorithm
8
 upon one-photon state. Two FHGs are arranged in series because FQPG is not of 

importancee here (Fig. 4a). A pair of FSUs is driven here at null detuning 



  0 to produce 
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stationary fringes along path 2. The two quantum black boxes
8
, BB1 and BB2, made of 

wedge prisms provide fixed phase lags in preset combinations. As captured in Fig. 4b, 

fringes and anti-fringes develop for like (constant) settings {BB1, BB2}= {0,0} and {1,1} 

and unlike (balanced) settings {BB1, BB2}= {0,1} and {1,0}, respectively, where “1” in-

dicates “ -delayed” while “0” means “no phase lag”. This successful demonstration clearly 

points to the usefulness of classical light in implementing frequency OQC. 

In terms of scalability
1,2

, frequency OQC holds an advantage that cascaded optical 

circuits take only one path. This is assured by the directional and convergent properties per-

tinent to CFs, as opposed to momentum basis where the scalability is lowered each time a 

bifurcating-optics doubles the path. However, we face a trade-off that demanding a large 

number of frequency basis states in turn requires as many combs. The design and fabrica-

tion of CFs would be of complexity and even labor-intensive. Nevertheless, compact in-line 

modular design of frequency QLGs, will help reduce component count in building 

one-photon frequency OQCs.  

More importantly, frequency degree of freedom of light, if combined with momentum 

(path) or photon number, can create multi-qubits in greater number ever, thereby boosting 

the potential of “one-photon” OQC.  

 

Methods 

We used a He-Ne laser (632.8 nm) as the light source. The intensity autocorrelation 

measurement indicates that outputs are of coherent states or Poissonian, i.e., a signature of 
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classical light
19

 (see Supplemenatry Figure 4S). We maintained the single-path design in 

setting up experiment. We used largely linear optics besides acousto-optic modulators dri-

ven near 80 MHz for use as FSs despite their smaller-than-ideal conversion efficiency 

≈85 %. Precision balanced frequency shift reversal was made possible by sharing a com-

mon driving source (see Supplemenatry Figure 5S). For data capture and read-outs, an un-

cooled photon-number-resolving avalanche photodiode-based solid-state detector with a 

10-MHz bandwidth was used. This was direct-current coupled to an oscilloscope and tran-

sient readings were captured as one-photon heterodyne beats in the low MHz range. 
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Figures and figure captions 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 1  Optical quantum circuits for frequency-QLGs and simulated characteristics of 

CFs. a, Schematic FHG. CF1(2) separates (recombines) light at the input (output); FSD(U), 

frequency shifter, which downconverts (upconverts) the frequency of light as it is transmitted; 

NPBS, nonpolarizing beam splitter. b, Reflectance spectra of typical three-qubit CFs. c, Sche-

matic FQPG. PS, phase shifter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2  Characterization of Hadamard rotation acting upon one-PFQ without CFs. a, 

Schematic FHG. LS, light source; PS, phase shifter, which provides an input phase lag on path 

1; NPBS, nonpolarizing beam splitter; FS1, FS2, frequency shifter; D, detector. b, Oscilloscope 

traces of as-captured beats as a function of 



 . Note the absence of phase shift. c, Beat ampli-

tude versus 



 . Solid line is a theoretical fit using Eq. 1. 
 

1.0

0.5

0.0

R
e
fl
e
c
ta

n
c
e

920900880860840820800780

 Frequency (THz)

1.0

0.5

0.0

|

;0

0
0

>

|

;1

1
1

>

|

;1

1
0

>

|

;0

0
1

>

|

;0

1
0

>

|

;0

1
1

>

|

;1

0
0

>

|

;1

0
1

>

 CF2 

 CF1 

c 

a       b 

In
te

n
s
it
y
 (

a
.u

.)

2000150010005000
Time (ns)

/2

/6

/3

0

a          b

     

   

c           

     

  

0.4

0.3

0.2

0.1

0.0

A
m

p
li
tu

d
e

 (
a

.u
.)

20151050
Displacement (a.u.)



12 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3  Characterization of polarization-entangled FQPG experiment performed on 

one-PFQ without CFs. a, Schematic one-qubit FQPG. First MZI creates frequency-path (mo-

mentum)–polarization-entangled one-PFQ. LS, light source; NPBS, nonpolarizing beam splitter; 

HWP1(2), half-wave plate as entangler (disentangler), which rotates light polarization by 90 

degrees; PBS, polarizing beam splitter; FS1, FS2, frequency shifter; PS, phase shifter; D, de-

tector. b, Oscilloscope traces of captured beats as a function of phase shift 



 . c, Beat ampli-

tude (upper) and 



  (lower) versus wedge prism displacement. Solid lines are to guide the eye. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4  Frequency-basis implementation of Deutsch-Jozsa’s algorithm using 

one-photon inteference. a, Schematic one-qubit photon frequency QC made of two cascaded 

FHGs. LS, light source; NPBS: nopolarizing beam splitter; FSU, frequency upconverters; BB1, 

BB2, quantum black box providing preprogrammed delays; D, detector. b, Far-field patterns: 

fringes and anti-fringes appear for like settings {BB1, BB2}= {0,0} and {1,1} and unlike settings 

{BB1, BB2}= {0,1} and {1,0}, respectively, where “1” indicates “



 -delayed”.  
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