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Abstract. In this paper, we perform a minimalistic quantization of the classical game

of tic-tac-toe, by allowing superpositions of classical moves. In order for the quantum

game to reduce properly to the classical game, we require legal quantum moves to be

orthogonal to all previous moves. We also admit interference effects, by squaring the

sum of amplitudes over all moves by a player to compute his or her occupation level of a

given site. A player wins when the sums of occupations along any of the eight straight

lines we can draw in the 3× 3 grid is greater than three. We play the quantum tic-tac-

toe first randomly, and then deterministically, to explore the impact different opening

moves, end games, and different combinations of offensive and defensive strategies have

on the outcome of the game. In contrast to the classical tic-tac-toe, the deterministic

quantum game does not always end in a draw. In contrast also to most classical two-

player games of no chance, it is possible for Player 2 to win. More interestingly, we

find that Player 1 enjoys an overwhelming quantum advantage when he opens with

a quantum move, but loses this advantage when he opens with a classical move. We

also find the quantum blocking move, which consists of a weighted superposition of

moves that the opponent could use to win the game, to be very effective in denying the

opponent his or her victory. We then speculate what implications these results might

have on quantum information transfer and portfolio optimization.
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1. Introduction

Since Bouwmeester et al.’s 1997 empirical demonstration of quantum teleportation [1],

first proposed theoretically by Bennett et al. [2], there has been a surge of interest

in quantum information transfer between two parties, Alice and Bob (see for example,

[3, 4, 5, 6, 7, 8], and the reviews [9, 10, 11]). At the same time, quantum cryptography

research has been focussed on devising ways to prevent a third party, Eve, from

intercepting and reading the message transmitted over a quantum channel, or for Alice

or Bob to detect any attempt at eavesdropping [12, 13, 14, 15] (see review by Gisin et

al. [16]). But what if Eve, frustrated at failing in every attempt to decipher Alice’s

message to Bob, turn her attention to foiling all transmissions? Should this quantum

jamming scenario develop, Alice will be forced to explore various strategies to get her

message through to Bob, knowing that Eve will attempt to interrupt the transmission,

but not knowing beforehand how she plan to do so.

In essence, cutting the measurements Bob has to make out of the picture, the ding-

dong decisions made by Alice and Eve have the flavour of a two-player game. Naturally,

because information is transferred across quantum channels, this is a quantum game, not

a classical game. Adding quantum-mechanical elements to a classical game always lead

to surprises. In 1999, Meyer constructed a quantum game of penny flip, and concluded

that quantum strategies increase a player’s payoff beyond what is possible with classical

strategies [17]. Eisert et al later analyzed non-zero-sum games and found for the famous

Prisoner’s Dilemma that the the classical dilemma no longer arise if quantum strategies

are allowed [18]. Since these pioneering works, there have been further studies on the

exact nature of quantum advantages [19, 20, 21], whether these advantages persist when

the games are noisy [22, 23, 24, 25], and how entanglement influences the choice of

quantum strategies [26, 27, 28]. These works also spawned a series of in-depth studies

into the game-theoretic structure of quantum games [29, 30, 31, 32, 33, 34].

The quantum information transfer scenario described above is an asymmetric two-

player quantum game, because the moves available to Alice are not the same as those

available to Eve. In the financial arena, portfolio optimization can also be viewed as a

symmetric N -player quantum game, in the sense that the same set of moves are available

to all N players. Here, stocks are the classical states, and portfolios made up of linear

combinations of long and short positions on these stocks are the quantum states. When

one fund manager optimizes his portfolio, the optimalities of all other portfolios are

affected, forcing the other fund managers to also adjust their portfolios. In this sense,

the stock market is a gigantic real-time multiplayer game where a large number of fund

managers reacts to price changes induced by other fund managers, making adjustments

to keep their portfolios optimal. This is an area where the relatively young field of

quantum game theory can potentially make important contributions.

To understand at a deeper level how quantum mechanics influence the choice of

strategies for such games, and eventually their outcomes, we analyze the simplest two-

player game of tic-tac-toe. In Section 2, we will define the quantum moves and winning
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condition that we have adopted, and explain how these are similar to or different from

existing quantizations of the game. In Section 3, both players make random moves

allowed by our rules, to simulate a benchmark situation where there is total absence of

strategy, for comparison against the random classical game. We find that Player 1 wins

about 60% of the time in both random games, but Player 2 is at a greater disadvantage

in the quantum game. We then study the impacts of different opening moves on the

random games, to find classical opening moves being most favourable towards Player

2. We also study end-game situations, where Player 1 is on the verge of winning,

i.e. Player 1 will surely win on the next move, if Player 2 forfeits his or her move. Here

we find that Player 2 can effectively deny Player 1 of his victory, by playing a blocking

move comprising a weighted superposition of the best moves that Player 1 can make

to win. Based on our understanding derived from the random games, we then analyze

in Section 4 the effectiveness of different strategies that the two players can adopt in

deterministic games. For all strategy pairs, the outcomes are very similar: Player 2

wins more deterministic games than Player 1, when Player 1 opens with a classical

opening move. On the other hand, when quantum opening moves are used, the natural

advantage to Player 1 is restored, with Player 2 winning only a small, but non-zero,

proportion of deterministic games. Finally, we summarize our most important findings

in the Section 5.

2. Quantum moves and winning condition

The classical tic-tac-toe is a childhood game played on a 3 × 3 grid. It is a two-

player game of no chance, as no randomizing devices (for example, a dice) are used.

In addition, it is also a game with no hidden information (unlike, for example, the

hands of opponents in most card games). Both players know what moves have been

played, and what moves are available to themselves, as well as to their opponents. In

this game, the two players take turn occupying empty sites on the 3× 3 grid. A player

wins whenever he succeeds in occupying a straight line consisting of three sites, be it

horizontally, vertically, or diagonally. Alternatively, if all nine sites are occupied and

no player succeeded in making a line of three sites, then the game ends in a draw (also

called a tie). In fact, if both players make no mistakes, it can be proven mathematically

that the classical tic-tac-toe always ends in a draw [35].

To quantize games for two or more players, generalized quantization schemes have

been proposed [31, 33]. These game-theoretic quantization schemes allow us to very

quickly construct payoff matrices, but they are not convenient for implementing iterated

play where the space of moves diminishes with every move made. The quantization

scheme we chose is very similar to that defined by Goff et al. [36, 37], but differs in

important aspects of iterated play. Goff et al. developed their version of the quantum

tic-tac-toe as a teaching metaphor for entanglement and measurement in quantum

mechanics, and thus their main interest is in introducing measurement, and the ensuing

wave function collapse, into the game. However, when we play by Goff et al.’s rules, the
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quantum tic-tac-toe does not properly reduce to the classical game upon the restriction

to classical moves. In the subsections to follow, we will introduce a set of rules that

embodies part of the essence of being ‘quantum’, but at the same time properly reduces

to the classical rules when only classical moves are used.

2.1. The quantum move

As with Goff et al., we map the nine possible classical moves to basis vectors in a nine-

dimensional vector space, as shown in Figure 1. However, in contrast to Goff et al.,

whose quantum moves partially occupy only two sites, we define our quantum move

|m〉 =
9
∑

i=1

vi |bi〉 ,
9
∑

i=1

|vi|2 = 1 (1)

to be any normalized linear combination of the classical moves {|bi〉}, i.e. we allow

simultaneous partial occupation of any number of sites. In general, the amplitudes vi
can be complex. In this paper, we restrict ourselves to real vi, to make the numerical

studies presented in Sections 3 and 4 simpler.
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Figure 1: The (a) sites on the 3 × 3 grid for tic-tac-toe, numbered from 1 through 9,

and (b) an example of how a classical move is mapped to a basis vector in the nine-

dimensional vector space.

For our quantum tic-tac-toe to properly reduce to the classical tic-tac-toe, we must

impose the following restriction onto our quantum moves. In the classical game, a player

may not play the classical move |bi〉, if it has already been played earlier. This would

correspond to him or her trying to occupy an already occupied site. Instead, he or she

must play a classical move |bj〉, with j 6= i, if it has not been played. Noting that |bj〉 is
by construction orthogonal to |bi〉, we require a legal quantum move to be orthogonal

to all previous quantum moves. If we use |mkσ〉 to denote the kth quantum move made

by player σ, then the orthogonality requirement can be written as

〈mlσ|mkσ〉 = 0, 〈ml′σ′ |mkσ〉 = 0, (2)

for l, l′ < k and σ′ 6= σ. Here σ = 1, 2, and 1 ≤ k ≤ 5 for Player 1 and 1 ≤ k ≤ 4 for

Player 2.
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2.2. The winning condition

In Goff et al.’s version of the quantum tic-tac-toe, the two players take turns playing

quantum moves of the form |m〉 = 1√
2
|bi〉 + 1√

2
|bj〉, where i 6= j, until a closed loop of

moves have been made by one of the players. The other player must then perform a

measurement on one site within the closed loop of moves, to collapse the state of the

game onto a classical state. The classical state is then checked against the classical

winning condition, to see if one or the other player wins. Else the game continues, with

the restriction that future quantum moves cannot occupy any site on the collapsed loop.

The outcome of the game depends on which site on the closed loop the wave function

collapse started, and is thus not deterministic. For the quantum information transfer

and portfolio optimization scenarios outlined in Section 1, we prefer to have no wave

function collapse. More importantly, we would like to define a deterministic winning

condition that is compatible with the quantum moves defined in the previous subsection,

and will also properly reduce to the classical winning condition. At the same time, we

want to admit the possibility of quantum-mechanical interference in our quantum game.

To define the winning condition, let us first define the weight W kσ
pqr Player σ has

along the straight line through sites p, q, and r after k quantum moves. In spite of

the orthogonality constraint described earlier, he or she is likely to have played nonzero

amplitudes at all sites for all k moves. To compute the different occupation levels of the

nine sites, we sum all k moves of Player σ,

|m1σ〉+ |m2σ〉+ · · ·+ |mkσ〉 =
9
∑

i=1

vi1σ |bi〉+
9
∑

i=1

vi2σ |bi〉+ · · ·+
9
∑

i=1

vikσ |bi〉 (3)

=
9
∑

i=1

(vi1σ + vi2σ + · · ·+ vikσ) |bi〉 (4)

=
9
∑

i=1

(

k
∑

l=1

vilσ

)

|bi〉 , (5)

where vilσ denotes the amplitude contribution to site i by the lth quantum move. The

term in the parentheses is the accumulated amplitude in site i. The weight W kσ
pqr Player

σ has along the direction pqr can then be calculated as

W kσ
pqr =

∑

i=p,q,r

(

k
∑

l=1

vilσ

)2

. (6)

Thus, Player σ wins after his or her kth move, if

W kσ
pqr ≥ 3 (7)

for some direction pqr. For the sake of clarity in the rest of the paper, we will refer to

Player 1 in the masculine, and to Player 2 in the feminine.

3. Random games

Even though our quantum tic-tac-toe ‘contains’ the classical tic-tac-toe, it is a very

different game from its classical counterpart. In fact, it is so different we did not know
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how to play it at first. When two players play the game without any proper strategy,

the game would look very much like a random game. Therefore, to start understanding

our quantum tic-tac-toe, we played random classical and quantum games, to see how

different they really are from each other. This will also serve as a benchmark study of

the quantum game played in the absence of any strategy, for later comparison against

the deterministic strategic plays studied in Section 4.

In a random classical game, the nine classical moves {|bi〉}9i=1
are played in random

order. After each move, the maximum weight

Wmax = max
pqr

Wpqr (8)

of the active player is calculated. If this weight is equal to three, the active player wins.

Otherwise, the game continues, until one player wins, or the game ends in a draw. In

a random quantum game, we first construct nine random vectors which are neither

normalized nor orthogonal. We then apply the Gram-Schmidt orthonormalization

procedure on the nine vectors to obtain a set of nine orthonormal random (quantum)

moves. These random moves are then played sequentially, until one player wins

according to the quantum winning condition in Eqn. (7), or the game ends in a draw.

3.1. Winning proportions

After playing 10,000 random classical games and 10,000 random quantum games, we

tabulate the outcomes in Table 1. In both the random classical and random quantum

games, Player 1 wins about 60% of the time. However, Player 2 is at a greater

disadvantage in the random quantum game, in the sense that she wins only 14.2% of

the time, as opposed to 28.5% of the time in the random classical game. Furthermore,

we see that in the random classical game, both Player 1 and Player 2 win about 9% of

the time after their third move. In the random quantum game, no player wins after the

third move.

Table 1: Outcomes of 10,000 random classical games and 10,000 random quantum

games. Here we show the proportions of wins by Player 1 and Player 2 after move k

for both games. Player 2 has only four moves, so the number shown for k = 5 is the

proportion of games ending in a draw.

Move k
Claissical Game (%) Quantum Game (%)

Player 1 Player 2 Player 1 Player 2

1 0 0 0 0

2 0 0 0 0

3 9.4 9.0 0 0

4 26.5 19.5 21.8 14.2

5/draw 22.4 13.2 38.5 25.5
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To understand why this is so, let us sum up the k moves that Player σ has made,

|mσ〉 = |m1σ〉+ |m2σ〉+ · · ·+ |mkσ〉 (9)

and check the weights

Wpqr = | 〈mσ|bpqr〉 |2 = | 〈mσ|bp〉 |2 + | 〈mσ|bq〉 |2 + | 〈mσ|br〉 |2 (10)

along the eight straight lines on the 3 × 3 grid, where |bpqr〉 = |bp〉 × |bq〉 × |br〉 is

the hypersurface spanned by |bp〉, |bq〉, and |br〉. These can be viewed as the squares

of the scalar projections of the resultant vector |mσ〉 onto the eight three-dimensional

subspaces spanned by |bp〉, |bq〉, and |br〉. Since all quantum moves have to be normalized

and orthogonal to each other, the resultant vector is the diagonal of a k-dimensional

cube, as shown in Figure 2.

m1|    〉

m2|    〉
m3|    〉

bp|    〉 bq|    〉 br|    〉× ×

Figure 2: Schematic diagram showing the resultant vector for three orthonormal

quantum moves |m1〉, |m2〉, and |m3〉, and its vector projection onto the |bpqr〉 =

|bp〉 × |bq〉 × |br〉 subspace.

For k = 3 moves, the resultant vector |mσ〉 has a length of
√
3. Thus, the only

way for the square of its scalar projection to be equal to three is for |mσ〉 to lie entirely

within one such three-dimensional subspace. It is also impossible for the maximum

weight of three quantum moves to be greater than three. Since a quantum game offers

infinitely many more moves than the classical game, the set of three successive moves

with resultant vector lying exactly on one of the eight three-dimensional subspaces is

of measure zero. This explains why no player was found to win after the third move in

our simulations.

3.2. Opening moves

To someone learning to play chess formally, the first order of business is always to

learn the various opening moves, and understand the relative advantages they confer.

An opening move is the first move played in the game. It is an important move, as

it influences the middle game, and thus also the end game. In this subsection, we

investigate different opening moves, to better understand the advantages they confer to

Player 1.
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For concreteness, let us compare three opening moves: (i) the classical opening

move; (ii) the uniform opening move; and (iii) the random opening move. In (i), Player

1 always plays the classical move |b5〉 as his first move, whereas in (ii), Player 1 always

start by playing the quantum move 1√
9
|b1〉+ 1√

9
|b2〉+ · · ·+ 1√

9
|b9〉, which has uniform

contribution from all classical moves. In (iii), Player 1 plays a random opening move.

For each opening move, we played 10,000 games for which all subsequent moves are

random quantum moves. The outcomes are shown in Table 2.

Table 2: Outcomes of 10,000 random quantum games each for three different opening

moves: (i) classical; (ii) uniform; and (iii) random. Here we show the proportions of

wins by Player 1 and Player 2 after move k for both games. Player 2 has only four

moves, so the number shown for k = 5 is the proportion of games ending in a draw.

Move k

Opening Move

Classical (%) Uniform (%) Random (%)

Player 1 Player 2 Player 1 Player 2 Player 1 Player 2

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 7.6 28.9 23.4 16.4 21.8 14.2

5 27.0 36.5 35.0 25.2 38.5 25.5

As we can see from Table 2, the proportions of games won by Player 1, Player 2,

and ending in a tie are very similar for the uniform and random opening moves, down

to the breakdown of proportions of games won after the fourth and fifth moves. The

situation for the classical opening move, however, is very different. While Player 1 still

wins more games, Player 2 wins nearly twice as many games opened with a classical

move compared to games opened with a uniform move or a random move. This tells us

that in the absence of strategies adopted by Players 1 and 2, a quantum opening move

significantly improves the advantage enjoyed by Player 1.

The geometrical picture behind this quantum advantage is very simple. The three-

dimensional winning subspace |bpqr〉 is spanned by the classical moves |bp〉, |bq〉, and |br〉.
The moment Player 1 plays the classical move |bp〉, the scalar projection of |m1〉 onto |bp〉
saturates at 〈bp|m1〉 = 1. However, if Player 1 avoids playing |bp〉, the scalar projection

〈bp|m1〉 can grow with the number of moves made. In fact, with an appropriate choice

of quantum moves, we can make 〈bp|m1〉 > 1 after Player 1’s second move. By opening

with |b5〉, Player 1 has thus eroded the natural advantage he enjoys in the game, by

limiting the rates at which he is accumulating weights along four of the eight straight

lines.
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3.3. End games

Besides the opening moves, we also learn a game by studying the end games, whereby

the combinatorial complexity of the game is reduced because there are only a few moves

left. In particular, we studied end games in which Player 1 is on the verge of winning.

To arrive at an end-game situation, we played random quantum games, and kept those

games where Player 1 wins after his fourth move. We then discard the moves after

Player 1’s third move, to obtain an end game where Player 1 has made three moves and

Player 2 has made two moves.

Because Player 1 can win on his next move, it is evident that Player 2 must play

a blocking move. To stop Player 1 from winning, Player 2 can play the move Player

1 would use to win, i.e. Player 1’s winning move. Thereafter, Player 1 can no longer

play it, because he is forced to play moves orthogonal to all previous moves. However,

just like in the classical game, Player 1 may have more than one winning move. In

fact, Player 1 has infinitely many winning moves within the four-dimensional space of

all legal quantum moves remaining.

Clearly, this manifold of winning moves should be densely distributed about moves

that maximize Player 1’s weight along one or more of the eight straight lines. To find

the maximizing move |x〉 that maximizes Player 1’s weight

Wpqr = | (〈m1|+ 〈x|) |bpqr〉 |2 (11)

along the direction pqr, subject to the condition that it orthonormal to all previous

moves, we use the method of Lagrange multipliers. Here, |m1〉 = |m11〉+ |m21〉+ |m31〉
is the sum of the three moves Player 1 has made. Writing out the constraints

〈x|x〉 = 1, (12)

〈mlσ|x〉 = 0, (13)

explicitly, for lσ = 11, 12, 21, 22, 31, the simultaneous equations we need to solve are

(see Appendix A for detail derivations)

− 2α |x〉+Mβ + 2
∑

s=p,q,r

|bs〉 (〈bs|m1〉+ 〈bs|x〉) = 0, (14)

1− 〈x|x〉 = 0, (15)

MT |x〉 = 0, (16)

where α is the Lagrange multiplier for enforcing normalization, β is a 5 × 1 vector of

Lagrange multipliers for enforcing orthogonalization, and

M =
[

|m11〉 |m12〉 |m21〉 |m22〉 |m31〉
]

(17)

is a 9 × 5 matrix compiling the five previous moves. Here, 0 denotes either the scalar,

the 5× 1 or the 9× 1 null vectors depending on the context.

After finding Player 1’s eight maximizing moves, and the maximum weights they

are associated with, Player 2 can play the maximizing move with the largest maximum

weight overall as her blocking move. However, if Player 1 can win along multiple
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directions, then Player 2 is sure to lose in the classical tic-tac-toe. In the quantum tic-

tac-toe, Player 2 might be able to take advantage of the ‘quantumness’ of the game, to

simultaneously block all of Player 1’s winning directions. We evaluated the effectiveness

of one such quantum blocking move, by first sorting the end games according to their

pre-winning weight. For end games of a given pre-winning weight ω, we then let Player

2 play a weighted blocking move,

|y〉 = N (W1 |x1〉+W2 |x2〉+W3 |x3〉) , (18)

consisting of the three best moves |x1〉, |x2〉, and |x3〉 by Player 1, i.e. the three

maximizing moves that gives the largest winning weights W1, W2, and W3. Here, N
is a normalization constant we need to compute each time |y〉 is constructed, because

|x1〉, |x2〉, and |x3〉 are not necessarily orthogonal to each other. Finally, after Player 2

has played |y〉, we let Player 1 play the maximizing move |z1〉 along the direction ω is

obtained.

In our simulations, we generated 100,000 end games, and group them into bins with

width ∆ω = 0.05. For each bin, we had Player 2 play the weighted blocking move, as

well as a random move not specifically intended for blocking. Thereafter, we let Player

1 play |z1〉, before checking whether he has won the game. As shown in Figure 3, we see

that the weighted blocking move is statistically more effective than the random move,

not only in terms of the proportion of end games successfully blocked, but also in terms

of how this proportion falls off as we approach ω = 3.

4. Deterministic games

After analyzing the end games, we realized that the basic element for playing the

quantum tic-tac-toe is the maximizing move. We also understood strategic differences

between how Players 1 and 2 were using such a move in the end games. In essence,

Player 2 played a defensive third move, seeking only to deny Player 1 from successfully

maximizing his weight. Following this, Player 1 played an offensive fourth move, seeking

only to maximize his own weight. With this insight, we are now able to play the game

deterministically, after the opening move by Player 1. Our goal is to examine how the

outcomes, subject to different opening moves, depend on following strategies adopted

by Players 1 and 2:

(i) Win/block (WB). Player 1 aims to win by playing only offensive moves, whereas

Player 2 plays only blocking moves;

(ii) Win-block/block (WBB). Player 1 plays offensive moves, but will respond with a

blocking move if (i) Player 2 will win after the next move, and (ii) he will not win

after the present move. We implement this blocking condition approximately, by

making Player 1 block whenever Player 2’s current pre-winning weight ω2 exceeds

two (and is thus is likely to exceed three in the next move), and simultaneously

his’s current pre-winning weight ω1 is smaller than ω2. Player 2 plays only blocking

moves;
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Figure 3: Effectiveness of (a) the random blocking move, and (b) the weighted blocking

move, measured in terms of the proportions of end games successfully blocked for each

pre-winning weight ω. The weighted blocking move is about 10% more effective than the

random blocking move. More importantly, the weighted blocking move remains highly

effective as we approach ω = 3.
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(iii) Win/win-block (WWB). Player 1 plays only offensive moves. Player 2 plays offensive

moves, but will respond with a blocking move if (i) Player 1 will win after the next

move, and (ii) she will not win after the present move. Again, we approximate this

blocking condition as ω1 > 2 and ω1 > ω2 simultaneously;

(iv) Win-block/win-block (WBWB). Players 1 and 2 start by playing offensive moves, but

switch over to defensive moves whenever the opponent is on the verge of winning,

and they themselves are not.

To properly define the offensive move, let us note that for a given move,

the active player can play eight maximizing moves, one each for directions pqr =

123, 456, 789, 147, 258, 369, 159, 357. After each of these maximizing moves are played,

the maximum weights that the active player can attain areW123, W456, W789, W147, W258,

W369, W159, W357 respectively. The offensive move is the maximizing move associated

with the largest maximum weight overall,

Wmax = max{W123,W456,W789,W147,W258,W369,W159,W357}. (19)

As defined in the previous section, the defensive move is the weighted superposition of

the opponent’s three best maximizing moves.

Because of the normalization constraint, we have to solve a nonlinear system of

simultaneous equations to find each maximizing move. This is done numerically using

a nonlinear optimization routine in MATLAB, using random initial guesses. Depending

on our initial guess, we can converge to a global maximizing move, or to stationary

solutions that do not maximize the active player’s weight along the given direction.

Therefore, for each direction, we solve for stationary moves starting with 20 initial

guesses. We then select the stationary move with the maximum weight, and perform

a second-derivative test on it. If it is locally maximum, we accept the stationary move

as our maximizing move. Although this procedure is not guaranteed to always find the

globally maximizing move, we find it giving reliable results in practice. Details on the

second-derivative test can be found in Appendix B.

Before we move on to discuss our results, we would like to remark that though the

strategies are deterministic, the games do not progress deterministically, because of the

random initial guesses used to solve for maximizing moves. This probabilitistic progress

of the games is most prominent for highly degenerate games, like those opened with a

classical move or a uniform move. Play-by-play analysis of the deterministic quantum

games for different strategies can be found at Ref. [38]. In this paper, we will focus

on generic outcomes shown in Table 3 for the different strategies, subject to different

opening moves.

4.1. Comparison against the deterministic classical game

From Table 3, we see that the deterministic quantum tic-tac-toe do not always end up

in a draw, even for the classical opening move, when the proportions of games ending

in a draw is highest (around 70%), whatever the strategy pair. This is a clear departure
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Table 3: Outcomes of deterministic quantum games each for the Win/Block (WB), Win-

Block/Block (WBB), Win/Win-Block (WWB), and Win-Block/Win-Block (WBWB)

strategies, subject to the classical, uniform, and random opening moves. The move

number is not listed, but increases from k = 1 to k = 5 downwards. Player 2 has only

four moves, so the proportional shown in the fifth row under Player 2 is the proportion

of games that ended in a draw. Also, not all 10,000 games were played to completion for

each strategy pair and opening move, because the active player fails to find maximizing

moves at some point in the game. The number at the last row of each strategy pair

indicates how many games ended prematurely because of this problem. The proportions

shown in the table are computed from the successfully completed games.

Strategy

Opening Move

Classical (%) Uniform (%) Random (%)

Player 1 Player 2 Player 1 Player 2 Player 1 Player 2

WB

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 22.4 68.4 2.9 40.5 6.2

5.1 72.5 6.2 22.5 5.0 48.3

183 games 2186 games 5279 games

WBB

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 21.2 68.1 3.1 21.5 15.0

6.3 72.5 6.1 22.6 10.6 52.9

176 games 2139 games 5543 games

WWB

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

13.3 0.5 0.0 0.0 0.0 0.0

0.9 15.5 44.6 1.5 51.4 6.0

4.8 65.0 2.8 51.2 3.6 39.0

420 games 1605 games 2083 games

WBWB

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

2.0 24.8 15.7 6.7 43.7 6.3

10.9 62.3 41.5 36.1 12.8 37.1

442 games 1575 games 3719 games
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from the classical tic-tac-toe, where all deterministic games must end in a draw [35].

Between the two quantum opening moves, the proportion of tied games is generally lower

for games opened with the uniform move than for games opened with the random move.

We expect this, because the uniform opening move confers the maximum quantum

advantage on Player 1, who would go on to win most of these deterministic games.

What is perhaps more surprising, is Player 2 winning more deterministic games than

Player 1, whatever the strategy pair, when these games are opened with the classical

move! We know of no classical two-player games whereby Player 2 owns the advantage.

It turns out that the reason Player 1 does poorly, after opening with the classical move,

is the same for deterministic games as it is for random games. After saturating the scalar

projection 〈m1|b5〉 with the opening move, Player 1 effectively traded away his ability to

more rapidly increase his weights along four out of eight directions with further moves.

This loss of advantage by Player 1 is extremely pronounced in the WB and WBB games,

from winning over 30% of random quantum games opened with the classical move |b5〉, to
about 5% in deterministic games opened with |b5〉. Since Player 2 is playing defensively

in these two class of games, her winning proportions did not increase over that in the

random games. The sharp drop in Player 1’s winning proportions is thus a testimony

on how effective the quantum blocking move is.

4.2. Comparison between opening moves

In contrast to the classical opening move, the uniform and random opening moves confer

immense advantage onto Player 1, when we compare their outcomes against those of

random quantum games opened with the same moves. Player 2 went from winning about

15% of the random games to winning about 3–6% in the deterministic games. The only

exception is WBB games opened with a random move, where Player 2 apparently suffers

no further quantum disadvantage. Comparing Tables 2 and 3, we find Player 1 wins

more of his random games after k = 5 moves, but most of his WB, WBB, WWB games

after k = 4 moves. This shows that the quantum opening move is an effective move for

Player 1, when playing strategically.

We were also surprised to find Player 1 winning 13.3% of the WWB games opened

with the classical move after the third move. Upon checking the games play by play

for this strategy pair, we found that the pre-winning weight of Player 1 should always

be ω1 = 2. Depending on numerical truncation errors, the numerical value of ω1 either

just fails or just succeeds to trigger the criteria for Player 2 to start blocking. In the

former, Player 2 plays an offensive second move, leaving Player 1 unhampered to play

a winning third move. In the latter, Player 2 plays a blocking second move, effectively

denying Player 1 of his third-move win. Because of the integer nature of the classical

opening move, the numerical truncation errors associated with ω1 is smaller than those

associated with ω2, after the same number of moves. Thus, Player 1’s third move in

WBWB games opened with the classical move is almost always a blocking move. This

explains why Player 1 is not observed to win after three moves in such games.
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4.3. Comparison between different strategies

With the classical opening move, Player 1 seriously disadvantaged himself. His winning

proportion is lowest when he plays to win, while Player 2 plays to block. We might be

tempted to think that this is because he fails to block Player 2 when she is on the verge

of winning. But when Player 1 plays to win, but also block Player 2 whenever necessary,

his winning proportion increases only slightly, from 5.1% to 6.3%. In contrast, when

Player 2 decides to start with an offensive move, and block only when necessary, in the

WWB and WBWB games, Player 1 is no longer quite as disadvantaged. This tells us

that the major factor affecting Player 1’s fortune is whether Player 2 choose to start

defensively or offensively.

This same pattern is repeated for the quantum opening moves. Player 1 does no

worse, or slightly better when he also blocks, than when he single-mindedly plays to

win, for the same Player 2 strategy. On the other hand, Player 2 is worse off if she also

plays to win, than when she single-mindedly blocks, if she is playing against a purely

offensive Player 1. She fares better with mixed offensive-defensive moves, than with

purely defensive moves, however, if Player 1 also plays mixed offensive-defensive moves.

5. Conclusions

To conclude, we have in this paper introduced a minimalistic quantization of the classical

tic-tac-toe, by admitting quantum moves which are arbitrary superpositions of the

classical moves. We require our quantum moves to be orthonormal to all previous

moves, and also for the sum of squares of resultant amplitudes to exceed three along

any straight line of three cells for a player to win, so that our quantum tic-tac-toe reduces

properly to the classical tic-tac-toe. Playing the quantum game first randomly and then

deterministically, we find that unlike the classical game, the deterministic quantum tic-

tac-toe does not always end in a draw. Furthermore, unlike most classical two-player

games of no chance, both players can win in the deterministic quantum game. More

interestingly, in both random and deterministic quantum games, we see that Player

1 enjoys an overwhelming quantum advantage when he opens with a quantum move.

This advantage, which is lost when Player 1 opens with a classical move, has a very

simple geometrical interpretation in terms of the projection of the resultant move onto

the classical winning subspaces. Finally, the biggest contrast between the classical

and quantum tic-tac-toes must surely be the effective quantum blocking move that the

defending player can play. In fact, a defensive strategy based solely on such a quantum

blocking move is the strategy of choice for Player 2, for most strategies that Player 1

adopts.

While the quantum tic-tac-toe does not properly describe the quantum information

transfer scenario developed in the Introduction, we believe some generic results obtained

for the former should also apply in the latter. For instance, we believe Alice will also

enjoy a huge quantum advantage with a uniform opening move, if we imagine she has
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multiple quantum channels through which she can transmit to Bob. This move is the

least informative, and Eve would have to guess which quantum channels will ultimately

be used to transmit the message to Bob, in order to come up with a blocking move.

Certainly, Alice should not first attempt to transmit a classical bit utilizing just one

channel, because she will almost certainly lose the advantage she naturally enjoys as

Player 1. Eve can learn something from this paper as well. If the transmissions by

Alice as to be understood as purely offensive moves, Eve should adopt a pure quantum

jamming strategy by playing quantum blocking moves. She should not succumb to the

temptation to also intercept the message, which we can interpret as an offensive move,

because she is not likely to do any better with such a mixed strategy.

Like the quantum information transfer scenario, the multiplayer portfolio

optimization game idealized in the Introduction differs from the quantum tic-tac-toe

in many important aspects. In particular, both the multiplayer portfolio optimization

game and the quantum information transfer game are not subjected to stringent

orthonormality constraints. Nevertheless, we believe the generic lessons learnt from

the quantum tic-tac-toe will apply even in this significantly more complex quantum

game. To prevent competitors from concerted or inadvertent sabotage, a fund manager

should play a uniform move by maximally diversifying his portfolio. This is because

adjustments to such a portfolio yields the least information for other fund managers to

act upon, and therefore its optimality is least susceptible to malicious attacks. Should

a fund manager suspect intentional attacks to his portfolio by multiple players, we also

expect the quantum blocking move to be highly effective. We believe such a ‘defensive’

strategy will help a fund fare better during a financial crisis, where the cascading loss-

cutting measures adopted by other funds can be seen as a coordinated assault on its

position.

Finally, we note that in the duel between grandmasters, there is the additional

element of timing in the strategic game play. For example, an effective move can be

planted ahead of time, and its effectiveness enhanced by subsequent moves. Another

example would be, at times where a defensive move seems inevitable, a grandmaster

can force his opponent’s hand by playing an offensive move elsewhere, and then return

leisurely to play the defensive move. In our quantum tic-tac-toe, the game complexity

is not high enough for such situations to arise. A future topic of research would be to

quantize a more complex two-player game, where these timing situations do arise, and

then explore game-theoretically how different the outcome might be if quantum moves

are made available.
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Appendix A. Method of Lagrange multipliers

In Section 3.3, the method of Lagrange multipliers was used to find the maximizing

move |x〉 along a given direction pqr. In this appendix, we will describe how we obtain

the simultaneous equations (14), (15), and (16). In the method of Lagrange multipliers,

if f(x, y) is the function we wish to maximize, subject to the constraints, g(x, y) = c

and h(x, y) = d, we introduce the Lagrange function,

Λ(x, y, α, β) = f(x, y) + α(g(x, y)− c) + β(h(x, y)− d) (A.1)

where α and β are the Lagrange multipliers. To maximize Λ(x, y, α, β), we partial

differentiate Λ(x, y, α, β) with respect to x and y, as well as α and β, and set the partial

derivatives ∂Λ/∂x, ∂Λ/∂y, ∂Λ/∂α, ∂Λ/∂β to zero.

In the end-game situation discussed in Section 3.3, Player 1 has made his third move,

and we would like to maximize his weight along the direction pqr, using a normalized

move orthogonal to all previous moves. In this situation, the function we would like to

maximize is the weightWpqr, given in Eqn. (11), and the normalization and orthogonality

constraints are given by Eqn. (12) and Eqn. (13) respectively. Using Eqn. (6), we can

write the weight of Player 1 along pqr after the maximizing move explicitly as

W 41

pqr =
∑

i=p,q,r

(

3
∑

l=1

vil1 + xi

)2

. (A.2)

We can also write the normalization and orthogonality constraints out explicitly as
9
∑

i=1

x2

i = 1,
∑

i

vilσxi = 0, (A.3)

where xi is the ith amplitude of |x〉, and lσ = 11, 12, 21, 22, 31. With these, our Lagrange

function becomes

Λ =
∑

i=p,q,r

(

3
∑

l=1

vilσ + xi

)2

+ α

(

1−
9
∑

i=1

x2

i

)

+
∑

{lσ}
βlσ

(

∑

i

vilσxi

)

, (A.4)

using a total of six Lagrange multipliers, α to enforce normalization, and five βlσ to

enforce orthogonality with respect to each of the five previous moves.

Differentiating the Lagrange function with respect to xi, we find

∂Λ

∂xi

= −2αxi +
∑

{lσ}
βlσvilσ = 0 (A.5)

if i 6= p, q, r. If i is p, q, or r, then ∂Λ/∂xi has an extra term 2
(

∑

3

l=1 vilσ + xi

)

arising

from the first term in Eqn. (A.1). We combine these two types of partial derivatives by

writing

∂Λ

∂xi

= −2αxi +
∑

{lσ}
βlσvilσ + 2

(

3
∑

l=1

vilσ + xi

)

pqr

= 0 (A.6)

where the subscript pqr in the last term indicates that we only add the last term if

i = p, q or r. This becomes Eqn. (14) when written in matrix-vector form. Eqn. (15)

and Eqn. (16) are simply ∂Λ/∂α = 0, the normalization constraint, and ∂Λ/∂βlσ = 0,

the orthogonality constraints, written in matrix-vector form.
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Appendix B. Hessian matrix and second-derivative test

To do the second-derivative test for the maximizing move, we first evaluate the Hessian

matrix

H(Λ) =
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(B.1)

of the Lagrange function given in Eqn. (A.4).

Since the Lagrange function Λ(x1, x2, . . . , x9, α, β11, β12, . . . , βlσ) does not contain

cross terms of the form xixj , the 9 × 9 submatrix in H(Λ) is diagonal, with diagonal

matrix elements

Hii(Λ) =
∂2Λ

∂x2
i

= −2α + (2)pqr . (B.2)

Differentiating Eqn. (A.6) with respect to α and β, we will also get

∂2Λ

∂α∂xi

= −2xi, (B.3)

∂2Λ

∂βlσ∂xi

= vilσ (B.4)

respectively. Finally, we see that there are neither quadratic or cross terms involving α

and β in the Lagrange function, Eqn. (A.4), and thus the second partial derivatives of

Λ(x1, x2, . . . , x9, α, β11, β12, . . . , βlσ) with respect to the Lagrange multipliers are always

zero. The Hessian matrix is thus

H(Λ) =









A −2|x〉 M

−2|x〉T O
MT









, (B.5)

where A is a 9 × 9 diagonal matrix, with all the diagonal entries being −2α, except

the pth, qth and rth diagonal entries, which are −2α + 2. The matrix M is the matrix

compiling all previous moves defined in Eqn. (17), while O is a (k + 1) × (k + 1) null

matrix, k being the total number of moves made by both players.

We then evaluate the Hessian matrix H(Λ) at the optimal values (x∗
1
, x∗

2
, . . . , x∗

9
;

α∗, β∗
11
, β∗

12
, . . . , β∗

lσ) of the maximizing move, before diagonalizing it to check if the
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maximizing move does indeed maximize the weight of the active player. In unconstrained

optimization within a d-dimensional space of parameters, we must have d negative

eigenvalues, for the given optimal point to be locally maximum. In constrained

optimization, each constraint defines a hypersurface. The constrained optimal point

need not be locally maximum along directions normal to these constraint hypersurfaces,

since we are not allowed to venture off these hypersurfaces anyway. If k moves have

already been played, there will be k normal directions. The eigenvalues of H(Λ)

associated with eigenvectors lying within the space spanned by these k normal vectors

need not be negative. Hence, a maximizing move is locally maximum if H(Λ) has at

least n = 9− k negative eigenvalues, where n is the number of moves remaining. Only

deterministic quantum games for which all moves are locally maximizing are reported

in this paper (see Table 3).
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