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Abstract

In a previous article a relationship was established between the

linearized metrics of General Relativity associated with geodesics and

the Dirac Equation of quantum mechanics. In this paper the exten-

sion of that result to arbitrary curves is investigated. The Dirac

equation is derived and shown to be related to the Lie derivative of

the momentum along the curve. In addition,the equations of mo-

tion are derived from the Hamilton-Jacobi equation associated with

the metric and the wave equation associated with the Hamiltonian

is then shown not to commute with the Dirac operator. Finally,

the Maxwell-Boltzmann distribution is shown to be a consequence of

geodesic motion.

KEY WORDS: non-geodesic motion, Dirac equation, equations of

motion, Maxwell-Boltzmann distribution.

1 Introduction

In a recent paper Frank Tipler [10] gives a derivation of the Schrodinger
equation using the Hamilton-Jacobi principle of action. In doing so, he
is able to transpose Erwin Schrodinger’s “purely formal procedure”[1] of
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replacing ∂W
∂t

in the Hamilton-Jacobi equation with ± h
2πi

∂
∂t

with a more di-
rect derivation of the wave equation. Likewise, in a paper by Marie-Noelle
Celerier and Laurent Nottale [4] in 2003 they derive the Dirac equation as
the square root of the Klein-Gordan equation by using the “bi-quaternionic
action” associated with geodesic motion and the Hamilton-Jacobi principle
of action. Other approaches not directly based on the use of the action
principle have also been used. For example, Ng and Dam used a geomet-
rical derivation of the Dirac equation by exploiting “rotational invariance”
and “the explicit use of the spin-1

2
property of ψ”[5], while Martin Ri-

vas quantized a Poincare invariant Hamiltonian in which the spin angular
momentum of the particle is constant with respect to the center of mass
observer to derive the Dirac equation.[9]

This paper contains parallels with the approach of Tipler, and Celerier
and Nottale in that it makes use of the Hamilton Jacobi equation but it
also differs in that it emphasizes the fundamental role of the metric in
enabling us to derive two equations associated with non-geodesic motion:
one a generalized Dirac equation, which will capture the kinematics, and
the other an equation of motion describing the dynamics.

Throughout the paper, (M, g) will denote a connected four dimensional
Hausdorff manifold, with metric g of signature +2. At every point p on the
space-time manifold M we erect a local tetrad e0(p), e1(p), e2(p), e3(p) such
that a point x has coordinates x = (x0, x1, x2, x3) = xaea in this tetrad
coordinate system, while the spinor Ψ can be written as Ψ = ψiei(p), where
ψi represent the coordinates of the spinor with respect to the tetrad at p.
This is permissable since a spinor is also an element of a vector space. In
particular, when each ψi is equal for each i then we can write Ψ = ψξ where
the spinor ξ = (ei). When this occurs, we will say that ψ is a scalar field.
Such a scalar field will occur when Ψ is Fermi transported along a geodesic.
For example, in the case of the Dirac equation, the plane wave solution can
be written as

Ψ(x) = e−ipx/h̄u+(p), (1)

where ψ = e−ipx/h̄ and u+(p) =

(

u1
u2

)

and allows for two independent solu-

tions for each momentum p. In particular, for motion along a geodesic, the
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spinor u(p) when expressed in Fermi normal coordinates remains constant
along a geodesic. This also reflects Rivas result in that the derivation of the
Dirac equation presupposes the motion of a particle “in a plane orthogonal
to S, which is constant in this frame,” [9] where S refers to spin-angular
momentum. In terms of quantum mechanics each constant can be iden-
tified with a quantum number. Also at each point p we can establish a
tangent vector space Tp(M), with basis {∂0, ∂1, ∂2, ∂3} and a dual 1-form
space, denoted by T ∗

p with basis {dx0, dx1, dx2, dx3} at p, defined by

dxµ∂ν ≡ ∂νx
µ = δµν . (2)

We refer to the basis {dx0, dx1, dx2, dx3} as the basis of one forms dual to
the basis {∂0, ∂1, ∂2, ∂3} of vectors at p.

With notation clarified, we note that in a previous article [8], the Dirac
equation was derived as a dual of a linearized metric for geodesics. The
linkage was accomplished in a natural way by associating a generalized
Dirac equation with those operators which are duals of differential one-
forms, obtained by linearizing the metrics of General Relativity (expressed
locally as a Minkowski metric). Specifically if

ds2 = gµνdx
µdxν = ηabdx

adxb (3)

where a and b refer to local tetrad coordinates and η to a rigid Minkowski
metric of signature +2, then associated with this metric and the vector ds
is the scalar ds and a matrix d̃s ≡ γadx

a respectively, where {γa, γb} = 2ηab.
In addition, the d̃smatrix can be considered as the dual of the expression

∂̃s ≡ γa ∂
∂xa

which in turn enabled us to define a generalized Dirac equation

∂̃sψξ ≡ γa
∂ψ

∂xa
ξ =

∂ψ

∂s
ξ, (4)

associated with the motion of a particle along a geodesic, with a fixed spinor
ξ.

This paper is an extension of that previous work. In the first part of
the article, we will re-investigate this result by identifying a natural motion
along a curve with a Hamilton-Jacobi function, and then derive the Dirac
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equation as a consequence. In the second part, we will introduce accelera-
tions and derive an appropriate equation of motion, as well as a correspond-
ing wave equation, which can be extended to statistical mechanics. Indeed,
the Maxwell-Boltzmann distribution will be discussed in this context. Also,
I would hope that the derivation will give a deeper understanding of the
meaning of the phrase “wave-particle” duality.

2 Generalized Dirac Equation

The generalized Dirac equation defined above relies on the definition of the
four-momentum in special relativity and upon the fact that ∂̃sψ and d̃s are
parallel along geodesics, and consequently by the chain rule their product
is dψ

ds
ds. In contrast, when accelerations are introduced we will find that in

general

d̃s

ds
.∂̃sψ =

1

2

{

d̃s

ds
, ∂̃sψ

}

+
1

2

[

d̃s

ds
, ∂̃sψ

]

(5)

=
dψ

ds
+
~ds

ds
∧

~∂Ψ

∂s
, (6)

and that it is the dot product of d̃s and its dual ∂̃s that coincides with
dψ
ds
ds.

This term can also be directly related to the Hamilton-Jacobi characteristic
function associated with a coherent set of natural motion [3]. Indeed, to
remove any ambiguity, we begin with the following definitions:

Definition 1 A coherent set of natural motions associated with a particle
in (M, g) is a set of curves S = {σ(λ; ν)} with momentum p(λ) = p(λ; ν)
and energy H(λ) = H(λ; ν),λ a parameter along the curve, such that

∮

(pdx−Hdt) = 0. (7)

Equivalently, dW = pdx − Hdt is an exact differential associated with
the motion of a particle with momentum p and energy H , where pdx =
(p1dx1 + p2dx2 + p3dx3). W is usually referred to as the Hamilton-Jacobi
function associated with the coherent set of motions. Note, also, that a
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natural motion presupposes the existence of such functions. Later, in the
next section we will show that such natural motions always obey Hamilton’s
equations of motion. However, for the moment we will focus on the kine-
matics associated with the Dirac equation. This brings us to the following
lemmas and corollaries.

Lemma 1 Let F (x, t) and ψ(F ) be differentiable functions then pa = ∂F
∂xa

iff paψ′ = ∂ψ
∂xa

where ψ′ = dψ
dF

.

Proof: Trivial. It is sufficient to substitute and use the chain rule.

The following corollary immediately follows:

Corollary 1 If F = W (λ) =
∫

ηabpadxb =
∫

pdx − Hdt is the Hamilton-
Jacobi function for a natural motion along a curve σ(λ), then

γa
∂W

∂xa
= γapa ⇐⇒ γa

∂ψ(W )

∂xa
= γapaψ

′(W ). (8)

Proof: By definition of the Hamilton-Jacobi function ∂W
∂xa

= pa. Writing

this in spinor notation means γa ∂W
∂xa

= γapa. The result follows from the
lemma.

In addition, based on the definition of a natural motion, it is possible to
prove the existence of a Hamilton-Jacobi function which is directly related
to the metric structure ds2 = dxadxa of the space.

Lemma 2 Let ds2 = dxadxa define a metric structure along a curve xa =
xa(λ), and let

W =
∫

σ
m
ds

dλ
ds =

∫

pdx−mc2dt, where pa = m
dxa

dλ
, m = mo

dλ

ds
(9)

then there exists a natural motion associated with W such that ∂W
∂xa

= pa

along the curve (xa(λ)).
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Proof: It is sufficient to show that such a function can be constructed
locally at each point on the Manifold. First, parameterize the curve in
terms of its arc length, so that ∂W

∂xa
= dxa

ds
. Taking a Taylor expansion about

xo gives xa = xa0(ν) +
(

dxa

ds

)

o
ds + o(ds2) and by definition of differential

dxa =
(

dxa

ds

)

o
ds in the tangent plane at x0(ν), for each ν. Therefore, on

integrating we obtain W =
∫

o(p
a
odx

a) + wo = paox
a + wo(ν) at xo, where

wo(ν) is a constant along a given curve. The result follows.

Remark: The lemma has shown the existence of W at every point on the
manifold by showing that W can also be constructed in terms of a local
tetrad as a linear function. In effect, this means that we are defining the
Hamilton-Jacobi along a geodesic passing through the point xo. In practice
as we will see in the example below, it is sufficient to integrate ∂W

∂xa
= dxa

ds
to

obtain W . Moreover, although po = p(xo) is a constant along the geodesic
passing through xo, this does not mean that pa = ∂W

∂xa
is constant along

the curve. Indeed, this latter condition only follows, if motion is along a
geodesic.

Example: Consider a motion of a particle of rest mass mo fired into the
air without resistance. The Equation of Motion for such a projectile in
Minkowski space will be given by

F = −mogj, (10)

or equivalently, denoting dx
dτ

= ẋ,

moẍ = 0 moÿ = −mog. (11)

Solving the equations gives

x = x0 + uxτ and y = y0 + uyτ −
1

2
gτ 2 (12)

.
Conversely beginning with the metric of the particle associated with this

motion, and using equation (12), we obtain

ds2 = dx2 + dy2 − c2dt2
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iff mo
ds

dτ
ds = moẋdx+moẏdy −moc

2ṫdt

iff mo
ds

dτ
ds = mouxdx+mo(uy − gt)dy −moc

2ṫdt.

If we now let dW = m(ds/dτ)ds and require that W be an exact differen-
tial, we obtain W = mouxx+mo(uy− gt)y−moc

2t+wo. Indeed, on taking
partial derivatives, we find ∂W

∂x
= moux = px,

∂W
∂y

= mo(uy − gt) = py and
∂W
∂t

= −mogy −moc
2 = −moc

2ṫ, which is the correct result.

Equation (6) represents the most general form of a “wave-equation” with
respect to a tetrad coordinate system associated with a particle moving
along a curve with tangent vector ( dt

ds
,−dx1

ds
,−dx2

ds
,−dx3

ds
) and arbitrary wave

function ψ. In the case where [∂̃sψ, d̃s] = 0, then ∂̃sψ and d̃s are parallel
or equivalently (∂aψ) = g(s)dx

a

ds
, for some function g(s). In particular, if

there exists an action W such that g(s) = dψ(W )
dW

= ψ′(W ), this leads to the
following lemma:

Lemma 3 If ψ(W ) is a differentiable function with respect to an action W
such that [∂̃sψ, d̃s] = 0 then

(∂̃sψ)ξ(p) = (∂sψ)ξ(p), (13)

which in the case of geodesic motion reduces to

∂̃sΨ =
dΨ

ds
, where Ψ = ψξ. (14)

Remark: (∂̃sψ)ξ = ∂̃sΨ in general, since x is independent of p in phase
space. However, dΨ

ds
6= ψ′(p)ξ unless motion is along a geodesic.

Proof: First note that d̃sξ = dsξ if and only if γap
aξ = mcξ, and since

[∂̃sψ, d̃s] = 0 there exists simultaneous eigenvectors ξ = ξ(p) such that
d̃sξ = dsξ and (∂̃sψ)ξ = γapaψ

′ξ(p) = mcψ′(p) = (∂sψ)ξ(p).
Also, ξ(p) is constant along a geodesic and therefore

∂̃sΨ =
dΨ

ds
, where Ψ = ψξ.

The result follows.
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Corollary 2 Let ds2 = dxadxa and W be as defined in Lemma (2). Let
ψ = ψ(W ) then for a natural motion along the curve

(∂̃sψ)ξ(p) = (∂sψ)ξ(p).

Proof: By Lemma (2) pa = ∂W
∂xa

. Therefore,

[∂̃sψ, d̃s] = [γa
∂W

∂xa
ψ′(W ), γadxa] = ψ′(W )[γapa, γ

adxa] = 0. (15)

The result follows by Lemma (3)

Remark: We refer to Equation (13) as a generalized Dirac equation. It
reduces to the usual form of the Dirac equation if we let ψ = ekW , where
k = i

h̄
:

Corollary 3 Let ψ = ekW where W is the action function defined in Cor.
1 and k = i

h̄
then

γa
∂Ψ

∂xa
=
i

h̄
mΨ. (16)

Proof: ∂̃sψξ = γapaψξ = ∂ψ
∂s
ξ = i

h̄
mψξ and Equation (14) reduces to the

conventional Dirac equation

γa
∂Ψ

∂xa
=
i

h̄
mΨ. (17)

The above equation can be rewritten in the conventional form, if we multiply
across by ih̄γ0 and define α0 = −γ0, αa = −γ0γa to get
[

−ih̄

(

α1
∂

∂x1
+ α2

∂

∂x2
+ α3

∂

∂x3

)

+ α0m

]

Ψ = EΨ where Ψ = ψξ.

(18)
Next, we prove a theorem that relates the Lie derivative and the Dirac

equation for a particle in a closed system.

Theorem 1 Consider a coherent set of motions {σ(λ; ν)} with tangent vec-
tors dxa

ds
associated with the metrics ds2 = dxadxa then the Lie deriva-

tive Lu(p) = 0 iff there exists a natural motion with action W such that
[γa ∂W

∂xa
, d̃s] = 0 and

(∂̃sψ)ξ(po) = (∂sψ)ξ(po).
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Proof:(⇒) Since Lu(p) = 0 there exists a coordinate system [2] such that
ua = δa0 and pa,0 = 0. Therefore pa = mua + mva where m is constant

and ∂va

∂x0
= 0. Denote mua by pao. Then pao = ∂W

∂xa
defines a naural motion

by Lemma 2 and consequently for ψ = ψ(W ), [∂̃sψ, d̃s] = 0 for a natural
motion with action W . It follows from Lemma 3 that

(∂̃sψ)ξ(po) = (∂sψ)ξ(po).

(⇐) Recall ψ = ψ(W ). Therefore ∂ψ
∂xa

= ψ′ ∂W
∂xa

. Now [γa ∂W
∂xa

, d̃s] = 0 implies

γa ∂W
∂xa

= g(s)d̃s for some function g(s). But (∂̃sψ)ξ(po) = (∂sψ)ξ(po). It

follows that γa ∂W
∂xa

= d̃s. Let pao = ∂W
∂xa

= mdxa

dλ
. Define pa = pao + mva,

where ua is a killing vector for va. It now follows that

Lu(p
a) = Lu(po) + Lu(mv

a)

= (pao);bu
b − ua;bp

b
o

= mua;bu
b −mua;bu

b

= 0.

The theorem has been proven.

Remark: The theorem states that the Dirac equation associated with a
particle exists and is defined locally if and only if the wave function is Lie
transported along the curve whose action is W .

By way of concluding this section, we make some final observations:

• In the case of a function ψ such that [∂̃sψ, d̃s] 6= 0, it is possible
to replace ∂̃sψ with the projected cosine of ∂̃sψ along d̃s, which by
definition is parallel to d̃s and varies along the curve such that ∂̃sψ =
g(s)∂̃sφ(s) + γak

a, dx
a

ds
is parallel to ∂̃sφ(s) and a killing vector for ka

and (∂̃sφ)ξ(po) = (∂sφ)ξ(po), where p
a
0 =

∂W
∂xa

and φ = φ(W ).

• The Hamilton-Jacobi function can be re-written in covariant form for
a general coordinate system as follows:

dW = gµνpµdxν , (19)
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with the corresponding wave equation

γµ
∂ψ

∂xµ
ξ = γµpµψ

′ξ (20)

associated with the action along a curve, provided 2gµν = γµγν+γνγµ.

• The generalized Dirac equation

γµ
∂ψ

∂xµ
ξ =

∂ψ

∂s
ξ. (21)

can be defined along an arbitrary curve and is always covariant.

• The Schroedinger equation can be derived as an approximation to the
Dirac equation (14) defined along a geodesic. To see this multiply
Eqn. (14) by h̄2/2m∂̃s to get

−h̄2

2m

[

3
∑

i=1

∂2Ψ

∂x2i
−

1

c2
∂2Ψ

∂t2

]

=
h̄2

2m

∂2Ψ

∂s2
(22)

iff
h̄2

2m

3
∑

i=1

∂2Ψ

∂x2i
−EΨ = −VΨ (23)

iff
h̄2

2m

3
∑

i=1

∂2Ψ

∂x2i
+ VΨ = EΨ, (24)

where Ψ is a simultaneous eigenvector of ∂̃s,
∂2Ψ
∂t2

and ∂2Ψ
∂s2

. In general
such simultaneous eigenvectors do not exist. However, in the limit
as the velocity of the particle in the tetrad frame approaches 0 then
∂Ψ
∂s

→ ∂Ψ
∂t

and the equation will then be approximately correct.

• The above approach deepens our understanding of the Principle of
Complementarity. The particle properties should be directly associ-
ated with the metric. The wave properties emerge from Equation
(13).

• It should be clear that the strict form of the Dirac equation (13)
pertains to the kinematics and not the dynamics of the motion. It
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describes the kinematics with respect to a local tetrad. The dynamics
requires further work, which we will do in the next section. Indeed, the
restriction of the motion to geodesics also explains why we obtain dis-
tinct energy and momentum levels. Geodesic motion presupposes con-
stant momentum and Energy. Quantum mechanics associates these
constants with quantum numbers.

3 Non-geodesic Motion associated with the

Hamiltonian

In the previous section we related the Hamilton-Jacobi characteristic func-
tion directly to the general form of the wave equation of quantum mechanics.
At the same time because of the equivalence principle it was noted that the
general form of the wave equation is determined only locally and not glob-
ally, especially when we consider motion along a non-geodesic. Indeed, the
existence of non-geodesics suggests that other factors other than gravity
are at work. The dynamics in such cases is usually analyzed in terms of
test particles. We will continue then for the purpose of this article to use a
somewhat “classical” approach to quantum mechanics, in that we will con-
tinue to associate a wave ψ and a generalized Dirac equation with a particle
moving along a curve. Moreover, from a mathematical perspective ψ can
be an Lp function. However, for the purpose of quantum mechanics, we will
take ψ ∈ L2 or ψ ∈ L2 ⊗H where H is a Hilbert Space.

3.1 The Physics Interpretation

Although the wave function can be given a precise mathematical meaning
both as an L2 function and in terms of probability of the state of the system,
from a physics perspective things are more nuanced. The word “state” can
be assigned multiple interpretations depending on the physics of the system
and on the question been asked. Indeed, in Lemma 1 no restrictions were
put on the wave function, other than the fact that it was differentiable and
could be written as ψ = ψ(F ). The state, therefore, may refer to position,
momentum, force, temperature, potential, electric and magnetic fields etc.,

11



where F represents one of these characteristic of the system. For example,
in the previous section we worked primarily with the action function W ,
while in this section we will work mainly with the Hamiltonian H .

In will also be helpful at this stage to say something about eigenvec-
tors and their physical meaning. To work with with eigenvector equations
essentially means to look for the invariant states of the system. For exam-
ple, if A is an operator such that Aψ = ±ψ then ψ can be interpreted as
either an axis of rotation or as the axis of reflection which remain invari-
ant under the operation. These axes correspond to the stable states or the
states of equilibrium of the system associated with the operator. One of the
challenges then for physics is to find the equilibrium conditions associated
with the relevant operators (such as the Hamiltonian or Spin operators),
solve their eigenvector equations and then interpret their results. From a
methodological perspective, it should be noted that when physical states
are not stationary or invariant then they are more difficult to access. This
can be seen in the uncertainty principle, where both the position operator
x and the momentum operators px do not have the same eigenfunctions.
Consequently, the physical system cannot be in both invariant states si-
multaneously and therefore both cannot be measured at the same time.
Similarly, we will see below that the vectors γapa and γaṗa do not com-
mute, which is a way of saying that we cannot simultaneously observe the
quantum states of the system associated with the Dirac equation and the
dynamics associated with the Hamiltonian.

3.2 Hamilton’s Equations of Motion

With these observations in mind, we derive Hamilton’s equations from the
action, and then reconsider Lemma 1 from the perspective of the Hamil-
tonian function. First note that if we are restricted to fixed tetrads in
Minkowski space then we need to distinguish between differentiating with
respect to the parameter t (which will be denoted by .) and with respect to τ .
In this regard, for any differentiable function W , dW

dτ
= Ẇ dt

dτ
. To derive the

Hamiltonian equations proper, from the action, two (equivalent) approaches
are possible. One approach can be found in standard texts on theoretical
mechanics, like Synge and Griffith [3]. In the approach, presented here we
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exploit the fact that for a natural motion the action W should be an exact
differential. Specifically,

W =
∫

pdx−Hdt =
∫

d(px−Ht)− xdp+ tdH. (25)

The requirement that W be an exact differential gives

∂W

∂xa
= pa and

∂W

∂t
= −H, (26)

∂W

∂pa
= − xa and

∂W

∂H
= t. (27)

Differentiating this with respect to t gives

∂Ẇ

∂xa
= ṗa and

∂Ẇ

∂t
= −Ḣ, (28)

∂Ẇ

∂pa
= −ẋa and

∂Ẇ

∂H
= 1. (29)

But ∂Ẇ
∂H

= 1 implies Ẇ = H from which it follows that for a natural motion

ẋa =
∂H

∂pa
, ṗa = −

∂H

∂xa
and Ḣ = −

∂H

∂t
. (30)

Before proceeding any further, we note that we have until now worked with
a manifold of signature +2, in other words within a space-like environment.
On the other hand, if we switch to a time-like event, the signature of the
manifold becomes −2, and we obtain the usual form of Hamilton’s equa-
tions:

ẋa = −
∂H

∂pa
, ṗa =

∂H

∂xa
and Ḣ =

∂H

∂t
. (31)

We also note that both forms of the equations are valid and give a deeper un-
derstanding of the relationship between positive and negative energy levels
in quantum mechanics, in terms of time-like and space-like motion. Fur-
thermore, these canonical equations of motion can be re-expressed in terms
of the proper time τ with respect to a local tetrad coordinate system as
follows:

dxa

dτ
= ηab

∂K

∂pb
,

dpa

dτ
= −ηab

∂K

∂xb
, (32)
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where K ≡ H ∂t
∂τ
. These are the same equations assumed by Horwitz and

Schieve in their work on the Gibb’s ensemble[6]. In terms of a generalized
coordinate system both the space-like and time-like equations of motion can
be subsumed into the covariant form:

dxµ

dτ
= gµν

∂K

∂pν
,

Dpµ

dτ
= −gµν

∂K

∂xν
, (33)

where Dpµ

dτ
= pµ; u

ν is the covariant derivative.

3.3 Statistical Mechanics

When W is associated with a metric (see Lemma 2) then H = mc2 can
be identified with the Hamiltonian as it appears in the Hamiltonian-Jacobi
equation (26). It now follows from Lemma 1 and Lemma (2) that there
exists a differentiable function ψ = ψ(H) such that

∂ψ

∂xa
= −ψ′ṗa (34)

which can be re-written in spinor notation as

γa
∂ψ

∂xa
= −γaψ′ṗa. (35)

Taking the inner product 1
2
{γa ∂ψ(H)

∂xa
, γapa} gives

dψ(H)

dt
= −ψ′(H)ṗapa. (36)

In particular when ψ′ = kψ, an eigenvector, and k a constant, (as will
happen when motion is along a geodesic) solving for ψ gives

ψ = e−
k
2
papa. (37)

We shall call ψ(H) the stationary state of the system. In the case of n
independent particles the the joint wave function becomes

ψ = e−
k
2

∑n

1
papa. (38)

14



Moreover, if the motion is along a geodesic then H = constant and papa =
mc2 for each particle Consequently,

ψ = c exp

[

−
k

2
m
∑

n

(−ṫ2 + ẋ21 + ẋ22 + ẋ23)

]

= e
k
2
nmc2. (39)

Defining T = 1
kBk

, to be the temperature, where kB is Boltzmann’s constant,
gives for any t the Maxwell-Boltzmann statistics for free particles:

ψt = c exp

(

−1
2
m

kT
Σn(ẋ

2
1 + ẋ22 + ẋ23)

)

. (40)

Note, that c represents the speed of light in a vacuum. This equation can be
interpreted to mean that the system is in equilibrium, with total conserved
energy

∑

nmc
2. In other words the same Maxwell distribution occurs for

each t. Moreover, if T is not constant then k = k(T ) also varies and in this
case, on solving for ψ one obtains

ψ = e
∫

k(T )paṗadt. (41)

Also from equation (36) we should note that ψ
ψ′

is always an exact differen-

tial, and incorporates k(T ). If k = k(T ) has no explicit time dependence
then ψ will define a stationary non-equilibrium state. On the other hand
if there is an explicit time dependence then the system would be also non-
stationary. Note in that in the case of very large n, T is proportional to the

sample variance of the velocities
∑

n
(ui−ū)

2

n−1
.

3.4 Non-commutative Operators

Although Lemma 1 can be applied both to the action of the system W
and the Hamiltonian H it should be noted that in general the operators
[∂̃sψ(W ), ∂̃sψ(H)] 6= 0. To see this, note that

∂̃ψ(W ) = γa
∂ψ(W )

∂xa
= γapaψ

′(W ) (42)

and

∂̃ψ(H) = γa
∂ψ(H)

∂xa
= γaṗaψ

′(H) (43)
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and unless ṗa = g(t)pa for some function g(t) then they cannot commute.
Indeed, the condition ṗa = g(t)pa is equivalent to xa = exp(

∫ t f(ω)dω) in-
dependently of a, which defines a non affine parameter along a geodesic.
Consequently, there do not exist simultaneous eigenvectors, and both oper-
ators cannot be simultaneously measured, except along a geodesic. This in
itself explains some of the difficulty with dynamics in quantum mechanics.

4 Conclusion

The article has attempted to establish a relationship between the metrics
of General Relativity and Quantum Mechanics. This has been achieved by
first relating the metric structure of spacetime to the Hamilton-Jacobi func-
tion and then using this relationship to derive a Generalized Dirac equation.
In addition we have derived Hamilton’s equations of motion directly from
the Hamilton-Jacobi equation both for space-like and time-like regions, and
then used these equations to determine a dynamical wave equation for the
evolution of the system. These equations also give a deeper understanding
of the relationship between positive and negative energy levels in quantum
mechanics, in terms of time-like and space-like motion respectively. In addi-
tion, the dynamical equations derived do not commute with the generalized
Dirac equation and consequently cannot be measured simultaneously. The
dynamical equations also permit the derivation of the statistical mechanics
of the system. Indeed, in this paper the Maxwell-Boltzmann distribution
was derived directly from the equations of motion.

Finally, it should be noted that we have restricted ourselves to scalar
fields as defined in the introduction. However, in its most general form, we
can write

γa
∂ψ

∂xa
= φ (44)

where φ would be defined by the physics of the problem. For example,
Maxwell’s equations in Minkowski space can be written in spinor form as

iαa
∂ψ

∂xa
= −4πφ, (45)

where φ0 = ρ is charge density, and φa = ja, a ∈ {1, 2, 3} is a current
density. Also in this case, φ0 = 0 and φa = Ha − iEa, where Ha and Ea

16



are the magnetic and electric fields respectively [7]. Such cases would need
further study.

Acknowledgement: I would like to thank Prof. Lamberto Rondoni from
the Politecnico di Torino for his valuable suggestions and input while I was
writing this paper.

References

[1] O’Raifeartaigh L (1997) The Dawning of Gauge Theory. Princeton
University Press, Princeton New Jersey: 92.

[2] Poisson, E (2004) A Relativistist’s Toolkit. Cambridge University
Press, Cambridge: 9.

[3] Synge J& Griffith G (1959) Principles of Mechanics. Mc-Graw Hill
New York and Tokyo: 448-450.

[4] Celerier, Marie-Noell & L. Nattale (2003) Electromagn. Phenom: 3-
70-80.

[5] Ng, Y. and H. van Dam (2003) Phys.Lett A309.

[6] Horwitz L. and W. Schieve (1981) Ann. of Phys. 137,307.

[7] Moses H (1958) Physical Rev. 6:1670-1679.

[8] O’Hara P (2005) Found. Phys. 35:1563–1584.

[9] Rivas, M. (1994) J. Math. Phys., Vol 35, No. 7.

[10] Tipler, F. (2010) arXiv: 1007.4566v1[quant-ph].

17


