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Constructing appropriate unitary matrix operators for new quantum algorithms and finding the
minimum cost gate sequences for the implementation of these unitary operators is of fundamental
importance in the field of quantum information and quantum computation. Here, we use the group
leaders optimization algorithm, which is an effective and simple global optimization algorithm, to
decompose a given unitary matrix into a proper-minimum cost quantum gate sequence. Using this
procedure, we present new circuit designs for the simulation of the Toffoli gate, the amplification
step of the Grover search algorithm, the quantum Fourier transform, the sender part of the quantum
teleportation and the Hamiltonian for the Hydrogen molecule. In addition, we give two algorithmic
methods for the construction of unitary matrices with respect to the different types of the quantum
control gates. Our results indicate that the procedure is effective, general, and easy to implement.

I. INTRODUCTION

Quantum computation promises to solve fun-
damental, yet otherwise intractable problems in
many different fields. It is commonly believed
that advancement in quantum computing sci-
ence will bring new polynomial time algorithms,
and some NP-complete problems shall be solv-
able in polynomial time, too. To advance the
quantum computing field, finding circuit de-
signs which can execute algorithms on quan-
tum computers (in the circuit design model of
quantum computing) is important. Therefore,
it is of fundamental importance to develop new
methods with which to overcome the difficulty
in forming a unitary matrix describing the al-
gorithm (or the part of the computation), and
the difficulty to decompose this matrix into the
known quantum gates.

The problem in the decomposition of a given
unitary matrix into a sequence of quantum logic
gates can be presented as an optimization prob-
lem. Williams and Gray [1] suggested the
use of genetic programming technique to find
new circuit designs for known algorithms, and
also presented results for quantum teleporta-
tion. Yabuki, Iba [2] and Peng et al. [3] fo-
cused on circuit designs for the quantum tele-
portation by using different genetic algorithm
techniques. Spector [4] explains the use of ge-

netic programming to explore new quantum al-
gorithms. Stadelhofer [5] used genetic algo-
rithms to evolve black box quantum algorithms.
There are also some other works [6–8] which
evolve quantum algorithms or circuits by using
genetic programming or genetic algorithms. Re-
view of these procedures can be found in [9].
In this paper, we use the group leaders

optimization algorithm (GLOA)-an evolution-
ary algorithm-to decompose the unitary matri-
ces representing some quantum algorithms or
the unitary propagator of a given many-body
Hamiltonian. In addition to giving the cir-
cuit designs for the simulation of the hydrogen
Hamiltonian, we show new circuit designs for
the operators of the Grover search algorithm;
the sender part of the quantum teleportation;
the Toffoli gate; and the quantum Fourier trans-
form. We also present two algorithmic methods
to efficiently find the unitary matrix represen-
tations of the single- and multiple-control quan-
tum gates. These two methods allow us to use
a wide variety of quantum gates in the opti-
mization without affecting the computing per-
formance.
The structure of the paper is as follows: af-

ter giving a brief introduction about quantum
computation, we describe in Sec.III the algo-
rithmic methods for the construction of the
matrix representations of the quantum control
gates; Sec.IV and Sec.V are devoted to the opti-
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mization problem and the objective function; in
Sec.IV, we describe the group leaders optimiza-
tion algorithm and give the flow chart of the
algorithm for the optimization problem; and fi-
nally, a brief discussion of the test cases and the
result-circuit designs are given in Sec.VII.

II. QUANTUM COMPUTATION

In the circuit model of quantum computing
the gates are the unitary operators which carry
a system from one state to another state. For a
close quantum system described by:

i~
d

dt
ψ(t) = Hψ(t), (1)

the solution for fixed times t0 and t1 is:

ψ(t1) = e−
i

~
H(t1−t0)ψ(t0). (2)

In Eq.(2), eiH(t1−t0) is the unitary operator
which carries the system from the state at t0
to the state at t1 for time independent system
[10]. For time dependent system the unitary
operator which implements the desired gate is

Te−
i

~

∫
H(t) dt, where T is the time-ordering op-

erator [11, 12]. These unitary operators imple-
ment the quantum gates and a general single
quantum gate can be represented as a unitary
matrix operator in the computational basis:

U =

(
u00 u01
u10 u11

)

. (3)

Some of known quantum gates for one qubit are:

I =

(
1 0
0 1

)

X =

(
0 1
1 0

)

Y =

(
0 −i
i 0

)

Z =

(
1 0
0 −1

)

,

(4)

where, I is the identity matrix and X,Y , and Z
are ,in order, the Pauli matrices σx, σy, and σz.
Here, X gate is also known as NOT gate that
transforms the quantum state from |0〉 to the
state |1〉 and vice versa. Some of other unitary
operators are given in Table I.

If a set of quantum gates adequately approxi-
mate any n-qubit (n≥1) unitary operator to ar-
bitrary accuracy, that set of gates are said to be
universal. Any 2-qubit entangling gate with a
1-qubit gate forms a universal set of gates [10].
In this paper, all quantum gate sets used in the
optimization obey the definition of the univer-
sality.
Using a universal set of quantum gates, any

unitary matrix acting on Hilbert Space can in
principal be approximated to an arbitrary accu-
racy. [13]. For an N by N unitary operator on
n qubits, where N = 2n, O(N2(lnN)3) number
of gates are required to represent all matrix ele-
ments of the operator, and so the required num-
ber of gates for a unitary operator grows expo-
nentially with respect to the number of qubits
[14].

III. UNITARY MATRIX

REPRESENTATION AND

CONSTRUCTION METHODS FOR

QUANTUM GATES

As mentioned in the previous section, quan-
tum gates can be represented as unitary matri-
ces in the computational basis. To find the uni-
tary matrix representation of a gate, it is neces-
sary to show its operation on {|0〉 and |1〉} in the
computational basis. For instance, the action of
X gate is represented as |0〉 → |1〉, |1〉 → |0〉.
And |0〉〈1|+ |1〉〈0| gives the corresponding uni-
tary matrix[15], given in Eq.(4). For control
gates it is more difficult to find the unitary ma-
trices by operation since the unitary matrix rep-
resentation of a gate changes with respect to the
order of the control and target qubits within the
circuit and the number of qubits the quantum
gate acts on. As stated in [15], the equivalent
unitary matrix to CNOT (controll-NOT) can be
found as follows:

CNOT = |00〉〈00|+ |01〉〈01|+ |10〉〈11|+ |11〉〈10|

= |0〉〈0| ⊗ I + |1〉〈1| ⊗X =






1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




 .

(5)
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(a) (b)

(c) (d)

FIG. 1: Various types of quantum control
gates: In (a), X gate operating on the target
qubit is controlled by two qubits (the Toffoli
gate). In (b), the control and target qubits are
not neighbors. In (c), the control and target
qubits are not neighbors and are in reverse

order. In (d) the control and target qubits are
neighbors, but in reverse order.

This process becomes tedious when there ex-
ist control gates in which some qubits are be-
tween the control and the target qubits, and
the placement of the control and target qubits
are in reverse order as shown in Fig.1. Because
this is tedious and and concerns about the effi-
ciency for the optimization process, we use two
algorithmic methods to construct unitary ma-
trices for the desired control gates. The first
algorithm is for the construction of the unitary
matrices for the single-control gates. And the
second algorithm gives the unitary matrices for
the multiple-control gates.

The main idea of these algorithms is: to use
the order of qubits in the state register repre-
sented as |q0q1...qn〉 (n is the number of qubits
on which the control gate acts); find the related
indices for these qubits in the identity matrix;
and using the distance between the control and
target qubits in the state register, change the re-
lated elements of this matrix with the elements
of the controlled elementary gate. In the be-

ginning of both algorithms, an identity matrix
is generated having the right dimension for the
quantum gate that will be represented. And
then, the initial positions of the control and tar-
get qubits in this matrix are located by using
the order of the control and target qubits in the
state register, |q0q1...qn〉. Finally, the jumping
amount from this initial positions in the unitary
matrix are determined by using the distance be-
tween the control and target qubits, and the
elements in the related positions are changed
according to the elements of the single elemen-
tary gate that acts on the target qubit, and is
controlled by the control qubit. The correctness
of these algorithms comes from the direct rela-
tion between the state register and the matrix
representation, and can be seen by construct-
ing unitary matrices for the different types of
quantum gates.

A. Unitary matrix construction method

for the single-control quantum gates

This algorithm builds a unitary matrix which
represents the different types of the control
gates which posses only one control and one tar-
get qubits. It locates the related elements of the
identity matrix, and changes them with the el-
ements of the elementary gate acting upon the
target qubit.

Algorithm-1 Unitary matrix construction
method for the control gates from an identity
matrix

Input(target, control)
{Either the control or the target qubit is zero.}

1: d = |control − target|;
2: U = I;

{I is 2d+1 by 2d+1 identity matrix.}
3: t = 2target;
4: c = t+ 2control;
5: m = 2d−1 − 1;
6: for k = 0 to m do

7: i = c+ 2k;
8: j = t+ 2k;

3



9: Uii = u00;Uij = u01;Uji = u10;Ujj = u11;
{where u00, u01, u10, and u11 are the
matrix elements of the single gate.}

10: end for

return U ;

In Algorithm-1, d-which is the absolute dif-
ference between the control and target qubits-
helps to find the number of qubits covered by
the control gate and is the key element in the
determination of the number of times the for-
loop shall run. Since the algorithm works on
an identity matrix, in the second line of the al-
gorithm the matrix U is initially defined as a
2d+1 by 2d+1 identity matrix which shall be the
representation of the control gate at the end of
the algorithm. The variables c and t are the in-
dices used to find the i and j which determine
the indices of elements to be changed inside the
loop. After finding the correct indices, the al-
gorithm changes the four elements of U in each
iteration with the elements (u00, u01, u10, and
u11) of the single gate that operates on the tar-
get qubit. Since the loop runs m+ 1 times, the
total 4 × (m + 1) elements are replaced by the
elements of the single gate. At the end of the
algorithm, the matrix U represents the desired
unitary matrix for the control gate, and is given
as an output of the algorithm.

The running time of the Algorithm-1 is O(N)
in the worst case since the loop, which is the
dominant in the running time, runsm+1 times,
where the variable m is found as:

N = 2d+1; and m = 2d−1 − 1; → m =
N

4
− 1.

(6)

Note that if the definition of the identity matrix
at the beginning of the algorithm is involved in
the running time, then the total running time
becomes O(N2).

B. Unitary matrix construction method

for the multiple-control gates

Algorithm-2 Unitary matrix construction
method for the multiple-control gates

Input(target, control)
{Either the control or the target qubit is zero.}

1: d = |control − target|;
2: U = I;

{I is 2d+1 by 2d+1 identity matrix.}
3: t = 2target;
4: c = t+ 2control;
5: m = 2d−1 − 1;
6: i = c+ 2m;
7: j = t+ 2m;
8: Uii = u00;Uij = u01;Uji = u10;Ujj = u11;

{where u00, u01, u10, and u11 are the
matrix elements of the single gate.}

return U ;

Algorithm-2 creates a unitary matrix which
represents the multiple-control quantum gates.
Unlike in the regular-control gates, all of the
qubits between the control and target qubits
are also the control qubits in the multi-control
gates. The idea of Algorithm-2 is similar to
Algorithm-1, but the absence of a for-loop
makes this simpler than Algorithm-1. The algo-
rithm starts with an identity matrix having the
dimension of 2d+1 by 2d+1, then it changes the
required four elements of the identity matrix.
Note that for the regular-multi-control gates-
the Toffoli gates-the algorithm simply changes
the only four elements in the lower-right-hand
corner of the identity matrix.
If the definition of U is not included in the

running time, the algorithm runs in O(1). Oth-
erwise, it takes O(N2) time, the same as the
running time of Algorithm-1.

IV. IMPLEMENTATION DESIGN OF

THE PROBLEM

There are a few things which need to be con-
sidered before starting the optimization process.
First, the quantum gates; the target and con-
trol qubits; and the angle for the rotation gates;
need to be described in a way which can be read

4



by the optimization algorithm to find the de-
composition of a given unitary matrix in terms
of a quantum gate sequence. We use the same
idea as in [16], and define each quantum gate
with a number in the range of 1 to the maxi-
mum number of gates. In our implementation
The default set of gates used in the optimization
is given in Table II. Since we use general con-
struction methods for the quantum gates, the
set of the quantum gates can be very diverse
and include the wide variety of quantum gates.
The sequence of the gates (candidate circuit

design solution ) are represented with a matrix
having 4 columns: the first column identifies
the type of the gate; the second column is for
the target qubit; the third column is for the
control qubit; and the fourth and final column
represents the angle. The fourth column (an-
gle) for the non-rotation gates, the third col-
umn for single (non-control) gates, and the rows
defining the control gates with the equal target
and control qubits are not taken into consid-
eration (they are all zero in the solution ma-
trix). And for the multiple-control gates, all
qubits between the target and control qubits are
also taken as control qubits for the gate. The
total number of rows in the matrix represents
the maximum number of gates that can be used
for the solution. This representation is similar
to the representation of Miller and Thomson’s
Cartesian genetic programming for classical cir-
cuits [17].
In addition to defining quantum gates, it is

also important to be able to simulate all kinds
of quantum gate sets. In the previous section,
we had explained the algorithms used to con-
struct the unitary matrices for different types
of single- and multiple-control quantum gates.
Once the matrix representation for a quantum
gate is found, the matrix describing the act of
the quantum gate for the whole system is found
by:

Ui = I⊗ I⊗ ... Gi
︸︷︷︸

ith
factor

...⊗ I⊗ I, 0 ≤ i ≤ n. (7)

In Eq.(7), Gi is the gate acting on ith qubit (i
may be more than one qubit). As an example

for the circuit in Fig.2, the whole unitary matrix
that represents the act of control-U gate in the
circuit can be found to be:

U0 = G⊗ I, (8)

where G is an 8 by 8 unitary matrix which rep-
resents control-U gate in the circuit and con-
structed by using Algorithm-1. In Fig.2, the
quantum state at φ0 is:

|φ1〉 = |ψ1ψ2ψ3ψ4〉. (9)

After applying the quantum gate (control-U) to
the circuit, the quantum state at φ1 is found as
follows:

|φ2〉 = U0|φ1〉 = U0|ψ1ψ2ψ3ψ4〉. (10)

If there is more than one gate on the circuit,
the whole computation is defined by combining
these gates either by their orders in time or from
left to right. For n gates operating on a circuit,
the computation can be defined as:

|φlast〉 = UnUn−1...U2U1U0|φinitial〉, 0 ≤ i ≤ n,
(11)

where |φinitial〉 is the initial, and |φlast〉 is the
final quantum states. And Ui represents the
unitary operator for the ith quantum gate.
The definitions of the optimization

problems:

Two slightly different optimization problems
can be defined for the circuit model of quantum
computation:

• The first problem is: for a given ini-
tial quantum state, finding a unitary ma-
trix (or a sequence of the quantum gates)
which brings the initial state to the de-
sired state. The error is the difference be-
tween desired state and the state found by
the optimization algorithm. This problem
is the same as finding the right sequence
of U matrices in the expression shown in
Eq.(11) in a way that will give the de-
sired output |φlast〉 when the sequence is
applied to the initial state |φinitial〉.
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FIG. 2: A simple gate operating on the first
qubit and controlled by the third qubit. An 8
by 8 matrix G representing the control-U gate
in the circuit is found by using Algorithm-1 .
The whole unitary operator, U0, is a 16 by 16
matrix found by taking the Kronecker product
of G and I (the identity matrix for the fourth

qubit).

• The other optimization problem can be
described as finding a sequence of the
quantum gates (or quantum circuit de-
sign) which gives the desired unitary ma-
trix. That means, the matrix Ugiven
describing the computation will be de-
composed into the given quantum gates.
Hence, the evolution of the whole quan-
tum system will be defined in terms of
quantum gates. The error will be the dif-
ference between the unitary matrix given
by the user and the unitary matrix found
by the optimization.

The second optimization problem is the main
interest of this paper. Hence, all experiments
have been made to find quantum circuit designs
for the known quantum algorithms and the uni-
tary propagator of Hamiltonians.

V. DEFINING OBJECTIVE FUNCTION

The definition of the objective function is an
important factor in the optimization process. In
our case, there are two factors which need to
be optimized: the correctness and the cost of
the circuit. Let Uf be the matrix found by the
optimization and Ug is the given unitary matrix

to be decomposed. The correctness is defined in
[18] as:

Correctness(C) =

∣
∣
∣
∣
∣
∣

Tr
(

UgU
†
f

)

N

∣
∣
∣
∣
∣
∣

, (12)

where N = 2n (n is the number of qubits),
the symbol † represents the complex conjugate
transpose of a matrix, and Tr(..) is the trace of a
matrix. This definition ignores the global phase
differences, which make the optimization eas-
ier for many cases. However, for the simulation
of the chemical Hamiltonians the global phase
must also be taken into consideration so as to
get accurate circuits. In order to add the global
phase differences to the definition of the correct-
ness, we separately consider the real parts and
the imaginary parts of the diagonal elements of

the matrix formed by multiplying Ug and U
†
f . It

is obvious that when the real parts are one and
the imaginary parts are zero, the correctness is
one and Uf = Ug. The correctness used in this
paper respects the global phase differences, and
is defined as:

C =

N∑

j=1

∣
∣
∣
∣
∣

Re (Ujj)− (Im (Ujj))
2

N

∣
∣
∣
∣
∣
, (13)

where U = UgU
†
f , and j is the matrix index,

j = 1, 2, ..., N .
The correctness (C) obtained from Eq.(13)

determines how much Uf looks like Ug. It is
generally in the range [0, 1], and is 1 if Uf = Ug.
The cost of a circuit describes the level of ease

with which this circuit is implemented; in order
to make the implementation of a circuit easier
and the circuits less error-prone, the cost of a
circuit also needs to be optimized by minimizing
the number of gates in the circuits. Hence, in
addition to the correctness, the objective func-
tion should include the cost of the circuit.
The cost of a circuit is found by summing up

the cost of each quantum gate in the circuit.
The different types of quantum gates have dif-
ferent costs: The cost of a single gate is 1 and
less than the cost of any type of the control
gates since the implementation of a single gate
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on quantum computers is much simpler than
the implementation of the control gates. To es-
timate the cost of the control gate, instead of
placing a constraint on the target and control
qubits by requiring them to be adjacent as done
in [16], we take the cost of a gate with the closer
target and control qubits; the number of qubits
between the control and target qubits is multi-
plied by a constant. This constant is 2 for the
regular control gates and 3 for the multi-control
gates. For instance, while the cost of the CNOT
gate whose control and target qubits are neigh-
bors is 2 × 1 = 2 (2 is the constant and 1 is
the number of qubits between the target and
control qubits.), the cost for the Toffoli gate is
3×2 = 6 (3 is the constant for the multi-control
gates, and 2 is the number of qubits between
the first control and the target qubits.). The
following expression finds the cost of the circuit
in Fig.3a:

Cost = 2× 1+ 2× 1+ 2× 2+2× 1 = 12. (14)

The general objective function is defined by
including both the correctness and the cost of
the circuit with some weights:

y =

∣
∣
∣
∣
1− (αC +

β

Cost
)

∣
∣
∣
∣
, (15)

where the constants α and β are the weights for
the correctness and the cost, and defined as:

0 ≤ (α, β) ≤ 1;

α+ β = 1.
(16)

The cost in the objective function is also scaled
to the range [0, 1] by taking β less than 1. And
in general, taking α greater than β leads to more
accurate results. In our experiments, we took
α = 0.9 and β = 0.1:

y =

∣
∣
∣
∣
1− (0.9C +

0.1

Cost
)

∣
∣
∣
∣
. (17)

In this definition of the objective function, the
effect of the cost can reach a maximum of 0.1
on the result of the objective function when
the cost of a circuit is 1 (the circuit includes
only one elementary gate). Therefore, because

the constant β is small as opposed to α, the
change in the value C is more significant than
the cost. Hence, the optimization generally fo-
cuses on correctness more than cost.
It is important to note that the value of the

objective function never becomes zero since all
circuit designs with at least one gate have a cost
value. For the test cases, in addition to the val-
ues of objective functions, we give the C values
for the circuits to make the cost and correctness
values in the objective function more coherent.
Also note that on the results of the objective
function there may be some computer round-off
errors.

VI. GROUP LEADERS OPTIMIZATION

ALGORITHM

Group leaders optimization algorithm
(GLOA)[19] is a simple and effective global op-
timization algorithm that models the influence
of leaders in social groups as an optimization
tool. The general structure of the algorithm
is made up by dividing the population into
several disjunct groups each of which has its
leader (the best member of the group) and
members. The algorithm which is different
from the earlier evolutionary algorithms and
the pivot method algortihm [20–22] consists
of two parts. In the first part, the member
itself-the group leader with possible random
part-and a new-created random solution are
used to form a new member. If the formed new
member is a better solution to the problem
than the old member, it replaces the old one.
This mutation is defined as:

new member = r1 portion of old member

∪ r2 portion of leader

∪ r3 portion of random,

(18)

where r1, r2, and r3 determines the rates of the
portions of the old member, the group leader,
and the new-created random solution; which
form the new member, and sum to 1.
In addition to the mutation, in each iter-

ation for each group of the population one-
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way-crossover (also called the parameter trans-
fer) is done between a chosen random member
from the group and a random member from
a different-random group. This operation is
mainly replacing some random part of a mem-
ber with the equivalent part of a random mem-
ber from a different group. If new formed mem-
bers give better solution to the problem, then
they survive and replace the old members of the
groups; otherwise, they do not. The amount of
the transfer operation for each group is defined
by a parameter called transfer rate. The values
of the parameters of the algorithm used in the
experiments are given in the next chapter. The
flow chart of the algorithm for our optimization
problem is drawn in Fig.10.

VII. TEST RESULTS

In the experiments, some parameter adjust-
ments were done as follows: The set of gates in
Table II were used as the default universal gate
set. While in the case of the unitary propagator
of the Hamiltonian of the hydrogen the angle is
defined as a multiple of 0.005 and in the range
[0, 2π], in the other cases it is defined as kπ,
and k is multiple of 0.125 and in the range [0, 2].
All quantum gates, except the single quantum
gates, were formed by using Algorithm-1 during
the evaluation of the objective function in the
optimization.

The parameters for the optimization algo-
rithm are given in Table IV. The correctness
(C) and the minimized objective function val-
ues and the number of iterations can be found
in Table V with respect to all circuit design re-
sults that are given in the paper.

In the following subsections, the test cases are
explained, and their circuit diagram results in
related figures are drawn by using the output of
the optimization program. As an example, the
output of the program for the decomposition of
the unitary matrix for the diffusion part of the

Grover search algorithm is as follows:







G T C Q

Control X, 2 1 0
0 0 0 0

Single V 2 0 0
0 0 0 0

Single V 1 0 0
Control X 2 1 0
Single V 1 0 0

0 0 0 0







, (19)

where the column G represents the name of the
gate, T is the target qubit, C is the control
qubit, and Q determines the angle values for
rotation gates. The number of rows is equal to
the maximum number of gates. The zeros are
the control gates with the equal control and tar-
get qubits, or a field the gate does not need to
use such as the control qubit field for the single
gates. Fig.4a shows the circuit diagram for this
output.

A. Toffoli Gate

The Toffoli gate consists of two control and
one target qubits, shown in Fig.1a. The sin-
gle gate acts on the target qubit if and only if
both control qubits are in state |1〉 [23, 24]. The
unitary matrix representation of this gate is:

Utoffoli =














1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0














. (20)

And the operation of the Toffoli gate can be
denoted as:

Utoffoli|ψ0, ψ1, ψ2〉 = |(ψ0ψ1)⊗ ψ2〉. (21)

In the above equation, the symbol, ⊗, is the
exclusive-or operator which simulates the func-
tion of a NOT gate.
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(a)

(b)

(c)

FIG. 3: The found circuit designs for the
Toffoli gate.

The set of gates in Table II and the param-
eters in Table IV were the default sets used
for the optimization program. From different
runs of the algorithm, various circuit designs
were found for the decomposition of the Toffoli
gate, and the most efficient these are shown in
Fig.3. For the parameters of the optimization
algorithm, the correctness, and the values of the
objective function, please, refer to Table IV and
V.

B. Grover Search Algorithm

Grover search algorithm presented in [25] is
one of the advances quantum computing has
brought on classical computing. It reduces the
computational time of a brute force search from
O(N) to O(

√
N). The main body of the algo-

rithm is composed of two main operators: Uf
and Uψ⊥ [10, 24, 26]. These two operators are
applied after putting the n-qubit initial state

|ψ〉 = |000...0〉 into a superposition of quan-
tum states with equal probabilities by applying
Hadamard gates:

H⊗n|ψ〉 = 1√
N

N∑

x=1

|x〉. (22)

The first operator Uf can be defined as:

Uf = I − |a〉〈a|, (23)

where a is the element that is being searched,
and I is the identity. The act of Uf is to mark
the element x if and only if x = a; the function,
f(x), is equal to 1 for x = a. That can be
denoted as:

Uf |x〉 = −1f(x)|x〉 =
{

|x〉, if x 6= a
−|x〉, if x = a

}

.

(24)
Uψ⊥ is the inversion about the average oper-

ator (or diffusion operator) which amplifies the
amplitude of the marked state while reducing
the amplitudes of the rest. And so the proba-
bility of seeing the marked element at the end
of measurement gets higher. This operator is
defined as:

Uψ⊥ = 2|ψ〉〈ψ| − I. (25)

The matrix representation of this diffusion op-
erator D is found as follows [25]:

Dij =

{
N
2 , if i 6= j

−1 + N
2 , if i = j

}

. (26)

If we sum up the algorithm, we can represent
it in four steps [10]:

1. Start with an n-qubit initial state |000..0〉.

2. Put this initial state into the superposi-
tion by applying Hadamard (H) gates to
the each qubit.

3. ⌊π4
√
N⌋ times

apply the first operator Uf .

apply the second operator Uψ⊥ .

4. Measure the result.

9



In our experiment, we have decomposed the
matrix representation of the operator Uψ⊥ for
two qubits, which is found by using Eq.(26).
The matrix is defined as:

D =
1

2






−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1




 . (27)

The circuit designs found for the above unitary
matrix by the optimization are shown in Fig.4.
The errors for the circuits in Fig.4 are zero; how-
ever, the objective function values are non-zero
because of the cost of the circuits (see in Table
V).

C. Quantum Fourier Transform

The quantum Fourier transform (QFT) func-
tions exactly the same as the classical discrete
Fourier transform (DFT) when applied to the
amplitude of quantum state. While the com-
putational time of the DFT is O(N logN), the
quantum Fourier transform can be computed
by using O(log2N) elementary operations [27].
Thus, the QFT exponentially speeds up the
computation time and requires O(n2) quantum
gates for the circuit implementation. Since the
inverse QFT makes possible to estimate the
phases of a unitary operator, it is the key el-
ement in many algorithms such as the factor-
ing problem and the order finding problem [24].
Hence, it also advances the computation time
of some of these problems.
The discrete and the quantum Fourier trans-

forms can be described as follows [15]: Let wn
be a primitive Nth root of unity:

wn = 2
2πi

N , N = 2n. (28)

For an input vector of complex numbers
x0, x1, ..., xN−1, The DFT outputs the vector
of complex numbers y0, ..yN−1. It is denoted as
follows:

yk =
1√
N

N−1∑

j=1

xjw
jk
n . (29)

The quantum Fourier transform on an orthonor-
mal basis |0〉, ...|N−1〉maps the quantum states
as:

|j〉 = 1√
N

N−1∑

j=1

wjkn |k〉. (30)

That means, the discrete transform of xj be-
comes the amplitudes of yk. The unitary ma-
trix representation of the QFT (UQFT ) can be
defined as:

1√
N












1 1 1 · · · 1
1 w w2 · · · 1
1 w2 w4 · · · w(N−1)

1 w3 w6 · · · w2(N−1)

...
...

...
. . .

...
1 w(N−1) w2(N−1) · · · w(N−1)(N−1)












.

(31)
For the optimization, we used the unitary ma-
trices for the three and two-qubits QFT. The
matrix for the two-qubit QFT is as follows:

UQFT4
=

1

2






1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i




 . (32)

Using the parameters in Table IV and V, the
decompositions of the two-qubit QFT are found
as in Fig.5 with the related objective function
values in Table V. The unitary matrix for three-
qubit QFT (UQFT8

) can be represented con-
cisely as:

1√
8
















1 1 1 1 1 1 1 1
1 1+i√

2
i −1+i√

2
−1 −1−i√

2
−i 1−i√

2

1 i −1 −i 1 i −1 −i
1 −1+i√

2
−i 1+i√

2
−1 1−i√

2
i −1−i√

2

1 −1 1 −1 1 −1 1 −1
1 −1−i√

2
i 1−i√

2
−1 1+i√

2
−i −1+i√

2

1 −i −1 i 1 −i −1 i

1 1−i√
2

−i −1−i√
2

−1 −1+i√
2

i 1+i√
2
















.

(33)
This matrix is decomposed into the quantum
gates, and the exact circuit design in Fig.6 is
found with the objective function value given
in Table V.
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(a) (b)

FIG. 4: The found circuit designs for the two-qubit amplification part of Grover search algorithm.

(a) (b)

FIG. 5: Found circuit designs for the two-qubit quantum Fourier transform: (a) is the two-qubit
QFT-1, and (b) is the two-qubit QFT-2 in Table V.

D. Quantum Teleportation

Suppose Alice who has the first qubit wants
to send information to Bob who has the sec-
ond qubit. Quantum teleportation is a protocol
which allows Alice to communicate an unknown
quantum state of a qubit by using two classical
bits in a way that Bob is able to reproduce the
exact original state from these two classical bits
[10, 15]. In order to successfully transmit infor-
mation between Alice and Bob, they must share
an entangled qubit in the beginning. Quantum
teleportation can be categorized in four parts
[10, 15, 24, 28, 29]:

• Sender part and measurement: Alice en-
codes the information

• Classical channel that carries the informa-
tion from Alice to Bob.

• Receiver part: Bob decodes the informa-
tion and reproduce the original quantum
state.

As a case for the optimization, we used the uni-
tary matrix representation for the sender part
of the teleportation (Usender), given in [2, 18] as

follows:

1

2














1 0 −1 0 0 1 0 1
0 1 0 −1 1 0 1 0
0 1 0 1 1 0 −1 0
1 0 −1 0 0 1 0 1
−1 0 −1 0 0 1 0 1
0 −1 0 1 1 0 1 0
0 −1 0 −1 1 0 −1 0
−1 0 −1 0 0 1 0 −1














. (34)

The exact circuit designs for the unitary matrix
of the sender part of the quantum teleportation
are shown in Fig.7.

E. The Hamiltonian of hydrogen molecule

It has been shown that the ground and ex-
cited state energies of small molecules can be
carried out on a quantum computer simula-
tor using a recursive phase-estimation algorithm
[30, 31]. Lanyon et. al. reported the applica-
tion of photonic quantum computer technology
to calculate properties of the hydrogen molecule
in a minimal basis [32]. Here, we show how our
method can be used to reduced the number of
gates needed to perform the simulations.
Fermion model of quantum computation is

defined through the spinless fermionic annihi-

lation (aj) and creation (a†j) operators for each

11



FIG. 6: Found circuit design for the three-qubit quantum Fourier transform.

(a) (b)

FIG. 7: The found circuit designs for the sender part of the quantum telportation.

qubit j (j=1, ... , n), where the algebra of 2n
elements obey the fermionic anti-commutation
rules [33]:

{ai, aj} = 0, {ai, a†j} = δij , (35)

where {A,B} = AB + BA defines the anti-
commutator. Using the Jordan-Wigner trans-
formation, the fermion operators is mapped to
the standard quantum computation operators
through the Pauli spin operators (σx, σy, σz , I)
[33]:

aj →
(
j−1
∏

k=1

−σkz

)

σ
j
− = (−1)

j−1
σ1
zσ

2
z ....σ

j−1
z σ

j
−

a
†
j →

(
j−1
∏

k=1

−σkz

)

σ
j
+ = (−1)

j−1
σ1
zσ

2
z ....σ

j−1
z σ

j
+.

(36)

Once the electronic Hamiltonian is defined in
second quantized form, the state space can eas-
ily be mapped to qubits. The electronic Hamil-
tonian in second quantized form is described as
[32, 34, 35]:

H =
∑

pq

hpqa
†
paq +

1

2

∑

pqrs

hpqrsa
†
pa

†
qaras, (37)

where the integrals hpq and hpqrs evaluated dur-
ing the Hartree-Fock procedure are defined as
follows:

hpq =

∫

dxχ∗
p(x)

(

−1

2
▽

2 −
∑

α

Zα

rαx

)

χq(x)

(38)
and

hpqrs =

∫

dx1dx2
χ∗
p(x1)χ

∗
q(x2)χr(x2)χs(x1)

r12
,

(39)
where rαx is the distance between the αth nu-
cleus and the electron, r12 is the distance be-
tween electrons, ▽2 is the Laplacian of the elec-
tron spatial coordinates, and χp(x) is a selected
single-particle basis. Whitfield et al.[34] consid-
ered H in Eq.(37) as H(1)+H(2). Since hpqrs =
hqprs, and so hijji = hjiij = −hijij = −hjiji,
they noted the parts of the Hamiltonian as fol-
lows:

H(1) = h11a
†
1a1 + h22a

†
2a2 + h33a

†
3a3 + h44a

†
4a4,

(40)
and
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H(2) = h1221a
†
1a

†
2a2a1 + h3443a

†
3a

†
4a4a3 + h1441a

†
1a

†
4a4a1 + h2332a

†
2a

†
3a3a2

+ (h1331 − h1313)a
†
1a

†
3a3a1 + (h2442 − h2424)a

†
2a

†
4a4a2

+Re(h1423)(a
†
1a

†
4a2a3 + a

†
3a

†
2a4a1) +Re(h1243)(a

†
1a

†
2a4a3 + a

†
3a

†
4a2a1)

+ Im(h1423)(a
†
1a

†
4a2a3 + a

†
3a

†
2a4a1) + Im(h1243)(a

†
1a

†
2a4a3 + a

†
3a

†
4a2a1).

(41)

Using their findings [34] for the spatial integral
values for atomic distance 1.401a.u. in Table III,
we found the Hamiltonian, and then the unitary
propagator, e−iHt (t was taken as 1), as a ma-
trix operator. And then we ran the GLOA with
the parameter values in Table IV and Table V
for this unitary matrix, and decomposed it as
shown in Fig.8 with related objective function
values and the correctness in Table V.
In addition to the exact unitary propaga-

tor, we also found the unitary operator at
bond distance 1.401 atomic units by simulat-
ing the approximated-general circuit designs for
the simulation of the Hamiltonian in the pa-
per [34] (In [34], the non-commuting terms in
the Hamiltonian are approximated by follow-
ing the Trotter-Suzuki decomposition, and the
given approximated circuit design is a general
circuit for the unitary propagator; the values of
the angles in the quantum gates depend on the
spatial integral values.). The decomposition of
this unitary propagator is found as in Fig.9 with
the value of correctness 0.998. The circuit de-
sign in Fig.9 consists of 6 quantum gates while
the complete circuit design in [34] consists of 87
quantum gates.

VIII. CONCLUSION

To be able to simulate Hamiltonians of atomic
and molecular systems and also apply quantum
algorithms to solve different kinds of problems
on quantum computers, it is necessary to find
implementable quantum circuit designs includ-
ing the minimum cost and number of quantum
gate sequences. Since deterministic-efficient
quantum circuit design methodology is an open
problem, we applied stochastic evolutionary op-
timization algorithm, GLOA, to search quan-

tum circuit designs for given unitary matrices
representing algorithms or the unitary propa-
gator of a molecular Hamiltonian. In this pa-
per, in addition to explaining the ways of the
implementation and design of the optimization
problem, we present two algorithmic methods
with which to find the unitary matrix repre-
sentation of different type of quantum control
gates, and then we give some efficient circuit de-
signs for the Grover search algorithm, the Tof-
foli gate, the quantum Fourier transform, and
the quantum teleportation. Moreover, we give
the two circuit designs for the simulation of the
Hamiltonian of the hydrogen molecule by de-
composing the unitary matrix operators found
by following the fermionic model of quantum
computation and simulating the circuits given
in [34].
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FIG. 8: The circuit design for the unitary propagator of the Hamiltonian of hydrogen molecule.
The unitary propagator is found by using the spatial integral values in Table III and the

definitions for the annihilation and creation operators in Eq.(36) into the Eq.(37), Eq.(40), and
Eq.(41).

FIG. 9: The circuit design for the unitary propagator of the hydrogen Hamiltonian. The unitary
propagator is found by simulating the circuits and pseudo-code given in [34].

TABLE I: The unitary matrices for some of the quantum gates used in the circuits [10, 23, 24]

.

The name of the gate The unitary matrix

V (square root of X gate) 1

2

(

1 + i 1− i

1− i 1 + i

)

V † 1

2

(

1− i 1 + i

1 + i 1− i

)

Rx(θ)

(

cos( θ
2
) i sin( θ

2
)

i sin( θ
2
) cos( θ

2
)

)

Ry(θ)

(

cos( θ
2
) sin( θ

2
)

−sin( θ
2
) cos( θ

2
)

)

Rz(θ)

(

1 0
0 exp(iθ)

)
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TABLE II: Universal set of quantum gates used in the optimization

Single Gates Control Gates
Single I —
Single X Control X
Single H —
Single Z Control Z
Single Y Control Y
Single V Control V
Single V † Control V †

Single S Control S
Single T Control T
Single RX Control RX
Single RY Control RY
Single RZ Control RZ
∗Rotation gates are used only for three

qubit QFT and the Hamiltonian of H2

TABLE III: Spatial Integral Values[34]

Spatial Integral Value

h11, h22 -1.25247729802
h33, h44 -0.475934479839
h1221 , h2112 0.674493103326
h1331 , h1441, h2332,
h2442 , h3113, h3223,
h4114 , h4224

0.663472044861

h3443 , h4334 0.69739794982
h2424 , h3241, h1423,
h1243

0.181287535812

TABLE IV: The values of the parameters within the group leaders optimization algorithm

Parameter
name

Number of groups Number of popula-
tion in each group

r1 r2 r3 Number of transfer
for each group

Value 15 25 0.8 0.1 0.1 Number of Variables
†

2
−1

†Since each gate has four variables, the total number of variables is equal to four times maximum number of gates.
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TABLE V: Optimization parameters and results for the test problems

The unitary matrix Number of
qubits

Maximum
number of
gates

Number of
iteration

Objective
function
value

Correctness
(C)

Toffoli Gate, Fig.3a 3 8 500 0.09167 1
Toffoli Gate, Fig.3b 3 8 500 0.09286 1
Toffoli Gate, Fig.3c 3 8 500 0.09286 1
Sender part of teleportation, Fig.7a 3 8 2500 0.08752 1
Sender part of teleportation, Fig.7b 3 8 2500 0.08752 1
Diffusion Operator of GSA, Fig.4a 2 8 500 0.08335 1
Diffusion Operator of GS, Fig.4b 2 8 500 0.08571 1
Two-qubit QFT, Fig.5a 2 8 500 0.08752 1
Two-qubit QFT, Fig.5b 2 8 500 0.08752 1
Three-qubit QFT, Fig.6 3 12 2500 0.09565 1
Simulation of the H2 Hamiltonian, Fig.8 4 12 10000 0.12819 0.965
Simulation of the H2 Hamiltonian, Fig.9 4 12 10000 0.09939 0.985
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FIG. 10: The flow chart of the group leaders optimization algorithm
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