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Abstract

The incorporation of a dividend yield in the classical option pricing model of Black-
Scholes results in a minor modification of the Black-Scholes formula, since the lognormal
dynamic of the underlying asset is preserved. However, market makers prefer to work with
cash dividends with fixed value instead of a dividend yield. Since there is no closed-form
solution for the price of a European Call in this case, many methods have been proposed
in the literature to approximate it. Here, we present a new approach. We derive an exact
analytic formula for the sensitivity to dividends of an European option. We use this result
to elaborate a proxy which possesses the same Taylor expansion around 0 with respect
to the dividends as the exact price. The obtained approximation is very fast to compute
(the same complexity than the usual Black-Scholes formula) and numerical tests show the
extreme accuracy of the method for all practical cases.
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fouad.sahel@sgcib.com.

1

http://arxiv.org/abs/1008.3880v1


Analysis of the sensitivity to discrete dividends : A new approach for pricing vanillas

Contents

1 Introduction 3

2 Existing Methods 4

3 The method 5
3.1 Motivations and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Spot/Strike adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Numerical tests 8
4.1 Test on an underlying paying dividends with low frequency . . . . . . . . . 8
4.2 Test on an underlying paying dividends with high frequency . . . . . . . . . 14

5 Conclusion 19

A Computation of the dividend sensitivities 19
A.1 First step: a recursive formula . . . . . . . . . . . . . . . . . . . . . . . . . . 19
A.2 Second step: a martingale argument . . . . . . . . . . . . . . . . . . . . . . 20
A.3 Third step: Proof of proposition A.1 . . . . . . . . . . . . . . . . . . . . . . 21

Gocsei-Sahel 2



Analysis of the sensitivity to discrete dividends : A new approach for pricing vanillas

1 Introduction

In the classical Black-Scholes framework, we can find in the literature three main ways of
inserting cash dividends into the model 1 :

1. Escrowed model. Assume that the asset price minus the present value of all div-
idends to be paid before the maturity of the option follows a Geometric Brownian
Motion.

2. Forward model. Assume that the asset price plus the forward value of all dividends
from past dividend dates to today, follows a Geometric Brownian Motion.

3. Piecewise lognormal model. Assume that the asset price shows a jump downward
at each dividend date (equal to the cash dividend payment at that date) and follows
a Geometric Brownian Motion between those dates.

Although the first two models lead to a closed-form solution, they are not satisfactory.
Indeed, the option price obtained in these models is not continuous at dividend dates.
Moreover, if one considers two options with different maturities T1 < T2, the first two
models lead to different asset price process dynamics for t ≤ T1, since the dividends paid
between T1 and T2 are taken into account in one case but not in the other.

Therefore, it is the piecewise lognormal model which is prefered from a theoritical point
of view. This paper is dedicated to find a robust pricing proxy for this model. We consider
an underlying following a Black-Scholes dynamic between dividend detachement dates and
paying cash dividends at discrete times 0 < T1 < . . . < Tn < T , i.e. :

• for Ti ≤ t < Ti+1 :
dSt = rStdt+ σStdWt,

• at time Ti :
ST+

i
= ST−

i
−Di(ST−

i
),

where r is the interest rate, assumed constant, W is a standard Brownian motion and
Di is the dividend policy defined by :

Di(S) =

{

Ci if S > Ci,
S if S ≤ Ci,

The cash amounts C1, . . . , Cn are known at the initial date 0 and each Ci represents the
dividend cash amount eventually paid at time Ti.

The dividend policy Di is a liquidator policy as the stock price is absorbed at zero at
time Ti if STi

< Ci. Consequently, the stock price remains positive. Note that as a practical
matter, for most applications, the definition of Di(S) when S ≤ Ci has negligible financial
effects2, as the probability that a stock price drops below a declared dividend at a fixed
time is typically small. It just ensures the positivity of the price.

In this paper, we are interested in computing the fair price of the European Call
Call(S0,K) with strike K and maturity T . Since there is no closed-formula, one should

1We take here the terminology used in [4].
2This becomes less true when considering large maturities and dividends.

Gocsei-Sahel 3



Analysis of the sensitivity to discrete dividends : A new approach for pricing vanillas

recover the price via PDE methods using a finite difference scheme, with boundary con-
ditions at each Ti ensuring the continuity of the price of the Call. This procedure can be
time-consuming if one considers a maturity T = 20 years and an underlying paying as much
as one dividend a week. Therefore, when computation speed is at stake, one would prefer
a fast and accurate proxy for the price.

We review in the following section three of the existing methods in the literature and
discuss their limitations.

2 Existing Methods

1. Method of moments matching. We approximate the stock price process S by a
process S̃ with a shifted log-normal dynamic under the risk-neutral pricing measure :

S̃t = λ+M exp

(

−1

2
σ

′2t+ σ
′

Wt

)

.

The three parameters λ,M and σ
′
are calibrated so that the first three moments of

S̃T match the first three moments of ST . This method reduces to the pricing of a
European Call on a modified underlying S̃, which can be done using the usual Black-
Scholes formula. This proxy does not work well if the stock pays dividends frequently,
the maturity is greater than 5 years or the option is deep in-the-money.

2. In [1], Bos and Vandermark define a mixture of the Escrowed and Forward models,
using linear pertubations of first order. They derive a proxy resulting in spot/strike
adjustment :

Call(S0,K) ≈ CallBS(S∗,K∗),

where CallBS is the usual Black-Scholes function and:

S∗ =S0 −
n
∑

i=1

(

1− Ti

T

)

Cie
−rTi , (1)

K∗ =K +
n
∑

i=1

Ti

T
Cie

r(T−Ti). (2)

This proxy works better for at-the-money options and small maturities but results in
serious mis-pricing for in-and out-of-the-money options and large maturities.

3. In [2], Bos, Gairat and Shepeleva derive a more accurate proxy than the previous one
by considering a volatility adjustment :

Call(S0,K) ≈ CallBS(S∗,K, σ(S∗,K, T )),

with S∗ given by (1):

σ(S∗,K, T )2 =σ2 + σ

√

π

2T

{

e
a2

2

S∗

n
∑

i=1

Cie
−rTi

[

N(a)−N

(

a− σ
Ti√
T

)]

+
e

b2

2

S∗2

n
∑

i,j=1

CiCje
−r(Ti+Tj)

[

N(b)−N

(

b− 2σ
min(Ti, Tj)√

T

)]

,
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where N(x) is the normal distribution function and:

a =
1

σ
√
T

(

log

(

S∗

K

)

+ (r − σ2/2)T

)

, b = a+
1

2
σ
√
T .

This proxy will be a good benchmark to test the accuracy of our method presented
in the following section.

3 The method

3.1 Motivations and notations

Consider Call(S0,K) as a function of the dividends C1, . . . , Cn:

Call(S0,K) = Call(C1, . . . , Cn).

Although there is no closed-form formula for Call(C1, . . . , Cn), we prove in annex A that
we can still compute explicitely its sensitivities to dividends at the origin. More precisely,
we have for all k ∈ N and 1 ≤ i1, . . . , ik ≤ n:

∂k Call

∂Ci1 . . . ∂Cik

(0) = (−1)k
∂k CallBS

∂Sk

(

S0e
−σ2

∑k
q=1

Tiq ,K, T
)

e−r
∑k

q=1
Tiq−σ2

∑k
q=2

(q−1)Tiq .

(3)
We use this result to derive an accurate approximation of Call(C1, . . . , Cn). Before

explaining our method, we need first to introduce some notations. For all functions f of n
variables x1, . . . , xn and ∀α ∈ N, we note Tαf the αth order Taylor series at 0 of f :

Tαf(x1, . . . , xn) :=

α
∑

k=0

n
∑

i1,...,ik=1

xi1 . . . xik
i1! . . . ik!

∂kf

∂xi1 . . . ∂xik
(0).

We introduce the space Aα of functions having the same αth Taylor series at 0 as the
function Call(C1, . . . , Cn):

Aα := {f, Tαf = Tα Call}.
The order α quantifies how near is f(C1, . . . , Cn) from Call(C1, . . . , Cn) when the dividends
are small. This precision increase with α.

Functions f in Aα are naturally good candidates to approximate Call. However, the
difference Call(C1, . . . , Cn)− f(C1, . . . , Cn) can be quite big if the dividends are not small
enough. For instance, for α = 2 and 3, we test the accuracy of the natural choice consisting
of taking

f(C1, . . . , Cn) := Tα Call(C1, . . . , Cn).

Figure 3.1 shows the relative error of the price of a European Call when using this approx-
imation. We assume that the stock pays a fixed dividend C every year and we analyse
how the relative error varies when we increase C. We can see that both the second and
third order Taylor series give accurate results when the dividends are small but when the
dividends increase, they both lead to serious mis-pricing.

Gocsei-Sahel 5
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Relative error (in %) for Call ATM with dividends paid every year
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C (dividend amount paid every year)

Taylor 2

Taylor 3

Figure 1: Relative Error using the Taylor series for approximation. Numerical parameters:
S0 = 100,K = 100, r = 3%, σ = 30%, T = 10y.

Therefore, the approximations TαCall, α = 2, 3, are not satisfying. Thus, one need to
find for α ≥ 2, a function Proxy ∈ Aα, different from Tα Call, which gives an accurate
approximation of Call for all practical values of C1, . . . , Cn (not necessarily very small). We
explain in the next subsection how we determine Proxy ∈ Aα.

3.2 Spot/Strike adjustment

Like Bos and Vandermark in [1], we search our function Proxy under the form:

Proxy(C1, . . . , Cn) := CallBS(S∗(C1, . . . , Cn),K
∗(C1, . . . , Cn)), (4)

with:

S∗(C1, . . . , Cn) =S0 +

α
∑

k=0

n
∑

i1,...,ik=1

ai1,...,ikCi1 . . . Cik , (5)

K∗(C1, . . . , Cn) =K +
α
∑

k=0

n
∑

i1,...,ik=1

bi1,...,ikCi1 . . . Cik . (6)

The reason why we perform a spot/strike adjustment is that it allows to recover the exact
price when the dividends are paid spot or at maturity.

The coefficients ai1,...,ik and bi1,...,ik are calculated recursively. They are entirely deter-
mined by the two following conditions:

1. ∂k Proxy
∂Ci1

...∂Cik

(0) = ∂k Call
∂Ci1

...∂Cik

(0),∀k ≤ α,

Gocsei-Sahel 6
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2. We impose our proxy to satisfy the Call-Put parity3:

CallBS(S∗,K∗)− PutBS(S∗,K∗) =S0 −Ke−rT −
n
∑

i=1

Cie
−rTi , (7)

i.e. S∗ −K∗e−rT =S0 −Ke−rT −
n
∑

i=1

Cie
−rTi . (8)

Let’s detail the calculus:

• Computation of ai and bi: the equality ∂ Proxy
∂Ci

(0) = ∂ Call
∂Ci

(0) reads:

N(d1)ai − e−rTN(d2)bi = −e−rTiN(d(Ti)), (9)

where :

d1 =
1

σ
√
T
(ln(S0/K) + (r + σ2/2)T ),

d2 =d1 − σ
√
T ,

d(t) =d1 −
σ√
T
t, 0 ≤ t ≤ T.

The differentiation of (8) writes:

ai − e−rT bi = −e−rTi . (10)

Solving the linear system (9)-(10) gives:

ai =− e−rTi
N(d(Ti))−N(d2)

N(d1)−N(d2)
,

bi =er(T−Ti)
N(d1)−N(d(Ti))

N(d1)−N(d2)
.

• Computation of ai,j and bi,j: the equality
∂2 Proxy
∂Ci∂Cj

(0) = ∂2 Call
∂Ci∂Cj

(0) and two succesive

differentiations in (8) give the following linear system:

N(d1)ai,j − e−rTN(d2)bi,j =β, (11)

ai,j − e−rT bi,j =0, (12)

where:

β =
∂2 Call

∂Ci∂Cj
(0)− aiaj

∂2 CallBS

∂S2
(S0,K)− (aibj + ajbi)

∂2 CallBS

∂S∂K
(S0,K)− bibj

∂2CallBS

∂K2
(S0,K).

After some direct computations, we obtain:

ai,j =
1

γ
e−r(Ti+Tj)

[

a+ b
(

N(d(Ti)) +N(d(Tj))
)

+ cN(d(Ti))N(d(Tj)) + deσ
2TiN

′

(d(Ti + Tj))

]

,

bi,j =erTai,j ,

3The right term in equation (7) is not rigorously exact since e−rT
E[ST ] is not equal to S0−

∑n

i=1
Cie

−rTi ,
but the two quantities are very close.
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with:

γ =σS
√
TN

′

(d1)
(

N(d1)−N(d2)
)3

a =−
(

N(d2)N
′

(d1)−N(d1)N
′

(d2)
)2

b =
(

N
′

(d1)−N
′

(d2)
)(

N(d2)N
′

(d1)−N(d1)N
′

(d2)
)

c =−
(

N
′

(d1)−N
′

(d2)
)2

d =N
′

(d1)
(

N(d1)−N(d2)
)2

• Computation of ai1,...,ik and bi1,...,ik , k ≥ 3: the previous method can be reproduced
recursively. Knowing all the values aj1,...,jm and bj1,...,jm, m ≤ k−1, we obtain ai1,...,ik
and bi1,...,ik by solving a linear system of the form :

∂k CallBS

∂Sk
(S0,K)ai1,...,ik +

∂k CallBS

∂Kk
(S0,K)bi1,...,ik =u,

ai1,...,ik − e−rT bi1,...,ik =0.

We have presented a simple and general method to derive a function Proxy in Aα for
any α ∈ N. As for the order α that we choose effectively for our tests, the second order
computation is a good choice for performance and accuracy. Before presenting the numerical
results, we recall some desirable properties of our second order proxy (4):

1. fast computation, even when one considers a large number n of dividends.

2. recovery of exact price when all dividends are paid spot or at maturity.

3. arbitrage free with the Call-Put parity.

4. guarantee of the continuity of the Call price at dividend detachement dates.

5. accuracy for all practical configurations, even for the extreme cases (deep in-the-
money-option with large maturity and high frequency of dividends) for which the
already existing methods of the financial literature might lead to serious mis-pricing.

4 Numerical tests

4.1 Test on an underlying paying dividends with low frequency

We test the accuracy of our proxy on a stock with the following parameters: S0 = 100,
r = 3%, σ = 30%. We suppose that the stock pays a dividend of 3 in the middle of
every year. We compute the Call price with strike K ∈ {50, 75, 100, 125, 150, 175, 200} and
maturity T ∈ {5, 10, 15, 20} using four methods:

1. the finite difference method,

Gocsei-Sahel 8
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2. the method of moments matching.

3. the spot/vol adjustment of Bos, Gairat and Shepeleva[2],

4. our proxy with spot/strike adjustment given by (5)-(6),

Remember that no approximation is made in the finite difference method. The results
are given in the following tables.

Gocsei-Sahel 9
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Maturity=5 years

K/S0 0.5 0.75 1 1.25 1.50 1.75 2

Price:
FD (exact price) 47.14 33.85 24.42 17.79 13.12 9.79 7.39

Method of moments 47.17 33.87 24.42 17.78 13.10 9.77 7.38
Proxy BGS 47.11 33.84 24.42 17.80 13.13 9.81 7.41
Proxy GS 47.14 33.85 24.42 17.79 13.12 9.79 7.39

Relative error (in%):
Method of moments 0.07 0.06 0.01 -0.05 -0.11 -0.16 -0.20

Proxy BGS -0.05 -0.05 -0.02 0.03 0.10 0.17 0.24
Proxy GS 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Relative error (in %) for 5 years maturity

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.5 0.75 1 1.25 1.5 1.75 2

S/K

Methods of moments

BGS

Proxy GS
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Maturity=10 years

K/S0 0.5 0.75 1 1.25 1.50 1.75 2

Price:
FD (exact price) 46.85 38.21 31.66 26.58 22.56 19.34 16.71

Method of moments 47.07 38.38 31.77 26.64 22.59 19.34 16.69
Proxy BGS 46.65 38.08 31.59 26.57 22.60 19.41 16.81
Proxy GS 46.85 38.21 31.66 26.58 22.56 19.34 16.71

Relative error (in%):
Method of moments 0.49 0.45 0.35 0.23 0.11 -0.01 -0.13

Proxy BGS -0.43 -0.35 -0.21 -0.04 0.15 0.35 0.55
Proxy GS 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02

Relative error (in %) for 10 years maturity

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.5 0.75 1 1.25 1.5 1.75 2

S/K

Methods of moments

BGS

Proxy GS
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Maturity=15 years

K/S0 0.5 0.75 1 1.25 1.50 1.75 2

Price:
FD (exact price) 46.47 40.48 35.73 31.85 28.63 25.91 23.59

Method of moments 47.12 41.04 36.18 32.21 28.91 26.13 23.75
Proxy BGS 45.79 40.01 35.43 31.70 28.60 25.98 23.74
Proxy GS 46.49 40.49 35.73 31.85 28.63 25.91 23.59

Relative error (in%):
Method of moments 1.41 1.38 1.27 1.13 0.98 0.82 0.66

Proxy BGS -1.47 -1.19 -0.85 -0.49 -0.12 0.24 0.60
Proxy GS 0.02 -0.01 -0.02 -0.03 -0.03 -0.04 -0.04

Relative error (in %) for 15 years maturity

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

0.5 0.75 1 1.25 1.5 1.75 2

S/K

Methods of moments

BGS

Proxy GS
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Maturity=20 years

K/S0 0.5 0.75 1 1.25 1.50 1.75 2

Price:
FD (exact price) 46.02 41.74 38.22 35.26 32.72 30.51 28.57

Method of moments 47.35 42.95 39.30 36.21 33.55 31.24 29.20
Proxy BGS 44.33 40.47 37.30 34.63 32.33 30.32 28.55
Proxy GS 46.10 41.76 38.23 35.26 32.71 30.50 28.56

Relative error (in%):
Method of moments 2.89 2.90 2.82 2.69 2.54 2.38 2.21

Proxy BGS -3.71 -3.07 -2.44 -1.82 -1.23 -0.65 -0.09
Proxy GS 0.14 0.03 -0.02 -0.04 -0.05 -0.06 -0.07

Relative error (in %) for 20 years maturity

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

0.5 0.75 1 1.25 1.5 1.75 2

S/K

Methods of moments

BGS

Proxy GS
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4.2 Test on an underlying paying dividends with high frequency

We now check the accuracy of our proxy on an underlying paying dividends every week.
This situation occurs when considering an index like S&P 500 or Eurostox 50. We take
the following parameters: S0 = 3000, r = 3%, σ = 30%. We suppose that the stock pays
a dividend of 2 every week. We compute the Call price with strike K such as K/S0 ∈
{0.5, 0.75, 1, 1.25, 1.5, 1.75, 2} and maturity T ∈ {5, 10, 15, 20}.

Gocsei-Sahel 14
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Maturity=5 years

K/S0 0.5 0.75 1 1.25 1.50 1.75 2

Price:
FD (exact price) 1359.87 972.67 699.65 508.71 374.45 279.07 210.47

Method of moments 1361.05 973.29 699.70 508.39 373.97 278.54 209.98
Proxy BGS 1358.88 972.02 699.52 508.99 375.00 279.75 211.21
Proxy GS 1359.87 972.69 699.68 508.73 374.47 279.07 210.47

Relative error (in%):
Method of moments 0.09 0.06 0.01 -0.06 -0.13 -0.19 -0.23

Proxy BGS -0.07 -0.07 -0.02 0.05 0.15 0.25 0.35
Proxy GS 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Relative error (in %) for 5 years maturity

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.5 0.75 1 1.25 1.5 1.75 2
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Maturity=10 years

K/S0 0.5 0.75 1 1.25 1.50 1.75 2

Price:
FD (exact price) 1319.62 1075.07 890.03 746.82 633.81 543.14 469.40

Method of moments 1327.05 1080.52 893.49 748.67 634.44 542.91 468.55
Proxy BGS 1311.37 1069.84 887.68 746.80 635.57 546.23 473.42
Proxy GS 1319.68 1075.04 889.96 746.72 633.69 543.02 469.25

Relative error (in%):
Method of moments 0.56 0.51 0.39 0.25 0.10 -0.04 -0.18

Proxy BGS -0.63 -0.49 -0.26 0.00 0.28 0.57 0.86
Proxy GS 0.00 0.00 -0.01 -0.01 -0.02 -0.02 -0.03

Relative error (in %) for 10 years maturity

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

0.5 0.75 1 1.25 1.5 1.75 2

S/K

Methods of moments
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Proxy GS

Gocsei-Sahel 16



Analysis of the sensitivity to discrete dividends : A new approach for pricing vanillas

Maturity=15 years

K/S0 0.5 0.75 1 1.25 1.50 1.75 2

Price:
FD (exact price) 1287.50 1122.13 990.74 883.63 794.68 719.49 655.20

Method of moments 1308.65 1140.08 1005.32 895.16 803.52 726.17 660.09
Proxy BGS 1258.42 1102.31 978.74 877.99 794.07 723.01 662.03
Proxy GS 1288.47 1122.33 990.66 883.42 794.31 719.10 654.79

Relative error (in%):
Method of moments 1.64 1.60 1.47 1.31 1.11 0.93 0.75

Proxy BGS -2.26 -1.77 -1.21 -0.64 -0.08 0.49 1.04
Proxy GS 0.08 0.02 -0.01 -0.02 -0.05 -0.06 -0.06

Relative error (in %) for 15 years maturity

-2.50

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

0.08 0.02 -0.01 -0.02 -0.05 -0.06 -0.06

S/K

Methods of moments

BGS

Proxy GS
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Maturity=20 years

K/S0 0.5 0.75 1 1.25 1.50 1.75 2

Price:
FD (exact price) 1260.33 1144.53 1049.11 968.59 899.43 839.22 786.23

Method of moments 1303.36 1183.64 1083.92 999.27 926.36 862.79 806.82
Proxy BGS 1184.43 1088.21 1008.55 940.91 882.41 831.09 785.57
Proxy GS 1264.53 1145.94 1049.44 968.43 899.04 838.71 785.66

Relative error (in%):
Method of moments 3.41 3.42 3.32 3.17 2.99 2.81 2.62

Proxy BGS -6.02 -4.92 -3.87 -2.86 -1.89 -0.97 -0.08
Proxy GS 0.33 0.12 0.03 -0.02 -0.04 -0.06 -0.07

Relative error (in %) for 20 years maturity
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-2.00
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0.5 0.75 1 1.25 1.5 1.75 2
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5 Conclusion

We have presented a new approach to deal with cash dividends in equity option pricing
in a piecewise lognormal model for the underlying. Our method relies on the derivation
of an analytic formula for the sensitivity to dividends of a European option. We obtain
a closed-form formula for a European Call which gives both very accurate results for all
practical cases.

A Computation of the dividend sensitivities

Consider a European option of maturity T with payoff h(ST ), with S the stock price follow-
ing the piecewise lognormal dynamic presented in the introduction. We note its fair price
at time 0

Π(S0, T, C1, . . . , Cn)

We denote:
ΠBS(S0, T )

the fair price of the option if S does not pay dividends. The partial derivatives

∂kΠ

∂Ci1 . . . ∂Cik

(S0, T, 0, . . . , 0)

are related to the usual Black-Scholes greeks by the following formula:

Proposition A.1 For k ∈ N and 1 ≤ i1 ≤ . . . ≤ ik ≤ n, we have:

∂kΠ

∂Ci1 . . . ∂Cik

(S0, T, 0, . . . , 0) = (−1)k
∂kΠBS

∂Sk

(

S0e
−σ2

∑k
q=1

Tiq , T
)

e−r
∑k

q=1
Tiq−σ2

∑k
q=2

(q−1)Tiq .

Follows a proof of this formula.

A.1 First step: a recursive formula

We introduce some notations:

• We define the natural filtration (Ft)t≥0 associated with the brownian motion W . We
suppose the filtration right continuous.

• We define for all 0 ≤ t1 ≤ t2:

Xt1→t2 := e(r−σ2/2)(t2−t1)+σ(Wt2
−Wt1

),

• We denote φ(S0, S, t) the log-normal density associated with the variable S0X0→t

• We define the functions of n+ 1 variables (hi)0≤i≤n such as:

hi(STi
, C1, . . . , Cn) := e−r(T−Ti)E[h(ST )|FTi

].
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For the sake of simplicity, when there is no confusion, we will simply denote hi(S) instead
of hi(S,C1, . . . , Cn). Note that we have Π(S0, T, C1, . . . , Cn) = h0(S0). We can compute
the functions hi recursively beginning with hn:

hn(S) = ΠBS(S, T − Tn),

and by conditioning, ∀i ≤ n− 1:

hi(S) =e−r(Ti+1−Ti)E[hi+1((SXti→ti+1
− Ci+1)+)|FTi

]

=e−r(Ti+1−Ti)

∫ ∞

Ci+1

hi+1(Si+1 − Ci+1)φ(S, Si+1, Ti+1 − Ti)dSi+1, (13)

Now, we show how these relations allow us to compute recursively the partial derivatives:

∂kΠ

∂Ci1 . . . ∂Cik

(S0, 0, . . . , 0),

for 1 ≤ i ≤ n, k ∈ N
∗ and 1 ≤ i1 ≤ . . . ≤ ik ≤ n. First, note that a direct application of

the theorem of differentiation under the integral sign in the relation (13) proves that the
functions hi, 0 ≤ i ≤ n are infinitely differentiable. Then, using the markov property of the
log-normal densities:

∫ ∞

0
φ(Si, Si+1, ti)φ(Si+1, Si+2, ti+1)dSi+1 = φ(Si, Si+2, ti + ti+1),

we obtain:

∂kΠ

∂Ci1 . . . ∂Cik

(S0, 0, . . . , 0) =− e−rTi1E

[

∂khi1
∂S∂Ci2 . . . ∂Cik

(S0X0→Ti1
, 0, . . . , 0)

]

,

=− e−rTi1

∫ ∞

0

∂khi1
∂S∂Ci2 . . . ∂Cik

(Si1 , 0, . . . , 0)φ(S0, Si1 , Ti1)dSi1 .

(14)

This relation will be very useful for a recursive proof of proposition A.1 since it reduces by
one the number of differentiations with respect to the dividends.

A.2 Second step: a martingale argument

The proof of proposition A.1 relies heavily on this simple but crucial lemma:

Lemma A.2 Consider a process following a Black-Scholes dynamic St = S0e
(r−σ2/2)t+σWt ,

0 ≤ t ≤ T . Then, for all integer k ≥ 0 and for all real number a ≥ 0, the process:

Zt :=
∂kΠBS

∂Sk

(

Ste
kσ2(t−a), T − t

)

e(k−1)(r+kσ2/2)t

is a martingale.

The following corollary is easy to derive.
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Corollary A.3 For k ∈ N
∗, 0 ≤ t ≤ T and a ≥ 0, we have:

E

[

∂kΠBS

∂Sk

(

Ste
kσ2(t−a), T − t

)

]

=
∂kΠBS

∂Sk

(

S0e
−kσ2a, T

)

e−(k−1)(r+kσ2/2)t (15)

Proof of lemma A.2: The drift of Zt is:

e(k−1)(r+kσ2/2)t

[

(k − 1)(r + kσ2/2)
∂kΠBS

∂Sk
− ∂k+1ΠBS

∂t∂Sk

+ (r + kσ2)Ste
kσ2(t−a) ∂

k+1ΠBS

∂Sk+1
+

1

2
σ2S2

t e
2kσ2(t−a) ∂

k+2ΠBS

∂Sk+2

]

, (16)

where all the derivatives in the last formula are evaluated in (Ste
kσ2(t−a), T − t). Remember

that ΠBS satisfies the Black-Scholes PDE:

−∂ΠBS

∂t
+

1

2
σ2S2∂

2ΠBS

∂S2
+ rS

∂ΠBS

∂S
− rΠBS = 0.

Now, differentiate k times this equation with respect to S:

− ∂k+1ΠBS

∂t∂Sk
+
1

2
σ2S2∂

k+2ΠBS

∂Sk+2
+(r+kσ2)S

∂k+1ΠBS

∂Sk+1
+(k−1)(r+kσ2/2)

∂kΠBS

∂Sk
= 0. (17)

One immediately checks that the term in bracket in (16) is equal to the left term in (17)
evaluated in (Ste

kσ2(t−a), T − t), and therefore is equal to 0.

�

A.3 Third step: Proof of proposition A.1

We argue by recurrence on the number k of differentiations with respect to the dividends:

• If k = 0, the proposition is trivially true as it simply says:

Π(S0, T, 0, . . . , 0) = ΠBS(S, T ).

• Now, suppose that the property is true at rank k. We want to prove that it remains
true at rank k + 1. We have by relation (14):

∂k+1Π

∂Ci1 . . . ∂Cik+1

(S0, 0, . . . , 0) =− e−rTi1E

[

∂k+1hi1
∂S∂Ci2 . . . ∂Cik+1

(S0X0→Ti1
, 0, . . . , 0)

]

.

(18)

By hypothesis of recurrence, we have:

Gocsei-Sahel 21



Analysis of the sensitivity to discrete dividends : A new approach for pricing vanillas

∂khi1
∂Ci2 . . . ∂Cik+1

(S, 0, . . . , 0)

= (−1)k
∂kΠBS

∂Sk

(

Se−σ2
∑k+1

q=2
(Tiq−Ti1

), T − Ti1

)

× e−r
∑k+1

q=2
(Tiq−Ti1

)−σ2
∑k+1

q=3
(q−2)(Tiq−Ti1

),

= (−1)k
∂kΠBS

∂Sk

(

Se(k+1)σ2(Ti1
−a), T − Ti1

)

× e[(k+1)r+ 1

2
k(k−1)σ2]Ti1

−(k+1)ra−σ2
∑k+1

q=3
(q−2)Tiq ,

where we set:

a =
1

k + 1

k+1
∑

q=1

Tiq .

We differentiate with respect to S:

∂k+1hi1
∂S∂Ci2 . . . ∂Cik+1

(S, 0, . . . , 0)

= (−1)k
∂k+1ΠBS

∂Sk+1

(

Se(k+1)σ2(Ti1
−a), T − Ti1

)

× e(k+1)(r+ 1

2
kσ2)Ti1

−(k+1)(r+σ2)a−σ2
∑k+1

q=3
(q−2)Tiq .

Inserting this formula into (18) and using corollary A.3, we get:

∂k+1Π

∂Ci1 . . . ∂Cik+1

(0, . . . , 0)

=(−1)k+1 ∂
k+1ΠBS

∂Sk+1

(

Se−(k+1)σ2a, T
)

exp



−(k + 1)(r + σ2)a− σ2
k+1
∑

q=3

(q − 2)Tiq



 ,

=(−1)k+1 ∂
k+1ΠBS

∂Sk+1

(

Se−σ2
∑k+1

q=1
Ti , T

)

e−r
∑k+1

q=1
Tiq−σ2

∑k+1

q=2
(q−1)Tiq .

�
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