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Abstract. In a previous article [1], we have presented an original approach of the

quantum resonances of the kicked rotor. We have described the quantum resonances

in position space, for strongly localized wave packets in comparison to one step of the

kicking potential. In the present article, we extend that approach to experimentally

accessible systems, characterized, on the contrary, by delocalized wave functions in

position space. We demonstrate that the intuitive picture developed previously is

still applicable here. As examples, we consider the dynamics of a thermal gas and

of a Bose-Einstein condensate, both for simple and high-order quantum resonances.

Our numerical simulations enable us to predict new interesting phenomena, that are

explained in a large extent by analytical calculations.

PACS numbers:

1. Introduction

Over the last 30 years, the kicked rotor has played a central role in the field of “quantum

chaos”, defined as the study of quantum systems whose classical counterpart is chaotic

[2, 3, 4]. With the advent of its first experimental realization in 1995 [5], obtained

by submiting laser-cooled atoms to a periodic series of kicks of a laser standing wave,

an impressive number of experimental results followed [6, 7, 8, 9, 10, 11, 12, 13, 14],

spreading to domains like quantum transport [15], measurements of the gravitational

constant [16], and even condensed matter and quantum phase transitions with, recently,

the first experimental observation of the metal-insulator Anderson transition with

matter waves [14, 17, 18].

One of the most striking features of the QKR is the existence, of quantum resonances

(QRs), which arise if the kicking period matches the evolution of the quantum phase

of the atom. A QR is characterized by a ballistic behavior, in which the velocity

increases linearly, and the kinetic energy increases quadratically. QRs in the kicked

rotor and in the kicked accelerator (in which the atoms are also submitted to a

constant force) have been observed both with laser-cooled gases and Bose-Einstein
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condensates (BECs), leading to impressive amount of theoretical and experimental

studies [8, 19, 20, 21, 22, 23, 24, 25].

The atomic kicked rotor is obtained by placing laser-cooled atoms of mass M

and momentum p in a standing wave formed by counterpropagating (along the x-

axis) laser beams of intensity IL, wave number kL = 2π/λL and detuning ∆L. The

atom is submitted to a conservative dipole force, associated to an “optical potential”

V (x) ∝ (IL/∆L) sin
2 (2kLx). If the standing wave is modulated in the form of pulses of

duration τ very short at the timescale of the dynamics§, one obtains the kicked-rotor

Hamiltonian

H =
P 2

2
+K cosX

∑

n

δ(t− n), (1)

where we introduced reduced variables [5] in which time is measured in units of the

kick period T , X = 2kLx, P = k̄p/2h̄kL, K = k̄ILΓ
2τ/8Is∆L, where Is is the saturation

intensity of the atomic transition and k̄ = 4h̄k2LT/M plays the role of a reduced Planck’s

constant ‖.
The spatial periodicity λL/2 of the standing wave implies that the quasimomentum

β, defined by the relation

P = (n + β) k̄, (2)

where n is an integer and β ∈ [−1
2
; 1
2
), is a constant of motion. In position space, the

wave function corresponding to a particular quasimomentum ψβ(X) has the well-known

Bloch-wave structure

ψβ(X) = eiβXuβ(X), (3)

where uβ(X) has the same spatial period 2π as the standing wave¶. In a previous

paper [1], we introduced an original approach of QRs, based on the study of localized

wave functions uβ(X). We developed an intuitive interpretation of the QRs, based on

an analogy between the quantum resonances and the classical accelerator modes of the

kicked rotor [4]. The spatial invariance of the potential under translations by a multiple

of its periodicity allows us to “fold” the position space into a finite interval X ∈ [−π, π)
(as usual in kicked-rotor studies). In this context, saying that the packet is “localized”

in position space means that actually it forms a comb in position space, with indentical

packets separated by 2π.

When a comb-shaped wavepacket propagates freely it resumes its initial shape if

the propagation time is a rational multiple of a characteristic time, called the Talbot

time, in analogy to the optical Talbot effect [26],

TT =
πM

h̄k2L
, (4)

§ That is pτ/M ≪ λL for all values of the atomic momentum p.
‖ In the sense that the Schrdigner equations reads ik̄∂ψ/∂t = Hψ.

¶ The atom wave function is ψ(X) =
∫ 1/2

−1/2 dβψβ(X).
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(correponding to k̄ = 4π in reduced units). This is the Talbot effect. If the interval

between kicks is commensurable with the Talbot time (that is, if k̄ is comensurable with

4π), the kicks are applied to a wavepacket that has always the same form, which leads

to a coherent adding of the kick effect [1]. In consequence, each kick transfers the same

amount of momentum to the atom, which thus increases linearly.

Consider now the one-period evolution operator for the quantum kicked rotor

U = exp
(

−iK
k̄
cosX

)

exp

(

−iP
2

2k̄

)

, (5)

where factorization is allowed because the kicks are instantaneous. The parameter k̄ can

be experimentally tuned by changing the kicking period T , determining the appearance

of quantum resonances. In section 2 we show that if k̄ = 2πℓ with ℓ integer, the

initial wavepacket perfectly reconstructs itself at the end of a free evolution between

kicks, giving rise to the so-called simple quantum resonances (SQRs). By contrast,

if k̄ = 4πr/s, with r, s integers and s > 2, the initial wavepacket reconstructs in at

least two sub-packets, giving the so-called high-order quantum resonances (HOQRs).

Ref. [1] mention that the simple image given above cannot be directly applied to high-

order quantum resonances, because the two subpackets produce additional interference

effects. In section 3 we consider the k̄ = π case, and we extend our previous results to

the calculation of the mean kinetic enegy, and give analytical expressions in the β = 0

case.

Once again, it is important to stress that the interpretation of QRs introduced

in Ref. [1] was based on localized wave functions in position space. By contrast, the

dynamical behaviors associated with QRs have been observed with Bose gases, where

the initial state is close to a plane wave. In the present paper, we show that the ideas

developed in [1] can be applied to explain the dynamics in experimentally accessible

situations. This is due to the fact that the localized wave functions play the role

of quasi-eigenstates of the system [27], on which any other state can be expanded.

We shall consider two limits: an initial momentum distribution much narrower than

the first Brillouin zone, corresponding to a Bose-Einstein condensate, and the opposite

limit of an incoherent initial momentum distribution much larger than the first Brillouin

zone, corresponding to thermal clouds, where all quasimomenta are more or less equally

populated. In this way, we render our results applicable to a wide variety of situations

of experimental interest.

2. Simple quantum resonances

“Simple” quantum resonances are the quantum-mechanical analog of the half-Talbot

effect in optics, in which the propagation time is a multiple of the Talbot time. In

the KR scaled units, a simple quantum resonance takes place when k̄ = 2πℓ for an

integer valuer ℓ. In this section, we recall the results of ref. [1] for a state of well-

defined quasimomentum, and then apply these ideas to an initial state composed of
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several quasimomenta. All our interpretations are based on the quantum-resonance

map derived for mean position and momentum of the atom [1].

2.1. Well-defined quasimomentum

Given a state ψβ(X, t) of well-defined quasimomentum β, one can use the one-period

evolution operator Eq. (5) to relate it to the wave function ψβ(X, t+1) one period later.

In the case of a SQR this produces a simple recursion relation which has a particularly

simple form [see [1], Eq. (10)]:

ψβ(X, t) = e−iκ cosX exp (ik̄β(β + 1)/2)ψβ (X − k̄ (β + 1/2) , t− 1) (6)

where κ is related to the kick amplitude

κ ≡ K/k̄. (7)

The term exp (ik̄β(β + 1)/2) in Eq. (6) is a global phase that does not influence the

wavepacket dynamics.

The free evolution between kicks preserves the shape of ψβ but translates over the

distance v given by the “velocity”

v = k̄
(

β +
1

2

)

, (8)

The average position of the wavepacket 〈X〉β obeys the recursion relation

〈X〉β (t) = 〈X〉β (t− 1) + v . (9)

The application of the kick operator changes the average momentum as

〈P 〉β (t) = 〈P 〉β (t− 1) +K
∫ π

−π
dX sin(X + vt) |ψβ(X, t = 0)|2 (10)

and the average kinetic energy as

〈E〉β(t) = 〈E〉β(t− 1) +
K2

2

∫ π

−π
dX sin2(X + vt) |ψβ(X, 0)|2

+ K
∫ π

−π
dX sin(X + v)J(X, t− 1), (11)

where we introduced the current

J(X, t) = i
k̄

2

(

ψβ(X, t)∂Xψ
∗
β(X, t)− c.c.

)

. (12)

If we consider initially a Bloch wave perfectly localized at X0
+,

ψβ(X, t = 0) = eiβX
∑

j

δ (X −X0 − 2πj) , (13)

Eq. (10) yields for the average momentum:

〈P 〉β (t) = 〈P 〉β (t− 1) +K sin(X0 + vt). (14)

+ Let us stress again that here “localized” means localized in the “spatial” first Brillouin zone [−π, π),
the full wave function is a comb of delta functions. In the momentum space the wavefunction is also a

Dirac comb, thus satisfying Heisenberg’s principle.
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Noting that
∫ π

−π
dXJ(X, t) = 〈P 〉β (t), (15)

we get for the average kinetic energy

〈E〉β (t) = 〈E〉β (t−1)+
1

2
K2 sin2(X0+vt)+K sin(X0+vt) 〈P 〉β (t−1).(16)

A consequence of Eqs. (14) and (16) is that

〈E〉β (t)− 〈E〉β (t− 1) =
1

2

(

〈P 〉2β (t)− 〈P 〉2β (t− 1)
)

,

thus the average kinetic energy 〈E〉β and the average square momentum 〈P 〉2β /2 have the
same dynamical evolution, which is characteristic of a classical particle. The evolution

of these observables can thus be written as a classical-like map

Xβ(t) = Xβ(t− 1) + v = X0 + vt (17)

Pβ(t) = Pβ(t− 1) +K sin(X0 + vt)

= Pβ(0) +K
t
∑

s=1

sin(X0 + vs), (18)

where we have set Xβ(0) = X0, Pβ(t) = 〈P 〉β (t). Also

Eβ(t)− Eβ(0) =
1

2

(

P 2
β (t)− P 2

β (0)
)

. (19)

To calculate the observables dynamics, one has simply to average Eqs. (17) and (18)

over the initial distribution.

2.2. Average over the quasimomentum

Let us now discuss the situation where the initial momentum distribution contains

different quasi-momenta. We shall consider two extreme examples of what is

experimentally feasable: an initial momentum distribution much narrower than the

Brillouin zone, and a much wider one, for which all quasimomentum classes are equally

populated.

2.2.1. Narrow initial momentum distribution. Consider an initial momentum

distribution localized around P = 0 of width k̄∆, with ∆ ≪ 1. This is e.g. the

case for Bose-Einstein condensates (∆ ∼ 10−3 − 10−2). We can expect the behavior of

such a system to be dominated by the central momentum, but additional effects due to

the finite width arise.

We start with the case β = 0, where only the n = 0 component is initially populated,

i.e. a plane wave. As all values of X are equiprobable, the integration of Eq. (18) gives

P0(t) = P0(0) +K
∫ π

−π
dX0

t
∑

s=1

sin (X0 + vs)

= P0(0) = 0. (20)
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(a) (b)t = 0

t = 1

t = 0

t = 1

X X

Figure 1. (color online) Dynamics of a plane wave: (a) In the ballistic case k̄ = 4π,

and (b) in the periodic one k̄ = 2π. The initial distribution, uniform is position space

(restricted here to two potential wells), is “sliced” with different colors. At the first

kick, panel (a), each slice, after its free evolution has come back to the initial position

and thus receives the same momentum from the kick. On panel (b), each color is

shifted by half the lattice step, and thus receives a kick of the same magnitude as in

(a), but of opposite direction.

From Eq. (19), the kinetic energy is

E0(t)−E0(0) =
K2

2

∫ π

−π
dX0

(

t
∑

s=1

sin(X0 + vs)

)2

=
K2

4

sin2(vt/2)

sin2(v/2)
, (21)

which is the result of Ref. [23]. If v = 0[2π], where [2π] means “modulo 2π”, (e.g.

k̄ = 4π) the dynamics is ballistic: Eβ(t) = Eβ(0) + K2t2/4, whereas if v = π[2π] (e.g.

k̄ = 2π) the dynamics is periodic (or “anti-resonnant”), i.e. Eβ(t) = Eβ(0) +K2/4 for

t odd and Eβ(t) = Eβ(0) for t even.

Figure 1 gives a simple interpretation of these behaviors that bears a striking

relationship with the mecanism of classical accelerator modes of the kicked rotor [28].

On both panels (a) and (b), the initial probability distribution is uniform, but we have

attributed a different color at each slice of it so that one can follow its evolution. Eq.

(17) shows that the evolution results in a simple global shift of the wave function between

t = 0 and t = 1 kick. In the ballistic case (a), this shift is such that all “colors” (or

slices) come back at the same place at t = 1 (and also at t = 2, 3, ...), so that, each

part of the wave function receive the same kick (for example the yellow part receives

the maximum momentum transfer +K). As the wave function fills uniformly in the

potential wells when the kicks are applied, the average momentum is always zero, but

the average kinetic energy grows quadraticlly, since some “colors” are accelerated in the

positive direction, while others are accelerated in the negative direction.

By contrast, figure 1 (b) illustrates the so-called anti-resonant case, for which the
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Figure 2. Time evolution of the mean kinetic energy for a narrow initial momentum

distribution (∆ = 0.04). On panel (a), for which k̄ = 4π, the central quasi-momentum

is ballistic, whereas it is anti-resonant on panel (b), for which k̄ = 2π. These plots, like

all plots of the mean kinetic energy in this article, were obtained by direct application

of Eq. (5).

wavepacket is shifted half of the lattice step. At odd values of t, a given “color” receives

a momentum equal to −K sinX0, whereas at even values of t, it receives +K sinX0,

hence a periodic behavior.

Let us now consider the case of a narrow initial momentum distribution centered

at P = 0, ρ(β) = 1/∆ for |β| ≤ ∆/2 and zero otherwise, with a width k̄∆ ≪ 1.

Figure 2 shows the time evolution of the average kinetic energy, for momentum

distributions whose central component exhibits ballistic (a) and anti-resonant (b)

dynamics. Those characteristic behaviors are clearly visible in the early dynamics, but

they are progressively damped due to the finite width of the distribution. Averaging

Eq. (2) over the initial quasimomentum distribution:

E(t) =
1

∆

∫ ∆/2

−∆/2
dβEβ(t)

= E(0) +
K2

4∆

∫

dβ
sin2 (πℓ (β + 1/2) t)

sin2 (πℓ (β + 1/2))
, (22)

shows a diffractive filtering of quasimomentum, which becomes more and more selective

as time increases. The damping process is significant after a characteristic time

τd ∼ ∆−1, such that the first zero of the filtering function coincides with the edge

of the initial momentum distribution. For t ≫ τd, the behavior associated with the

central momentum is completely damped.

We see in Fig. 2(a) that the quadratic increase of the kinetic energy quickly turns

into the usual linear one, but with a different diffusion rate. To explain this result, we

consider the case k̄ = 4π, β ≈ 0, and approximate the filtering function in Eq (21), for

βt ≤ 1 by

sin2(2πβt)

sin2(2πβ)
≈ t2 cos2 (πβt) . (23)
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If t ≤ 1/∆, the initial momentum distribution is “totally included” in the central lobe;

therefore the mean kinetic energy reads

E(t) =
1

∆

∫ ∆/2

−∆/2
dβEβ(t)

≈ E(0) +
K2t2

4∆

∫ ∆/2

−∆/2
dβ cos2 (πβt)

≈ E(0) +
K2t2

8

(

1 +
sin (π∆t)

π∆t

)

. (24)

As expected, Eq. (24) shows that the early dynamics (i.e. for t≪ ∆−1) is ballistic, with

a rate equal to K4/4. Then, as t approaches 1/∆, Eq. (24) suggests that the dynamics

remains ballistic, but that the rate decreases progressively fromK2/4 toK2/8. However,

Eq. (24) fails to acount for the progressive appearance of the linear contribution to the

mean kinetic energy. This is because the approximation of the filtering function (see

Eq. (23)) becomes less accurate as t approaches ∆−1.

For t > ∆−1, the edges of ρ(β) are located out of the central lobe of the filtering

function. To highlight the essential features of the dynamics, we separate in the integral

of Eq. (22) the contribution of the central lobe of the filtering function from that of the

other lobes. As the central lobe gets thinner as times goes by, the bonds of the integral

due to the central lobe are time-dependent. Namely, Eq. (22) reads

E(t) ≈ E(0) +
K2t2

4∆

∫ 1/2t

−1/2t
dβ cos2 (πβt)

+
K2

2∆

∫ ∆/2

1/2t
dβf(β, t), (25)

where f(β, t) is the function that approximates all lobes expect the central one, defined

for 1 ≤ βt. The term on the last line of (25) only generates oscillations of the energy.

By contrast, the first line of (25) yields a diffusive behavior

E(t) ≈ E(0) +
K2t

8∆
, (26)

whose rate, with the parameters of Fig. 2 (a), is equal to 312.5. This analytical rate is

in very good agreement with the one obtained from a linear fit of the curve from t = 25

to 200 kicks, which is 312.4.

In the anti-resonant case on Fig. 2 (b), the energy, although damped, oscillates for

a time equal to a few ∆−1, and finally “freezes” at K2/8. To catch the most important

features of the dynamics, we will once again take an approximate form for Eq. (22).

Indeed, we consider that the term sin2 {πℓ (β + 1/2)} evolves so slowly on the scale of

∆, that it can be taken as unity. By expanding sin2 {πℓt (β + 1/2)}, one gets

E(t) ≈ E(0) +
K2

8

[

1− 1

∆

∫ ∆/2

−∆/2
dβ cos {2πt (β + 1/2)}

]

, (27)

where E(0) = k̄2∆2/24. Thus

E(t) ≈ k̄2∆2

24
+
K2

8

[

1− (−1)t
sin (π∆t)

π∆t

]

. (28)



Kicked-rotor quantum resonances in position space: Application to systems of experimental interest9

For t ≫ ∆−1 the oscillations are completely damped and the energy tends to its

asymptotic value

E(t→ ∞) = E(0) +
K2

8
. (29)

Incidentally, if one keeps in Eq. (27) a general momentum ditribution ρ(β) the

equation shows that the kinetic energy is proportional to the cosine-Fourier series of

the momentum distribution. Using the properties of Fourier series, we can “invert” Eq.

(27) to

ρt(β) =
t
∑

s=1

4

K2
(E(0)−E(t)) cos

(

2πt
(

β +
1

2

))

, (30)

which yields an approximate analytical formula for the initial momentum distribution.

Eq. (30) suggests that, by measuring the mean kinetic energy of an atomic cloud

submitted to a series of pulses, one can obtain an analytical approximation for the

momentum distribution of the cloud. Since it appears as a Fourier series, the accuracy

of this approximation increases with the measurement time, i.e. ρt(β) → ρ(β) when

t→ ∞. Moreover, the resolution in momentum gets also betteer with time, as it is equal

to 1/t. This result is valid for narrow momentum distributions that contain no ballistic

quasi-momentum. As ballistic quasi-momenta get more numerous as k̄ increases, the

phenomenon is more likely to be observed for k̄ = 2π.

2.2.2. “Broad” initial momentum distribution. For the sake of completenes, we

consider now the relatively trivial case of an initial momentum distribution that is

a few times larger than the Brillouin zone. This cases leads to a well-known diffusive

behavior, which can be demonstrated by taking the average on X and of β of Eq.

(21). If one considers a slice centered at position X containing all quasi-momenta,

Eq. (17) shows that after one kick the slice corresponding to quasimomentum β moves

to X + 2πℓ (β + 1/2), which means that it covers a whole potential well. Therefore,

the avearge momentum does not change, and the kinetic energy is increased by

K2
〈

sin2
〉

β
/2 = K2/4; averaging over X does not change the result. As the same

situation reproduces at each kick the effect on the kinetic energy is additive:

E(t) = E(0) +
K2

4
t. (31)

It is worth noting that the equiprobability of all positions X of a classical ensemble of

particles can also be used to explain the classical ergodic for high enough K, this result

is thus a classical one, averging over quasimomentum erases the quantum character of

the process.

3. The k̄ = π high-order quantum resonance

A higher-order quantum resonance (HOQR) is the analog of the fractional Talbot

effect. The k̄ = π resonance corresponds to a situation where the initial wave packet
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reconstructs into two “sub-packets. In ref. [1], it was shown that the two “sub-packets”

mimick a two-level system. The present section extends this approach in order to allow

an analytical calculation of the average kinetic energy.

3.1. Recursion relation and average momentum

In Ref. [1], we found a recursion relation for the wave function at integer times t

ψβ(X + wt, t) =
e−iκφ(X,t)√

2

[

e−iπ/4ψβ (X + w(t− 1), t− 1)

+eiπ/4eiβπψβ (X + w(t− 1)− π, t− 1)
]

, (32)

where w = k̄β and φ(x, t) = κ cos(X + wt). Equation (32) shows that the slice picture

developed on Fig 1 is still valid, except that slices located at X and X + π are now

coupled. The wave function can thus be written as

ψβ(X + wt, t) = c1(X, t)ψβ(X, 0) + c2(X, t)ψβ(X − π, 0), (33)

where c1 and c2 are 2π-periodic in X . For each X , the cj(X, t) (j = 1, 2) define a

“two-level” system, whose state can be written as the state vector

ct =

(

c1(X, t)

c2(X − π, t)

)

,

and whose recursion relation as a matrix relation

ct = Mtct−1 =
t−1
∏

s=0

Mt−sc0 (34)

where Mt is a 2× 2 matrix given in Eq. (A.4) of Appendix A. In Ref. [1], we used this

vector formailsm to calculate the mean momentum:

〈P 〉β (t) = 〈P 〉β (t− 1) +K
∫ π

−π
dX sin(X + wt)

×
(

|c1(X, t)|2 − |c2(X − π, t)|2
)

. (35)

This means that the sub-packet at X+wt receives a momentum equal to K sin(X+wt),

and the one at X + wt + π receives −K sin(X + wt), which is a straightforward

genralization of the arguments developed in Sec. 2 for simple quantum resonances.

The fundamental difference here is that the two sub-packets interfere during their free

evolution, which does not allow any classical-like interpretation.

In the particular case β = 0, a fully analytical description can be made, which leads

to the final expression for the mean momentum [1]

〈P 〉β=0 (t) = 〈P 〉β=0 (t = 0) +K
∫ π

−π
dX |c1(X, 0)|2 sinX

×
[(

sin2 φ

1 + sin2 φ

)

t +
1

1 + sin2 φ

(

sin [(2t+ 1)Θ]

2 sinΘ
− 1

2

)]

,(36)
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Figure 3. Factor D0, reflecting the influence of interference effects on the ballistic

rate for the QR at k̄ = π. On panel (a), D0 is plotted as a function of X0: for κ = π/2

(solid lines), κ = π (dashed lines) and κ = 3π/2 (dashed-dotted lines). On panel (b),

D0 is plotted as a function of κ: for X0 = 0 (solid lines), X0 = π/4 (dashed lines) and

X0 = π/3 (dashed-dotted lines).

where φ = φ(X, t = 0) = κ cosX , and Θ is such that

cosΘ =
cosφ√

2
. (37)

The mean momentum exhibits more a complex behavior than for the SQRs. To analyze

this result, we now consider an initial wavepacket localized at X = X0. We see that

the dynamics in general combines both oscillatory and ballistic behaviors. As time

increases the ballistic part becomes dominant, and the momentum is approximately

〈P 〉0 (t) ≈ 〈P 〉0 (0) +D2t, with the rate

D2 = D0K sinX0, (38)

where we set

D0 =
sin2 (κ cosX0)

1 + sin2 (κ cosX0)
. (39)

This diffusion rate is the one obtained for the SQRs, multiplied by a factor D0

which reflects the interference effects. Figure 3 shows that this coefficient does not

depend monotonously on κ. which is a direct consequence of the presence of quantum

interferences. The diffusion rate can even totally vanish for particular values of κ andX0.

For example if X0 = π/2, although the kicks communicate the maximum momentum to

the wavepacket, the ballistic rate is strictly zero.

3.2. Mean kinetic energy

We now turn to the study of the effect of this interference on the average kinetic energy,

with once again, a particular attention to the case β = 0.
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3.2.1. The general case. We start from Eq. (B1) of [1]. We straightforwardly get to

the relation

〈E〉β(t) = 〈E〉β(t− 1) +
K2

2

∫ π

−π
dX sin2(X + wt) |ψβ(X + wt, t)|2

+ K
∫ π

−π
dX sin (X + w(t− 1))J ′(X + wt, t− 1), (40)

where, by analogy to Eq. (11), we defined the current

J ′(X, t) =
k̄

2
eiβπψ∗

β(X, t)
∂

∂X
ψβ(X − π, t) + c.c. (41)

As we did for the mean momentum, we express the mean kinetic energy in terms of the

cj functions. As shown in Appendix A, this implies that we also define the derivatives

of the cj functions with respect to X , that can also be written in a vector form

c′t =

(

∂
∂X
c1(X, t)

∂
∂X
c2(X + π, t)

)

=

(

c′1(X, t)

c′2(X + π, t)

)

. (42)

It is shown in Appendix A that c′t obeys the recursion relation

c′t = Atct + e−i
π
4Mtc

′
t−1, (43)

where

At = iκ sin (X + wt)

(

1 0

0 −1

)

, (44)

is diagonal and Mt (see Eq. (A.4)) is the matrix applied on vector ct. Iterating (43)

down to t = 0, we can write c′t as a function of the initial conditions

c′t = Atct +Mt (At−1ct−1 +Mt−1 (At−2ct−2 + . . .))

= Atct +MtAt−1ct−1 +MtMt−1At−2ct−2 + . . .

=
t−1
∑

s=0

(

s
∏

r=1

Mt−r

)

At−sct−s

=







t−1
∑

s=0

(

s
∏

r=1

Mt−r

)

At−s





t−s−1
∏

q=0

Mt−s−q











× c0. (45)

We get a complex equation that is subtantially simpler in the particular case of β = 0.

3.2.2. The special case β = 0. In this particular case, At andMt are time-independent.

Therefore (45) becomes

c′t =

(

t−1
∑

s=0

Ms
tAtM

t−s
t

)

× c0. (46)

The main difficulty to calculate c′t is that, unlike At, Mt is not diagonal in the basis

defined by the two levels of our system, denoted in what follows, as the physical basis.

So, in order to calculate Ms
t and Mt−s

t , we express Mt in its eigenbasis using Eq. (A.6).

However, we need to go back to the physical basis to apply At. In summary, starting

from c0 in the physical basis, we must
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• go to the eigenbasis of Mt;

• apply Mt−s
t which is then diagonal;

• go back to the physical basis, and apply At which is diagonal;

• once again change basis, and apply Ms
t ;

• finally go back to the physical basis.

This operation is of course made for each value of s.

By doing so, and after cumbersome calculations we get to the expressions

c′1(X, t) = iκ sinXe−it
π
4 ×

[

1

2

cosΘ

sin3Θ
sin (tΘ)

+t

(

cos (tΘ)− i√
2

sinφ

sinΘ
sin (tΘ)

)]

(47)

c′2(X + π, t) = iκ sinXe−it
π
4

eiφ

sinΘ
×
[

−1

2

sinφ

sin Θ
t cos (tΘ)

+t

(

i

2

sinφ cosΘ

sin2Θ
+

i√
2

)

sin (tΘ)

]

. (48)

We see that c′1(X, t) and c
′
2(X, t) are composed of oscillatory terms, some of them being

multiplied to t. As will show the calculation of the mean kinetic energy, those unbounded

terms are responsible for the ballistic behavior.

To calculate the mean kinetic energy, we have to apply our vector formalism to the

general recursion equation (40). Once the integrals in (40) have been calculated (see

Appendix B), we obtain the expression for an initial wavepacket localized around X0

〈E〉β=0 (t) = 〈E〉β=0 (t = 0) +
K2

2
sin2X0

{

sin2 φ

1 + sin2 φ
t2

+
1

4 sin2Θ

(

1

sin2Θ
+

sin ((2t− 1)Θ)

sinΘ

− cosΘ

sin2Θ
cos ((2t− 1)Θ)

)}

. (49)

Once again, we find a combination of oscillatory and ballistic dynamics, whose rate can

be written as

D′ =
K2

2
D0 sin

2X ′, (50)

where D0 is given by Eq. (39). This result for the diffusion rate has been found in

Ref. [29], with a different method. Our result for kinetic energy is strongly similar to

the one for momentum: the diffusion rate is that of RQS case, by multiplied by the

interference factor D0, which indicates how the two sub-packets have interfered with

each other throughout the dynamical evolution.

3.3. Non-zero quasi-momenta

We have seen above that interference effects can be totally destructive reducing ballistic

rate strictly to zero. We have also shown that anti-resonnant behavior leads to
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Figure 4. Combination of ballistic and oscillatory behaviors observed on the time

evolution of the mean kinetic energy for k̄ = π and β = 1/2. The initial state is a

gaussian of momentum width 5/
√
2 and centered at: X = π/4 (solid lines); X = π/3

(dashed lines), hence the different ballistic rates.

periodicity. Do such effects persist for non-zero quasi-momenta, and can they survive

to averaging over β? Mathematically speaking, for β = 0, ballisticity is linked to the

time-invariance of the Mt and At matrices. In the next paragraph, we will show that

this time-independency can be found under some conditions for β 6= 0, namely β = 1/2.

Next we will average over quasi-momenta.

If β = 1/2 (w = π/2), the two sub-packets will come back to their initial positions

after 4 kicks, the dynamics is thus described by a matrix

M′ = M4M3M2M1 (51)

which is time-independent. Therefore, a similar work can be performed with M′ as

the one done with M with β = 0. We can expect the same qualitative results for the

dynamical behavior, i.e. a combination of balistic and oscillatory behaviors. Fig. 4

shows numerical results giving the time evolution of the kinetic energy which is good

agreement with our arguments. However since M′ covers a 4-kick period, we can roughly

estimate the ballistic rate as 4 times smaller. More generally, we can expect that

ballisticity emerges for any rational quasimomentum p/q, but a rate scaling as 1/q.

In the limit q → ∞, i.e. irrational quasimomentum, ballisticity disappears.

These arguments are partly confirmed by the numerical simulations shown on Fig.

5. We calculation the mean kinetic energy after 80 kicks as a function of β. To get rid

of the X dependence of ballisticity (see Eq. (39)), the initial conditions are plane waves

of momentum k̄β. We clearly see ballistic peaks, the highest of which correspond to

the “most rational” quasi-momenta. Note however some differences with the arguments

above: for example the energy is higher for β = 1/2 than for β = 0. This is because the

value of K = 10 induces rather destructive interferences for certain quasi-momenta and

rather constructive ones for other β. A different value of K would modify this balance.

Fig. 6 concerns the behavior of the average kinetic energy corresponding to an

initial momentum distribution which is a few times the Brillouin zone, and shows
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Figure 5. Mean kinetic energy plotted as a function of β after 80 kicks for k̄ = π.

For each quasimomentum the initial state is a plane wave whose mean momentum is

k̄β. The peaks corresponding to ballistic dynamics arise for rational quasi-momenta.

The highest ones are indexed. K = 10.
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Figure 6. Interference effects resulting in the oscillatory dependence onK of the mean

kinetic energy in the k̄ = π. On panel (a), 〈E〉 is plotted as a function of time for

different values of the kicking strength: solid lines for K = 1, 1π2 (κ = 1, 1π); dashed

lines for K = 1, 3π2 (κ = 1, 3π); dashes-dotted lines K = 1, 5π2 (κ = 1, 5π). On

panel (b), 〈E〉 is plotted as a function of κ after t0 = 60 kicks. The initial momentum

distribution is “broad”, i.e. a gaussian of width 5/
√
2; to mimick an (incoherent)

atomic cloud each quasimomentum is given a random phase.

essentially a diffusive behavior. Clearly, although it concerns a higher number of quasi-

momenta, ballisticity does not survive the averaging process. The diffusion rate presents

an oscillatory behavior as a function of κ, but never goes to zero: quantum interferences

survive when averaging over a broadband initial momentum distribution, but with a

reduced contrast.
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4. Conclusion

In this paper, we have extended the analysis of quantum resonances given in [1] to

systems of experimental interest, characterized by strongly delocalized wave functions

in position space. We have extensively used the ideas presented in our preceding work

to interpret our present results.

In the case of simple quantum resonances, we have made an analytical treatment

based on the map giving the mean position and momentum. We have considered

two examples of initial momentum distributions. For a narrow distribution, we have

seen that the behavior of the central quasi-momentum persists for a time proportional

to the inverse distribution width. We have demonstrated that the ballistic motion

is progressively replaced by a diffusive regime, whose rate is also proportional to the

inverse distribution width. In the anti-resonant case, we have shown that the oscillations

of the average kinetic energy are progressively damped, until the dynamics becomes

“frozen” in momentum space. Strikingly, we have found that the form of the damping

keeps the track of the initial momentum distribution. We have also explained the

diffusive behavior observed with broad initial distribution, which is a consequence of

the dispersion of the momenta communicated to the atom by each kick. In the k̄ = π

high-order resonance, we have extended our previous calculations to the average kinetic

energy and shown that interference effects persist even for a broad initial momentum

distribution.

An interesting prospect of the present work is its application to the case where

interactions between atoms are present (e.g. one uses a dense Bose-Einstein codensate).

A first experimental study of such a system has been made by Raizen and co-workers

[30], and it was demonstrated in [24] that for a weak interaction strength, the resonant

value of k̄ is shifted. Moreover the latter work shows that the diffusion coefficient

presents sharp edges as the nonlinearity is varied, which are still unexplained. A kind

of nonlinear optical Talbot effect has been observed recently in an optical system [31],

which hints that our approach could be generalized to this much more complex case.

Appendix A. Vector formalism and mean kinetic energy

In this appendix, we want to apply the vector formailsm defined in Ref. [1] for k̄ = π,

to the calculation of the mean kinetic energy (see Eq. (32)). To that goal, we derive

Eq. (33) with respect to X to get
∂ψβ

∂X

∂

∂X
ψβ(X + wt, t) =

∂

∂X
c1(X, t)ψβ(X, 0) + c1(X, t)

∂

∂X
ψβ(X, 0).

+
∂

∂X
c2(X, t)ψβ(X − π, 0)

+ c2(X, t)
∂

∂X
ψβ(X − π, 0). (A.1)
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This equation contains the derivative of the cj functions, whose recursion realation is

straightforwardly found by deriving (A.4):

∂

∂X
c1(X, t) = iκ sin (X + wt) c1(X, t)

+
e−iφ(X,t)√

2

[

e−iπ/4
∂

∂X
c1(X, t− 1)

+eiπ/4e−iβπ
∂

∂X
c2(X + π, t− 1)

]

(A.2)

∂

∂X
c2(X + π, t) = − iκ sin (X + wt) c2(X + π, t)

+
eiφ(X,t)√

2

[

eiπ/4eiβπ
∂

∂X
c1(X, t− 1)

+e−iπ/4
∂

∂X
c2(X + π, t− 1)

]

. (A.3)

Finally by setting t = 0 and identifying the two sides of Eq. (A.1), we get the initial

conditions

∂

∂X
c1(X, t = 0) = 0

∂

∂X
c2(X, t = 0) = 0.

One important property of the
∂cj
∂X

, which can be seen by applying Eqs. (A.2) and (A.3)

recursively, is their 2π-periodicity.

By writing the
∂cj
∂X

functions in a vector form (see Eq. (42)), we get to the recursion

(43), with

Mt =
e−iπ/4√

2

(

e−iφ ie−iφe−iβπ

ieiφeiβπ eiφ

)

, (A.4)

and the initial condition

c0 =

(

1

0

)

. (A.5)

We recall form Ref. [1] that, for β = 0, Mt is time-independent. Therefore ct can

be written as

ct = e−it
π
4P

(

eitΘ 0

0 e−itΘ

)

P−1c0, (A.6)

where exp (±iΘ) are the eigenvalues of Mt, with Θ given by cosΘ = cos(κ cosX)√
2

, and P

is the diagonalization matrix

P =

[

−ie−iφ −ie−iφ
e−iφ −

√
2eiΘ e−iφ −

√
2e−iΘ

]

. (A.7)

Those relations are of a great interest to establish Eq. (43).
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Appendix B. Mean kinetic energy for β = 0

The goal of this appendix is to show how to apply our vector formalism to derive a

recursion relation on mean kinetic energy for β = 0. Starting from Eq. (40) and

replacing the wave function ψβ(X, t) and its derivative by their two-level expensions

(33) and (A.1), we have to calculate the two integrals in (40), which is done by using

the assumption that ψβ(X, 0) and
∂
∂X
ψβ(X, 0) is much more localized around X = X0

than any other function envolved in these integrals.

Therefore, the integral in sin2 yields

K2

2

∫ π

−π
dX sin2X |ψβ(X, t)|2

=
K2

2

∫ π

−π
dX sin2 (X0 + wt) |ψβ(X, 0)|2

×
(

|c1(X, t)|2 + |c2(X + π, t)|2
)

=
K2

2
sin2 (X0 + wt) , (B.1)

where we used the normalization property |c1(X, t)|2 + |c2(X + π, t)|2 = 1, ∀X . As for

the J ′ term, it reads

K
∫ π

−π
dX sinXJ ′(X − w, t− 1)

=
k̄K

2
eiβπ

∫ π

−π
dX sin (X + w (t− 1))

×
(

c∗1 (X)ψ∗
β (X) + c∗2 (X)ψ∗

β (X − π)
)

×
(

c′1 (X − π)ψβ (X − π) + c1 (X − π)ψ′
β (X − π)

+c′2 (X − π)ψβ (X − 2π) + c2 (X − π)ψ′
β (X − 2π)

)

+ cc

=
k̄K

2
eiβπ

∫ π

−π
dX sin (X + w (t− 1))

×
(

e−i2πβc∗1 (X) c′2 (X − π) |ψβ (X)|2

+c∗2 (X) c′1 (X − π) |ψβ (X − π)|2

+e−i2πβc∗1 (X) c2 (X − π)ψ∗
β (X)ψ′

β (X)

+c∗2 (X) c1 (X − π)ψ∗
β (X − π)ψ′

β (X − π)
)

+ cc., (B.2)

where for the sake of clarity, we removed all the time-dependences. Integrating over X

gives

K
∫ π

−π
dX sinXJ ′(X − w, t− 1)

=
k̄K

2
sin (X0 + w (t− 1))

×
(

e−iπβc∗1 (X
′) c′2 (X0 + π)− eiπβc∗2 (X0 + π) c′1 (X0) + cc

)

+ iK sin (X0 + w (t− 1)) 〈P 〉β (t = 0)

×
(

e−iπβc∗1 (X0) c2 (X0 + π)− eiπβc∗2 (X0 + π) c1 (X0)
)

. (B.3)
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As 〈P 〉β=0 (t = 0) is zero, we get for the mean kinetic energy

〈E〉β=0 (t) = 〈E〉β=0 (t− 1) +
K2

2
sin2X0 + k̄K sinX0

× (c∗1 (X0) c
′
2 (X0 + π)− c∗2 (X0 + π) c′1 (X0) + cc) . (B.4)

Finally replacing c1, c2, c
′
1 and c′2 by their respective expressions yields

〈E〉β=0 (t) = 〈E〉β=0 (t− 1) +
K2

2
sin2X0

×
{

sin2 φ

1 + sin2 φ
(2t− 1) +

1

1 + sin2 φ

×
(

cos ((2t− 2)Θ) +
cosΘ

sinΘ
sin ((2t− 2)Θ)

)}

. (B.5)

By iteraing down to t = 0, we get to Eq. (49).
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