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Adiabatically steered open quantum systems: Master equation and optimal phase
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We introduce an alternative way to derive the generalized form of the master equation recently
presented in Ref. [J. P. Pekola et al., Phys. Rev. Lett. 105, 030401 (2010)] for an adiabatically
steered two-level quantum system interacting with a Markovian environment. The original derivation
employed the effective Hamiltonian in the adiabatic basis with the standard interaction picture
approach but without the usual secular approximation. Our approach is based on utilizing a master
equation for a non-steered system in the first super-adiabatic basis. It is potentially efficient in
obtaining higher-order equations. Furthermore, we show how to select the phases of the adiabatic
basis states to minimize the local adiabatic parameter and how to apply this optimal phase selection
scheme to our master equation.

PACS numbers: 03.65.Vf, 03.65.Yz, 05.30.-d

I. INTRODUCTION

The adiabatic theorem [1, 2] has been one of the
workhorses of quantum physics for decades. It states that
if the external control parameters of the system Hamilto-
nian vary slowly enough, the system remains very accu-
rately in one of its initial instantaneous eigenspaces. As
slowly varying quantum systems appear in many fields of
physics, a multitude of applications for the theorem ex-
ists. In recent years, adiabatically steered quantum sys-
tems have attracted a lot of interest due to their connec-
tion to geometric phases in cyclic evolution [3–5]. These
phases provide a potential alternative to quantum infor-
mation processing [6–8] in which the quantum gates are
implemented by purely geometric means [9–18]. This
geometric quantum computation has been shown to of-
fer inherent robustness against control errors [19–22] due
to the fact that geometric phases depend only on some
global geometric properties. Different ways to describe
geometric phases in open systems have been introduced
[23–28] and methods to account for the effect of the en-
vironment on the system evolution have been studied
[22, 29–36] along with techniques to reduce the unwanted
noise. However, a consistent description of the combined
effect of adiabatic steering and noise was missing un-
til recently, when a master equation was introduced in
Refs. [37, 38].

In the approach of Ref. [37], it was shown that the
typically applied secular approximation [31, 39] is not
suitable in describing adiabatic evolution. Taking into
account all the relevant contributions leads to a mas-
ter equation which ensures relaxation to a proper basis
and shows that the ground-state dynamics are not influ-
enced by zero-temperature Markovian noise in the adi-
abatic limit. Thus the system exhibits inherent robust-
ness. The master equation derived in Ref. [37] was gener-
alized to hold for a generic system-environment coupling
operator in Ref. [38]. Furthermore, the master equation
was applied to describe Cooper pair pumping [40–42] in
Refs. [37, 38].

In this paper, we introduce an alternative derivation
of the master equation for adiabatically steered quan-
tum systems coupled to a Markovian environment. Our
derivation is based on utilizing a non-steered master
equation in the first super-adiabatic basis. We show that
the master equation we obtain is the same as in Ref. [38]
and that our method is potentially simpler to apply to
obtaining higher order expansions in the adiabatic pa-
rameter. In addition, we introduce a way to select the
complex phases of the adiabatic basis states such that the
local adiabatic parameter is minimized leading to van-
ishing diagonal elements for the operator describing the
steering. We show that this selection results in locally
phase invariant basis states.

The structure of this paper is as follows. In the next
section, we introduce our model describing the open
quantum system. In Sec. III, we derive the master equa-
tion for a non-steered system subject to decoherence. In
Sec. IV, we use the non-steered master equation to ob-
tain the full master equation for adiabatic steering. In
Sec. V, we introduce the optimal phase selection for the
adiabatic basis states and demonstrate the main impli-
cations of such a selection. We conclude the paper in
Sec. VI.

II. MODEL

We consider a quantum system with a Hamiltonian ĤS

which depends on a set of real control parameters {qk}
that vary in time. The system is assumed to be interact-
ing with the environment so that the total Hamiltonian
is

Ĥ(t) = ĤS(t) + V̂ (t) + ĤE , (1)

where V̂ (t) is the coupling between the system and its

environment and ĤE is the Hamiltonian of the environ-
ment. We assume that the coupling is of the generic form
V̂ = Â⊗X̂(t), where Â is the system part of the coupling

operator and X̂(t) acts in the Hilbert space of the envi-
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ronment. Let |m; ~q(t)〉 be the instantaneous eigenstate of

ĤS(t) and Em(t) the corresponding eigenenergy defined

by ĤS [~q(t)] |m; ~q(t)〉 = Em[~q(t)] |m; ~q(t)〉. In the context
of adiabatic evolution, {|m; ~q(t)〉} is referred to as the
adiabatic basis. We assume that the adiabatic states are
normalized and non-degenerate.

Let the Hamiltonian ĤS(t) be diagonalized in a fixed

basis {|mf 〉} using the eigendecomposition as ˆ̃HS(t) =

D̂†(t)ĤS(t)D̂(t), implying that 〈nf |
ˆ̃HS(t)|mf 〉 =

Em(t)δnm. We define a similar transformation for the
total density operator ρ̂(t) in the Schrödinger picture as
ˆ̃ρ(t) = D̂†(t)ρ̂(t)D̂(t). It follows from the Schrödinger

equation that the evolution of ˆ̃ρ(t) is governed by the
effective Hamiltonian for the adiabatic basis

ˆ̃H(1)(t) = ˆ̃HS(t) + ~ŵ(t) + ˆ̃V (t) + ĤE , (2)

where ˆ̃V (t) = D̂†(t)V̂ (t)D̂(t) = D̂†(t)ÂD̂(t) ⊗ X̂(t) and

ŵ(t) = −iD̂†(t)
˙̂
D(t). Omitting the environment and as-

suming adiabatic evolution, a more accurate approxima-
tion for the exact evolving state is achieved if the adia-
batic states are corrected by

|δm; ~q(t)〉 = −i~
∑

k 6=m

|k; ~q(t)〉
〈k; ~q(t)| ∂∂t |m; ~q(t)〉

Em − Ek
, (3)

in the first order in the perturbation theory. The basis
formed by the corrected states {|m〉 + |δm〉} is usually
referred to as the first superadiabatic basis [3].

We introduce the local adiabatic parameter as α(t) =
~||ŵ(t)||/∆(t), where we compare the Hilbert-Schmidt
norm of the operator arising from the adiabatic evolution
||ŵ(t)|| =

√

TrS{ŵ(t)†ŵ(t)} to an instantaneous mini-
mum energy gap in the spectrum ∆(t). Here TrS de-
notes the trace over the system degrees of freedom and
in the following we will use TrE to denote the trace over
the environment degrees of freedom. The parameter α(t)
should give a good estimate for the degree of adiabatic-
ity of the evolution [25, 38]. In cyclic evolution with the
period T , the parameter scales as 1/T and, thus, in adi-
abatic evolution we should have α(t) ≪ 1.

III. MASTER EQUATION FOR A

NON-STEERED SYSTEM

Let us study the dynamics of a generic non-steered
two-level system coupled to its environment. Denote
the ground and excited states of ĤS in the Schrödinger
picture as |g〉 and |e〉, respectively, with corresponding
eigenenergies Eg and Ee. The standard method [39]
for the reduced system density matrix in the interac-
tion picture σ̂I(t) = TrE{ρ̂I(t)} can be used to de-
rive the relevant master equation assuming a station-
ary environment, i.e., dρ̂E

dt = i
~
[ρ̂E , ĤE ] = 0. We de-

fine the operators in the interaction picture as ẐI(t) =

eiĤEt/~Û †
S(t, 0)Ẑ(t)ÛS(t, 0)e

−iĤEt/~, where Ẑ(t) is the

operator in the Schrödinger picture and ÛS(t, 0) is the
time-evolution operator. For a time dependent system
Hamiltonian, the time-evolution operator is ÛS(t, 0) =

e−i
∫

t

0
ĤS(τ)dτ/~ but simplifies to ÛS(t, 0) = e−iĤSt/~ for

non-steered systems studied in this Section.
If we assume that the system interacts weakly with the

environment, the master equation acquires the standard
form [43]

dσ̂I(t)

dt
= −

1

~2

∫ t

0

dt′TrE([[σ̂I(t)⊗ ρ̂E , V̂I(t
′)], V̂I(t)]),

(4)
in the interaction picture, where we have utilized the
Born-Markov approximation [44]. Equation (4) is recast
into the Schrödinger picture as

dρgg
dt

= −(Γge + Γeg)ρgg + ℜe{Γ̃0ρge}+ Γeg, (5)

and

dρge
dt

= iω01ρge − (Γ̃+ + Γ̃−)ρgg

−

(

Γeg

2
+

Γge

2
+ Γϕ

)

ρge + (Γα + Γβ)ρeg + Γ̃+,

(6)

where ρrs = 〈r|ρ̂S |s〉 with r, s ∈ {g, e}, and ω01 = (Ee −
Eg)/~. The transition rates are defined as

Γge =
| 〈e|Â|g〉 |2

~2
SXk

(−ω01),

Γeg =
| 〈e|Â|g〉 |2

~2
SXk

(+ω01),

Γ̃0 =
〈e|Â|g〉 (〈g|Â|g〉 − 〈e|Â|e〉)

~2
SX(0),

Γ̃± =
〈g|Â|e〉 (〈e|Â|e〉 − 〈g|Â|g〉)

2~2
SX(±ω01),

Γϕ =

(

| 〈e|Â|e〉 |2

2~2
+

| 〈g|Â|g〉 |2

2~2
−

〈g|Â|g〉 〈e|Â|e〉

~2

)

SX(0),

Γα =
〈g|Â|e〉

2

2~2
SX(ω01),

Γβ =
〈g|Â|e〉

2

2~2
SX(−ω01).

The spectral density is denoted by SX(ω) =
∫∞

−∞
dτTrE{ρ̂EX̂(τ)X̂(0)}eiωτ . Note that we neglect the

drive, i.e., omit all terms proportional to ŵ. Further-
more, Eqs. (5) and (6) include all the nonsecular terms
neglected in the usual approach [39].

For futher details concerning the derivation of Eqs. (5)
and (6) see Appendix. Especially, we neglect the possible
imaginary parts of the transition rates, i.e., the Lamb
shift, by assuming that the system time scales are longer
than the system autocorrelation time.
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IV. MASTER EQUATION FOR ADIABATIC

STEERING

We aim to derive the the full master equation for the
system coupled to its environment in adiabatic steering
using the master equation for a non-steered system. De-

fine a unitary transformation D̂1(t) making ˆ̃HS(t)+~ŵ(t)
diagonal in the fixed basis {|0〉 , |1〉}. Thus the evolution

of the density matrix ˆ̃ρ(2) = D̂†
1
ˆ̃ρD̂1 = D̂†

1D̂
†ρ̂D̂D̂1 is

governed by the effective Hamiltonian for the first super-
adiabatic basis

ˆ̃H(2)(t) = ˆ̃H
(2)
S (t) + ~ŵ1(t) +

ˆ̃V (2)(t) + ĤE , (7)

where ˆ̃H
(2)
S (t) = D̂†

1(t)(
ˆ̃HS(t) + ~ŵ(t))D̂1(t),

ˆ̃V (2)(t) =

D̂†
1(t)

ˆ̃V (t)D̂1(t), and ŵ1 = −iD̂†
1(t)

˙̂
D1(t).

Assume that the super-adiabatic correction, ŵ1, is neg-
ligible with respect to the adiabatic one so that we can

write Eq. (7) as ˆ̃H(2)(t) ≈ ˆ̃H
(2)
S (t) + ˆ̃V (2)(t) + ĤE . Since

this Hamiltonian describes effectively a non-steered sys-
tem, we can employ the approach of Sec. III to write a
master equation similar to Eqs. (5) and (6) as

dρ
(2)
gg

dt
= −(Γ(2)

ge + Γ(2)
eg )ρ

(2)
gg + ℜe{Γ̃

(2)
0 ρ(2)ge }+ Γ(2)

eg , (8)

and

dρ
(2)
ge

dt
= iω

(2)
01 ρ

(2)
ge − (Γ̃

(2)
+ + Γ̃

(2)
− )ρ(2)gg

−

(

Γ
(2)
eg

2
+

Γ
(2)
ge

2
+ Γ(2)

ϕ

)

ρ(2)ge + (Γ(2)
α + Γ

(2)
β )ρ(2)eg

+ Γ̃
(2)
+ ,

(9)

where we have marked the relevant terms in the super-
adiabatic basis with the superscript (2) to avoid confusing
them with the adiabatic ones. The transformation D̂1(t)
can be approximated using the perturbation theory for
the adiabatic correction. This results in the superadia-
batic eigenstates which we can obtain from Eq. (3) up to
the linear order in α(t) in the two-state model as

|g(2)〉 = |g〉 − |e〉
w∗

ge

ω01
, (10)

and

|e(2)〉 = |e〉+ |g〉
wge

ω01
, (11)

with the eigenenergies E
(2)
g = Eg+~wgg and E

(2)
e = Ee+

~wee, respectively. Here, we denote the matrix elements
of the adiabatic correction as wsr = −i 〈s|ṙ〉, where r, s ∈
{g, e}. Thus, the super-adiabatic energy gap up to this

order becomes ω
(2)
01 = ω01 + (wee − wgg).

The matrix elements in Eqs. (8) and (9) can be writ-
ten using the super-adiabatic eigenstates to obtain the
master equation for adiabatic steering up to the linear
order in α(t). We restrict our derivation to the linear or-
der since α(t) ∼ 1/T and in the adiabatic limit, T → ∞
making the contributions beyond the linear one negligi-
ble. If we assume that the system is driven adiabatically
but does not necessarily remain in the ground state at
all times, we cannot assume the density matrix elements
ρge to become small enough to be neglected due to their
order in this limit. Hence, we are only considering α(t)
as a small parameter and neglect all terms with α2 or
higher order. Using Eqs. (8) and (9), this yields

ρ̇gg − 2
ℜe(w∗

geρ̇ge)

ω01

= −(Γ(2)
ge + Γ(2)

eg )

(

ρgg − 2
ℜe(w∗

geρge)

ω01

)

+ ℜe

{

Γ̃
(2)
0

(

ρge + 2
wge

ω01
ρgg −

wge

ω01

)}

+ Γ(2)
eg ,

(12)

and

ρ̇ge + 2
wge

ω01
ρ̇gg

= i[ω01 + (wee − wgg)]

(

ρge + 2
wge

ω01
ρgg −

wge

ω01

)

− (Γ̃
(2)
+ + Γ̃

(2)
− )

(

ρ̇gg − 2
ℜe(w∗

geρ̇ge)

ω01

)

−

(

Γ
(2)
eg

2
+

Γ
(2)
ge

2
+ Γ(2)

ϕ

)(

ρge + 2
wge

ω01
ρgg −

wge

ω01

)

+ (Γ(2)
α + Γ

(2)
β )

(

ρeg + 2
w∗

ge

ω01
ρgg −

w∗
ge

ω01

)

+ Γ̃
(2)
+ .

(13)

We can solve ρ̇gg and ρ̇ge from these equations to ob-
tain the full master equation. In addition, we employ
Eqs. (10) and (11) to rewrite the rates in the super-
adiabatic approximation. To present the full master
equation, we adopt a notation which will not reduce
the generality of the equations but simplify them. In
the nested commutator expression of Eq. (4), the cou-
pling operator is only found in places where it is com-
muting with other operators and, hence, provided that
the Lamb shift is neglected, we can add any operator
comparable to the identity operator to it without affect-
ing the nested expression. Thus, the system part of the
coupling operator can be choosen traceless in the two-
state basis. We will adopt this convention by introducing
m1 = 〈g|Â|g〉 = −〈e|Â|e〉 and m2 = 〈g|Â|e〉. Notice that
m1 ∈ R whereas m2 ∈ C in the case of a general coupling
operator. The master equation up to the linear order in
α(t) becomes
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ρ̇gg = −2ℑm(w∗
geρge) + S(ω01)|m2|

2 − [S(−ω01) + S(ω01)]|m2|
2ρgg + 2[ℑm(m2)ℑm(ρge) + ℜe(m2)ℜe(ρge)]S(0)m1

− 2
2S(0)− S(−ω01)− S(ω01)

ω01
{[ℑm(m2)ℑm(wge) + ℜe(m2)ℜe(wge)][ℑm(m2)ℑm(ρge) + ℜe(m2)ℜe(ρge)]}

+ 2
2S(0)− S(−ω01)− S(ω01)

ω01
{ℑm(m2)ℑm(wge) + ℜe(m2)ℜe(wge)}m1ρgg

− 2
S(0)− S(ω01)

ω01
m1{ℑm(m2)ℑm(wge) + ℜe(m2)ℜe(wge)}

(14)

and

ρ̇ge = iwge(2ρgg − 1) + i(wee − wgg)ρge + iω01ρge − S(ω01)m1m2 + [S(−ω01) + S(ω01)]m1m2ρgg − 2S(0)m2
1ρge

− i[S(−ω01) + S(ω01)]m2[ℑm(ρge)ℜe(m2)−ℑ(m2)ℜe(ρge)]

− 2
2S(0)− S(−ω01)− S(ω01)

ω01
m2

1wgeρgg + 2
S(0)− S(ω01)

ω01
m2

1wge

− im2
S(−ω01)− S(ω01)

ω01
{ℑm(m2)ℜe(wge)−ℑm(wge)ℜe(m2)}

− 2
2S(0)− S(−ω01)− S(ω01)

ω01
m1{im2[ℑm(wge)ℜe(ρge)−ℑm(ρge)ℜe(wge)]

− [ℑm(m2)ℑm(wge) + ℜe(m2)ℜe(wge)]ρge}.
(15)

Here, we applied a shortened notation for the spectral
densities S(ω) = SX(ω)/~2. We would like to empha-
size that in this section, we assume that the system is
externally steered, i.e., the system Hamiltonian is time-
dependent. Even though we do not explicitly make the
approximation of adiabatic rates [39], i.e., assume the
evolution time is much longer than the environment au-
tocorrelation time so that ω01, m1, m2 and the matrix
elements of ŵ vary slowly in time, the approximation is
implicitly assumed. This assumption stems from the fact
that we use the master equation for a non-steered system
in the linear order in α(t). In Sec. V, we show that wgg

and wee vanish from Eq. (15) when we select the phases
of the adiabatic basis states in an optimal manner.

Remarkably, our master equation is identical to that
derived in Ref. [38], however, the manner in which the
master equation was derived is different. In Ref. [38],
one starts from the effective Hamiltonian for the adia-
batic basis presented in Eq. (2) and formulates a nested
commutator expression for the derivative of the reduced
system density operator in the adiabatic basis applying

~ŵ(t) + ˆ̃V (t) as the perturbation

dˆ̃σI(t)

dt
= i[ˆ̃σI(t), ŵI(t)]−

1

~2
TrE

{
∫ t

0

dt′
[

[ ˆ̃ρI(t),
ˆ̃VI(t

′)], ˆ̃VI(t)
]

}

+
i

~2
TrE

{

∫ t

0

dt′
∫ t′

0

dt′′
[[

ˆ̃ρI(t), [ŵI(t
′), ˆ̃VI(t

′′)]
]

, ˆ̃VI(t)
]

}

,

(16)

in the interaction picture. Using this operator directly, results in the same master equation to the one we ob-
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tained. Thus, we find that with respect to adiabatic
temporal evolution it makes no difference whether one
uses the effective Hamiltonian for the adiabatic basis and

takes ~ŵ(t) + ˆ̃V (t) as the perturbation as was done in
Refs. [37, 38] or whether one uses our approach to express
the effective Hamiltonian for the super-adiabatic basis as-
suming that the super-adiabatic correction is small, thus

taking ˆ̃V (2)(t) as the perturbation and writing the super-
adiabatic basis states up to the linear order in α(t).

Our discovery reaffirms that the super-adiabatic basis
approximates the exact evolving state in the next order
in α so that using only the bath coupling as the pertur-
bation will result in describing the dynamics in the same
order as the effective Hamiltonian for the adiabatic basis
does. This result is an important consistency check for
the master equation derived in Refs. [37, 38], see Eqs. (14)
and (15). The original way [37, 38] of deriving the full
master equation can be extended to obtain master equa-
tions in higher orders in α by applying iteratively the
nesting procedure [see Eq. (16)]. Our procedure can be
used as well to obtain higher-order master equations by
using higher-order perturbation theory to approximate
the evolving basis states up to higher orders in α. Since
our procedure is based on applying algebraic operations,
it is potentially simpler to obtain higher order equations
with it than with nesting which results in complicated
integral expressions.

V. OPTIMAL PHASE SELECTION

Assume that we have nondegenerate adiabatic basis
states |g〉 and |e〉, that are normalized and smooth dur-
ing the time evolution and that they can be obtained
from the fixed states with a unitary transformation as
D̂ |0〉 = |g〉 and D̂ |1〉 = |e〉. Thus, the operator deter-

mining the adiabatic evolution becomes ŵ = −iD̂† ˙̂
D [see

Eq. (2)]. However, the complex phases of the states are
arbitrary, and hence their effect on ŵ should be studied.
This means that we could also work with basis states that
differ from |g〉 and |e〉 by time dependent phase factors.
In this Section, we show that this freedom can be used
to minimize the local adiabatic parameter, while in the
corresponding master equation it leads to renormalized
matrix elements only.

Let us choose new phases for the states by multiplying
them with phase factors eiλg and eiλe , where λg, λe ∈ R,

so that a phase selection operator Ω̂ is defined as

Ω̂ = eiλg |0〉 〈0|+ eiλe |1〉 〈1| , (17)

yielding the new transformation as ˆ̃D = D̂Ω̂. Notice
that the new states defined by the transformation are
still eigenstates of the original Hamiltonian. With this

transformation, the operator for the drive becomes

ˆ̃w = −i ˆ̃D† ˙̃̂
D

= −iΩ̂†D̂†(
˙̂
DΩ̂ + D̂

˙̂
Ω)

= λ̇g |0〉 〈0|+ λ̇e |1〉 〈1| − iΩ̂†D̂† ˙̂
DΩ̂,

(18)

where we have used the unitarity of D̂. The matrix ele-
ments in the phase shifted basis become

〈0| ˆ̃w|0〉 = λ̇g − i 〈0|D̂† ˙̂
D|0〉 = λ̇g + wgg,

〈1| ˆ̃w|1〉 = λ̇e − i 〈1|D̂† ˙̂
D|1〉 = λ̇e + wee,

〈0| ˆ̃w|1〉 = −iei(λe−λg) 〈0|D̂† ˙̂
D|1〉 = ei(λe−λg)wge,

〈1| ˆ̃w|0〉 = −iei(λg−λe) 〈1|D̂† ˙̂
D|0〉 = ei(λg−λe)weg.

(19)

Thus, the phase shift induces a shift in the diagonal ele-
ments and a phase shift in the off-diagonal elements.

In order to obtain the optimal selection, we minimize

the Hilbert-Schmidt norm || ˆ̃w|| =
√

TrS{ ˆ̃w† ˆ̃w} at each

time instance since the local adiabatic parameter for evo-
lution using a phase shifted basis is defined using it as
α(t) = || ˆ̃w(t)||/ω01(t), where t ≥ 0 and we assume that
the drive is engaged at time zero. For this task, it suffices
to minimize

TrS{ ˆ̃w
† ˆ̃w} = | 〈0| ˆ̃w|0〉 |2 + | 〈1| ˆ̃w|1〉 |2

+ | 〈1| ˆ̃w|0〉 |2 + | 〈0| ˆ̃w|1〉 |2.
(20)

The last 2 terms consist of the off-diagonal terms and
the phase selection has no effect on them. Thus, the
minimum is found when we select the diagonal elements
in Eq. (20) to vanish, yielding

λg(t) = −

∫ t

0

dt′wgg(t
′) + λ0

g = i

∫ t

0

dt′ 〈g|ġ〉+ λ0
g,

λe(t) = −

∫ t

0

dt′wee(t
′) + λ0

e = i

∫ t

0

dt′ 〈e|ė〉+ λ0
e,

(21)

and

〈0| ˆ̃w|1〉 = ei(λ
0

e−λ0

g)ei
∫

t

0
dt′[wgg(t

′)−wee(t
′)]wge

= ei(λ
0

e−λ0

g)e
∫

t

0
dt′[〈g|ġ〉−〈e|ė〉]wge.

(22)

The phases are not fixed since we have a degree of free-
dom in the selection of the constant parts. Notice that
the primary selection of the smooth eigenstates |g〉 and
|e〉 determines the accumulating phase. We denote the
integrals as simply over time, but one should bear in
mind that they contribute a path in the parameter space.
Used in conjuction with our master equation, the opti-
mal phase selection results in wgg and wee vanishing in
Eq. (15).

With the optimal selection, the phase shifted ba-

sis states become |g̃〉 = eiλ
0

ge−
∫

t

0
dt′〈g|ġ〉 |g〉 and |ẽ〉 =
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eiλ
0

ee−
∫

t

0
dt′〈e|ė〉 |e〉. Thus we have 〈g̃| ˙̃g〉 = 〈ẽ| ˙̃e〉 = 0 in-

dependent of |g〉 and |e〉 and the selection renders the
phase shifted states to be also invariant under a local
gauge change, i.e., |g〉 → eiβ(t) |g〉 has no effect on |g̃〉
and |e〉 → eiη(t) |e〉 has no effect on |ẽ〉 where β(t) and
η(t) are any smooth functions. For a closed path in the
parameter space γ, we have

λg(tb)− λg(ta) = i

∮

γ

〈g|ġ〉 ,

λe(tb)− λe(ta) = i

∮

γ

〈e|ė〉 ,

(23)

where we have denoted ta and tb as the virtual start-
ing and ending time instances for the path, respectively.
These are the Berry phases accumulated over the path
for the phase shifted basis states and, as such, cannot be
removed by any continuous local gauge change [3]. Thus,
selecting the optimal local phase for a closed loop in the
parameter space implies a gauge-invariant accumulated
phase at the end of the loop.

Utilizing the optimal phase selection scheme with our
master equation requires a careful consideration of the
used approximations, in particular, the approximation
of adiabatic rates. We used this approximation in the
derivation of the master equation [see Eqs. (14) and
(15)] to state that ω01, m1, m2 and the matrix elements
of ŵ vary slowly in time. With the optimal phase se-
lection, the corresponding parameters are ω̃01 = ω01,
m̃1 = m1, m̃2 = ei(λe−λg)m2, w̃gg = w̃ee = 0 and

w̃ge = ei(λe−λg)wge. If we assume that the approximation
of adiabatic rates applies for these phase shifted variables,
the master equation can be directly used by replacing the
original variables with the shifted ones.

If the above assumption fails to be justified, the accu-
racy can be improved by taking the geometric phase ac-
quired by the basis into account in estimating the power
spectra as

S(ω01) → S(ω01 + wee − wgg),

S(−ω01) → S(−ω01 + wgg − wee),

S(0) → S(0).

(24)

However, Eq. (24) depends on the local gauge used to
define |g〉 and |e〉. Thus the local gauge has to be fixed
such that wgg and wee describe the accumulation speed
of the geometric phase for open paths, see Ref. [45].

VI. CONCLUSIONS

We deviced a way to derive the full master equation
for adiabatically steered quantum systems in the two-
state approximation under the influence of decoherence
starting from an interaction-picture-based derivation, in
which the external drive was first omitted. The full mas-
ter equation was obtained by approximating the trans-

formation to the superadiabatic basis using the pertur-
bation theory and exploiting the master equation for the
non-steered system. We showed that the master equa-
tion we obtain this way is the same as the one obtained
in Ref. [38] by a longer calculation. We concluded that
our manner of obtaining the master equation is a con-
sequence of the superadiabatic basis approximating the
exact evolving state in the linear order in the adiabatic
parameter α(t). Furthermore, there is no need to eval-
uate high-order nested commutators of integrals in our
method if it is extended beyond the linear order in α(t)
as opposed to the method in Refs. [37, 38]. A detailed
study of the efficiency of these two approaches is left for
future research.

There exists a degree of freedom in the choice of the
phases of the basis states during the evolution. We
demonstrated a way to choose the phases in an opti-
mal manner which minimizes the local adiabatic param-
eter and showed that this choice produces basis states
that are invariant under a local gauge change. The ac-
cumulated phases for the optimally selected basis states
are the Berry phases for a closed loop in the parameter
space. Altering the phases of the basis states was shown
to induce a shift in the diagonal matrix elements of the
adiabatic correction operator, wgg and wee, enabling us
to dispose of them in the off-diagonal part of our master
equation (15) using the optimal selection. Furthermore,
if the approximation of adiabatic rates is not justified
for the phase shifted basis states, a frequency shift may
appear in the spectral densities.
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Appendix: Non-steered master equation in the

two-state basis

We rewrite the derivative of the reduced density matrix
in the interaction picture (Redfield equation [44]) as

dσ̂I(t)

dt
= −

1

~2

∫ t

0

dt′TrE([[σ̂I(t)⊗ ρ̂E , V̂I(t
′)], V̂I(t)]).

(A.1)
The transformation from the interaction picture to the
Schrödinger picture unfolds when we employ

ρ̂S(t) = ÛS(t, 0)σ̂I(t)Û
†
S(t, 0), (A.2)
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which can be used to obtain the density matrix transfor-
mation componentwise as

ρgg(t) = σI,gg(t),

ρee(t) = σI,ee(t),

ρge(t) = eiω01tσI,ge(t),

ρeg(t) = e−iω01tσI,eg(t).

(A.3)

Derivating Eq. (A.2) yields the transformation of the
derivative as

dρ̂S(t)

dt
=

i

~
[ρ̂S(t), ĤS(t)] + ÛS(t, 0)

dσ̂I(t)

dt
Û †
S(t, 0).

(A.4)

Using Eqs. (A.1) and (A.4), we define the diagonal matrix
element

〈g|
dρ̂S(t)

dt
|g〉 = −

1

~2

∫ t

0

dt′TrE{〈g|[[σ̂I(t)⊗ ρ̂E , V̂I(t
′)], V̂I(t)]|g〉}, (A.5)

and the off-diagonal matrix element

〈g|
dρ̂S(t)

dt
|e〉 = iω01ρge(t)− eiω01t

1

~2

∫ t

0

dt′TrE{〈g|[[σ̂I(t)⊗ ρ̂E , V̂I(t
′)], V̂I(t)]|e〉}, (A.6)

for the non-steered master equation. Notice that our
derivation is based on assuming that the system relax-
ation time is long compared to the environment correla-
tion time τcorr so that the environment has no memory,
i.e., we are in the Markov regime [39]. This allows us to
neglect any variation of σ̂I(t) between times t and t+τcorr.
The integral expressions in Eqs. (A.5) and (A.6) simplify
to give Eqs. (5) and (6) when we expand the commuta-

tors, use the closure relation for the adiabatic basis, and
utilize TrE{ρ̂EX̂(t′)X̂(t)} =

∫∞

−∞
dω
2πSX(ω)e−iω(t′−t) and

Eq. (A.3). Furthermore, we assume that the system time
scales are longer than the system autocorrelation time to
approximate the spectral densities in the remaining in-
tegral expressions. This assumption leads to neglecting
the Lamb shift.
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