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Abstract

We study the limiting behaviour of the empirical measure afyatem of diffusions in-
teracting through their ranks when the number of diffusitargls to infinity. We prove that
the limiting dynamics is given by a McKean-Vlasov evolutiequation. Moreover, we show
that in a wide range of cases the evolution of the cumulatis&ibution function under the
limiting dynamics is governed by the generalized porousiomdquation with convection.
The uniqueness theory for the latter is used to establishriiygieness of solutions of the lim-
iting McKean-Vlasov equation and the law of large numberstli@ corresponding systems
of interacting diffusions. The implications of the results rank-based models of capital
distributions in financial markets are also explained.

1 Introduction

The present article studies the behaviour of the weak swisitio the systems of stochastic differ-
ential equations

dX;(t) = p(Fy0 (Xi(1))) dt + o (Fy) (Xi(1))) dBi(1), 1<i< N (1.1)

on an interval0, 7] in the limit N — oc. Hereby,y(t) = + SN dx,(+ Is the empirical mea-
sure of the particle systed¥, (¢),..., Xy(t) at timet, F, is its cumulative distribution func-
tion, . ando are measurable functions @i 1] taking values irR and(0, ), respectively, and
By,...,By are i.i.d. standard Brownian motions. Informally, at anydit the drift and dif-
fusion coefficients of a fixed particleare determined by its rank in the particle configuration
Xi(t),...,Xy(t) at timet, so that whenever a particle changes its rank, the coefficdrange
accordingly. The existence and uniqueness of a weak soltdif.1) for anyN € N was pointed
out in [3] and is essentially due to the resultslih [2], makihig description rigorous. For each
N € N we fix such a weak solution and denote®{"’ the probability measure on the space on

which it is defined.
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Viewing (L.1) as an equation for the evolution of the emtimeasure(¢) of the particle system
on [0, T'] we prove that under suitable assumptiong.pa and the initial positions of the particles
the limiting evolution is governed by a McKean-Vlasov ewan equation. Moreover, in the case
that the measure in the limiting dynamics is absolutely iommius with respect to the Lebesgue
measure orR at any timet € [0,7] we show that the cumulative distribution function of the
system evolves according to the generalized porous medjuition with convection:

ow  d? d

Frl @E(w) — %@(w) (1.2)
whereX and© are the antiderivatives afo? and ., respectively, with2(0) = ©(0) = 0. For
different values ofY and © the equation[(Ll2) describes various physical phenomenh as
infiltration of water into a porous medium or evaporation citer from soil (see [25] and the
references there). Our law of large numbers for the parigétems in[(LIl) shows that the latter
can be used to obtain numerical approximations of a contisifp 1}-valued weak solution of
the generalized porous medium equation with conveclié) firovided that:, © and the initial
condition satisfy the assumptions of Theorem 1.2 below. @gecture that the same is true un-
der more general circumstances and, in particular, for aiiali condition which is a cumulative
distribution function of a probability measure. This sdlez particle method for numerical ap-
proximation of solutions of partial differential equat®was successfully applied before for the
Burgers equation (seel[4]) and the classical McKean-VIasmation as in [18] (se&l[5]).

The system of diffusions i (Il1) and related evolutions aftjgle systems were studied recently
for fixed values ofV € N and in some cases fof = co. They are relevant in the study of capital
distributions in financial markets (see e.gl [3]./[19], [A3] and [22]) and in their discrete time

version in the analysis of the Sherrington-Kirkpatrick rabdf spin glasses (see e.q. [20]] [1],
[21]). They are also closely related to reflected Brownianioms (seel[13] for the connection)

which are widely used as heavy traffic approximations of guagnetworks (see e.g. [11], [12],

[24], [26]).

In the context of capital distributions in financial markéte processes(,,..., Xy stand for
logarithmic capitalizations of the firms participating lmetmarket. So, our analysis of the limit
N — oo of the described systems gives an understanding of the lmelmaf the whole market
under the assumption that the number of firms operating inniaaket is large. It also allows to
approximate the evolution of the (logarithmic) capitaliaa of the j-th ranked firm or of the
highest (or lowest) ranked firms in the market for a fided ; < N under the assumption that
the number of firms in the market is large.

Following McKean’s seminal work [18] systems of diffusingrpicles in which the drift and dif-
fusion coefficients of each particle are functions of the eirgd measure of the whole system
and the position of the particle were studied extensivelghacontext of particle systems with
mean field interaction. A good summary of the developmentsimdirection is given in[[9].
However, in [9] and the references therein the drift andudifin coefficients are assumed to be
continuous in the position of the particle and in the empirineasure of the system (with respect
to the topology of weak convergence on the space of probabikasures). This was justified by
the continuity of potentials and interaction terms appeam models of statistical mechanics. In
contrast to this, the coefficients in_(l.1) are discontinuboth in the empirical measusét) and
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the position of the particl&;(¢) which necessitates a more delicate analysis.

To state the main results of the paper we use the followingfabtations. For any separable
metric spaceS we denote byl (S) the space of probability measures Srendowed with the
metric

d(a,a’) = sup
z: ||zl| oo+ Lip(2)<1

/S 2(z) alde) — /S 2(z) o/(dx)) (1.3)

where||z|| and Lip(z) denotesup,.¢ |2(x)| and the Lipschitz constant of a functien: S —
R, respectively. It is well-known that metrizes the topology of weak convergencedi(.S).
Moreover, we letC([0, 7], S) be the space of continuous functions frétn7’] to S, endowed
with the topology of uniform convergence. We writ&[0, 7)) for C([0,T],R). Fork € N we
defineC*(RR) as the space df times continuously differentiable functions &having compact
support, seC>®(R) = (),~, C*(R) and letC.(R) be the space of continuous functions &n
with compact support, all equipped with the topology of onifi convergence. For any ¢
[0,7] we letY;(t) < --- < Yy(t) be the ordered particle system such thdt) = X, ()
for some (random) permutation of {1,..., N} depending or. In addition, we introduce the
normalized version of the systeiy, ..., Xy given by R;(t) = X;(t) — Yan)(0),1 <i < N
for ¢t € [0,7] whereM(N) = 1+ Zif N is even andV/(N) = £ if N is odd. For any fixed
N € Nwe letR™) be the distribution ofs "V | 6z, as an element af/, (C([0, T, M, (R))).
In the statements on the seque®€’), N € N we assume without further mentioning thats
strictly decreasing and choose the initial condition of plagticles in such a way that,(0) —
Y1(0),...,Yn(0) — Yn_1(0)) is distributed according to the unique invariant distribatof the
processYs(t) —Yi(t),..., Yn(t)=Yn_1(t)), t € [0,T] (see Proposition 1 of [13] for its existence
and uniqueness). Finally, for eache M;(R) and f € C.(R) we write («, f) for [, f da and
define the operator

(Laf)(x) = f(z)u(Fa(z)) + %f”(l“)U(Fa(%))2 (1.4)

acting onf € C?(R) whereF, is the cumulative distribution function of.

Our main results can be now stated as follows.

Theorem 1.1 Let the functionu be continuously differentiable and such that there existera
stantw, > 0 with /(u) < —wy, for all u € [0,1] and let the functionr® be affine. Then the set
= = {RW), N e N} is relatively compact with respect to the topology of weahvetgence
on M, (C([0,T], M;(R))) and for any accumulation poirR> of = and any random variablg>
distributed according ta&R*° it holds

(). ) — (6(0), f) = / (6(5), Loy f) ds (15)

forall f € C3(R) andt € [0, T| almost surely.

Theorem 1.2 Suppose that the functiomsand o are twice continuously differentiable and such
that for every solutiorg of the system

Ve CER): (), f) — (£0), ) = / ((s), Leo f) ds, (1.6)
{(0) =\ (1.7)



in C([0,T], M,(R)) the measureg(t), t € [0,7] are absolutely continuous with respect to
the Lebesgue measure @&whenever the initial condition is absolutely continuous with re-
spect to the Lebesgue measurel®n Then the solution of the system {1.6), /(1.7) is unique in
C([0,T], My (R)) for each such initial condition. If, in addition, the funatis;. ando? are affine,
then the sequencB"Y), N € N converges weakly i/, (C ([0, T], M,(R))) to the Dirac prob-
ability measure whose atom is the unique solution of theesy$L.6), [L.7) inC ([0, T], M;(R))
with the corresponding initial condition being given in Puasition 3.1 below.

Remark 1.3. A careful reading of the proof shows that the statement ofofdra 1.1 is true
for any sequence of particle systems of the forml (I.1) predithatu is strictly decreasing and
that it holds

N
1
sup — E[|Y;(0) =Y, 0)|] < oo, 1.8
NEIIQIN; [1Y3(0) — Yar(wvy (0)]] (1.8)
1 N
o 1 o S _
lim lim sup - > P(|Y;(0) = Yi(0)| <€) =0 (1.9)

i,1=1

where for any fixedV € N the random vectofY2(0) —Y1(0), ..., Yx(0) —Yn_1(0)) is distributed
according to the unique invariant distribution of the pesi@’ (¢) — Y1 (¢), ..., Yn(t) — Yy_1(t)),

t € [0, 7). As we show below condition§ (1.8) anld (I.9) are satisfiedarrttie assumptions of
Theorem 1.1.

Remark 1.4. In the case that is twice continuously differentiable andis a constant function
one can deduce the following stochastic representaticarfarbitrary solutiog € C([0, T, M;(R))
of the system[(LI6),[(Tl7) whenever the initial conditionaissolutely continuous with respect to
the Lebesgue measure &n Letting W (t), ¢ € [0,7T] be a one-dimensional standard Brownian
motion on the time intervdD, 7] and X (¢), t € [0, 7] be a weak solution to

AX(£) = o Fe (X (1)) dt + 0(0) dW (1) (1.10)

on [0, 7] such that the law o (0) is given by£(0) one can proceed as in the proof of Theorem
1.2 below to conclude that for alle [0, 7' the measuré(¢) coincides with the law of the random
variableX (¢). Hence, a standard application of Girsanov’s Theorem shioais(¢) is absolutely
continuous with respect to the Lebesgue measuiefam all ¢ € [0, T']. Thus, Theorem 1.2 shows
that in this case the solution of the systéml (1.6} (I.7) i;jue inC([0, T'], M;(R)) whenever the
initial condition is absolutely continuous with respectiie Lebesgue measure &n If, in addi-
tion, the functiory is affine, then the law of large numbers of Theorem 1.2 hold#he particle

systems in[{L11).

Assume now that the functionsando are such that the law of large numbers of Theorem 1.2
applies. In the context of capital distributions in finamerearkets this means that if the logarith-
mic capitalizations of the firms in the market follow the dygmies in [I.1) and the number of the
firms is large, then the evolution of the empirical measjglrgfvz1 dr, ) Of normalized logarith-
mic capitalizations is approximately given by the uniquiuson of the system[(1)6)[(117) with
the initial condition of Proposition 3.1 below. Moreovdretevolution of the capitalization of the
j-th ranked firm or of theg highest (or lowest) ranked firms in the market can be apprataoh
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by the evolution of thé™=** quantile or theX, . .., Y= quantiles (or, . . ., £ quantiles) of
the solution of the systerh (1.6), (1.7) with the initlal ccmdn of Proposmon 3.1, respectively. In
addition, the proof of Theorem 1.2 shows that the cumulatistibution function of the probabil-
ity measurex 3"V | o, which describes the fraction of firms whose capitalizatiare below
a certain threshold, can be approximately described by tigue generalized solution to the
Cauchy problem for the generalized porous medium equatittnoenvection[(L.2) in the sense of
[10], with the initial condition being given by the cumulagidistribution function of the measure
A% in Proposition 3.1.

The rest of the paper is organized as follows. In section 2 we the proof of Theorem 1.1
which relies on a characterization of compact subse€s(@f, 7], M, (R)) obtained in([9], a char-
acterization of tight sequences of probability measure<’'¢if, 7]) as in [23] and results on
convergence of semimartingales in the spiritlof [14]. Inteec3 we determine the appropriate
initial condition for the limiting dynamics using Lindelggs Central Limit Theorem in Proposi-
tion 3.1 and present the proof of Theorem 1.2 subsequemntlthd latter we use a computation
similar to the one in section 1 df [15] together with the as&yof the Fokker-Planck equation in
[9] to demonstrate that under the limiting dynamics the clatiee distribution function evolves
according to the generalized porous medium equation withrexttion [I.2). Using the results of
[10] on the latter we obtain the uniqueness of solutionstferstystem (LI6)[{1]7) for any absolutely
continuous initial condition and as a consequence the ldargé numbers of Theorem 1.2.

2 Proof of Theorem 1.1

Before proving Theorem 1.1 we recall the results of [13] amitivariant distribution of the gap
procesgYs(t) — Yi(t),...,Yn(t) — Yn_1(t)), t € [0,T] for a fixedN € N. We remark that the
results of [13] are applicable here, since by subtracﬁr@fil M(%)t from X, (¢),..., Xn(t)

for all t € [0,T] and by reversing the order of the labels of the particles wet@nsform the
particle system in[(I]1) into an instance of the particletsys considered in [13]. It is shown
in Proposition 1 of [[18] that if is strictly decreasing, an invariant distribution existglas
unique. Moreover, if the function? is affine, then under the invariant distribution the joint/la
of Y5(0) — Y31(0),...,Yn(0) — Yy_1(0) is that of independent exponential random variables with
parameters

1 1 N '
a(N):éli(N—i)_Zzy 1”(%>_ =i 2= i+1l‘<%> l<i<N-1

7 . 2 ’
: (%) +o()
by Proposition 3 of [13]. If, in addition is as in Theorem 1.1, then a straightforward computation
using the inequalities(u) — ,u(#) > wo(% — u) for all u € [0, ﬁ] andu<§> — p(u) >
Wo (u - —) forall u € [ ] shows that

N
12] 1”(%) 1 Z] Z+1,LL<%> > Wo

] i > (11.11)
a(%) i 0<%> SUP,e(0,1) 0 ()2




foralll<:< N-1,N € N.

Proof of Theorem 1.11) By Prokhorov’s Theorem it suffices to prove that the seqa&d’"),
N € N is tight to show thaE is relatively compact. To this end, we fix an arbitrary- 0 and a
countable dense subsgfy, fo, . .. } of C.(R) contained inC?(R). From the proof of Lemma 1.3
in [9] we see that it is enough to find a compact &gtin M, (R) and compact set&;, K, ... in
C([0,T7]) such that for allV € N:

RWM{€ € C([0,T], Mi(R))|Vt € [0,T] : £(t) € Ko}) > 1 —¢, (1.12)
RM{¢ e C(0,T], MiR)|(E(), fr) €K }) >1—e-27", r>1.  (I.13)

To defineK, we introduce the functiop(z) = /1 + 22 and apply Ito’s formula to compute

A0, 0) = 3 3 & (R (Fyoy (Ri0)B(0)

1 N

9D (& R F g (RA6))) + 50" (R0)0 (Fy oy (Ru(0)? )

whereo™(t) = L Ef;l dr,1)- The boundedness qf, ¢”, 1 ando shows that there exists a
constant”; > 0 such that

S (R o (Ri(0) + 56 (R0 (Fyoy (RO)?) < 4

forallt € [0,7] andN € N. Moreover, for any fixedV € N the process

Z(t) = %Z/o @' (Ri(8))0(Fym(s)(Ri(s)))dBi(s), te€[0,T] (1.14)

is a continuous martingale. Applying Doob’s maximal indgydor non-negative continuous
submartingales and Jensen’s inequality we obtain fad all 0:

QM (sup (6™(1), ) > A+ CiT) < Q™ ( sup () +|Z(1)]) > A)

t€[0,T] t€[0,T)

1 1 3
< ZIEQ(N) [b(N)] + ZEQ(N) |:Z<T)2:| 2

whereb™) = (o™)(0), ¢). Provided that we can show tha®"" [v(™)] is bounded by a constant
independent ofV, we may employ the Ito isometry to find a constaht> 0 depending only on
T andsup,,(o 1 o (u) such that for allv € NandA > 0:

C
Q(N’( sup (oM (1), ) > A+ 01T> < Zz.

te[0,7 -
Hence, we can choosésuch that% < ¢ and let

Ko={a € Mi(R)| (a, ) < A+ C,T}. (1.15)
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As explained in the proof of Lemma 1.4 in [9] the compactndgb® setK, in M;(R) is a con-
sequence of Prokhorov's Theorem. It remains to showERAY’ [b™™)] is bounded by a constant
independent ofV'. It is clear from the definition 06(™) (0), N € N thatE?™’ [6(™)] is finite for
all N € N. Moreover, forN > 4 we can use(z) < 1 + |z| and inequality[(IL.Il) to compute

B2 5] = £ ST Blp((0) ~ Y O)] < 1+ 1 S EIVO) — Yar 0)]

2 SUDye(o,1] o(u) N
<l+—- ‘
N wo — ?; J(N =17)
Finally, the upper bound
M(N)—
Z Z N < log(N — 1) —log(N — M(N)) <log3

for all N > 4 shows that?"" [1(™)] is bounded by a constant independeniof

2) To prove the existence of set§, K, . .. with the desired properties it suffices to show that for
any fixedr € N the sequence of probability measure$)-/-, N € N on C([0,T]) induced by
RW), N € N through the mapping — (£(.), f,) is tight. To this end, we fix an € N and aim to
deduce the tightness of the sequeit&)/, N € N from Theorem 1.3.2 of [23]. To do this we
need to show

N)fr < p—
ggg$P (ly(0)<8) =1

and

VA >0: limlimsup P(N)’fr( sup ly(t) —y(s)| > A) =
el0 N 0<s<t<T t—s<e

The first assertion follows immediately by considerthg- sup, g | f-(x)|. To show the second

assertion we fix @\ > 0, defineZ(t),t € [0,T] as in step 1, but replacingby f, and redefine the

constant’; correspondingly. Using the?-version of Doob’s maximal inequality for non-negative

continuous submartingales we obtain for ech ¢ < CAI:

P(N)’fr( sup ly(t) —y(s)| > A) < Q(N)( sup |Z(t) — Z(s)] > A — C’1€>

0<s<t<T,t—s<e 0<s<t<T,t—s<e
T
[ Z]-1

<Y e sz - 209 2 S5

_ le<s<min((I+2)e,T) 2

RN

< (‘Tﬁ) £ [|Z(min((z +2)e,T)) — Z(le)|2]
0
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where |.| denotes the integer part of a positive real number. The timétry shows that the
latter expression is bounded By(2=41<)" - e with a constantC; > 0 depending only on
SUp,eg | f7(7)] @andsup,,¢jo 1 o(u). Taking Ilmlts we end up with the second assertion. We con-
clude that the sequen®™Y), N € N is tight.

3) To prove [L5) we letR> be the limit of a converging subsequerRé™s), k € N of the
sequenc&R™Y), N € N. Next, for eachk € N we let g!™+) be a random variable with distribu-
tion R+ andg™ be a random variable with distributidd*, all defined on the same probability
space and such that"*) —,_,.. 6> in C([0,T], M,(R)) almost surely. This is possible due to the
Skorohod Representation Theorem in the form of Theorenl &197]. Indeed, the metric space
C([0,T], M1 (R)) is separable, since the countable set of functions whosesalt0, %, %, |
belong to a fixed countable dense subsetf{R) and which interpolate linearly on the intervals

[0, l},..., [3];1, 1} foraj € Nis dense irC([0, T], M, (R)).

J

From the dynamics computed in step 1 we observe that for kachN and f € C3(R) the
procesgo™v(t), f), t € [0, T] is a semimartingale in the sense of definition I1.2.6in [14wits
characteristics being given by

/ /f FN(Nk)(S ( )) + %f”(x>a(F§<Nk)(s)($))2 @I(Nk)(s)(d:(]) ds,
Nk/ / (@0 (Fyom s (2))? 8% (s) (dx) ds

which we denote by3™"¥) (1) andC™+) (t), respectively. We claim that in order to establishi(l.5)
it suffices to show that for any € C3(R) we have

sup ’B(N’“)(t) — /t(éoo(s),Lgm(s)f) ds| 50, (I.16)
te[0,7] 0
E[C™M)(T)] =400 0 (11.17)

where denotes the convergence in probability. Indeed, the secondergence together with
the L2-version of Doob’s maximal inequality for non-negative tinnous submartingales would

imply

sup |8 (1), f) = (@9(0), £) = B (1)] & 0. (11.18)

te[0,7)

Hence, from the first convergence we would be able to concheate

sup )(@W’“’(t),f)—(@W’“)(O),f)— /O (°(5), L (s) f ds] 0. (1.19)

t€[0,T]

By a diagonalization argument relying on the separabilfty’®(R), endowed with the topology
of uniform convergence of functions and their first and secderivatives, we would be able to
find a subsequence df;, k£ € N such that the latter convergence holds forfalf C?(R) in the
almost sure sense. But sin@@"*)(t), f) — (d™9(0), f) — [5(2(s), Lg=(s)f) ds converges to
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(0%(t), f) — — JJ(3(5), Lgw(s) f) ds in the limit k — oo for all f € C3(R) and
t€0,7] almost surely we would obtain equatién{l.5).

4) We now show the two claimed convergence results. The cgermee in[(IL1V) is a direct
consequence of the boundednesg’odndo. To prove the convergence in (IJ16) we introduce
for anye > 0 andx € R a Lipschitz functionf; such that

1(700,175] < f;i < 1(700,:13} (“20)

and f:, is a translate of: by 2’ — x for anyz, 2’ € R ande > 0. Moreover, for any probability
measurex onR we setFs(z) = (a, f5). We noteBN#) (¢) = fg(é(Nk)(s),L5<Nk>(s)f) ds for all
t € [0,T] andk € N and deduce from the triangle inequality that

¢

sup ‘/ L"'(Nk)(s f) ds _/ (EW(S)?ng(S)f) dS‘

t€[0,T] 0

< sup ’/ MOFA«(N;C)(S))) — (0™(s), f(NOF~ )) ds
t€[0,T]

+ sup ’/ O'OFA(N;C)(S))Q) — (0™(s), 2 (00 Foe ) ) ds
t€[0,T]

whereo denotes the composition of functions. We claim that thefatvo terms converge to zero
in probability. Since the proof of this claim is identicalfiooth terms, we only carry it out for the
first (drift) term. To this end, we fix an > 0 and ak € N and observe

sup | @060, 10 Fynago)) = (705, £ Fieio))

t€[0,T)

< / @ (s), (10 Fyoo) = (@) (s5), (1 0 Flmpr )] ds

s | / (@9(5), £/(110 Fiony)) = @), £/ (110 Foui)) ds|
b 1@ 6051000 o)) = @), S0 Fomio))

We call the summands on the right-hand side (1), (II) and.(NVe will bound the three terms
consecutively.

Denoting byY "(t) < --- < Y} (t) the ordered particles of the normalized syst@ft¥), . . ., Ry, (t)
for any timet € [0, T] we can bound term (1) from above by

o[ NkZ 1< 5 <l ¥(s) € (5(s) — =, Y)Y ds

where the constaidt, is the product ofup, c | /()| andsup,c (1) [#'(u)|. By Fubini’s Theorem
and the defining property of the initial condition (see theagaaph preceeding Theorem 1.1) it
follows that the expectation of (I) is bounded above%%2 S S P(Yi(0) = Y;(0) < €). To

9



bound this expression further we first choos€sa> 0 such thauEN) < ;N forall N € Nand
1 <i < N — 1. Thisis possible due to the obvious bourffl < %=1 . ZPucio) ‘“u)Q which

lnfue[o 1] o(
holds for allN € Nandl < ¢ < N — 1. Next, for any fixedt € Nwe letE,,..., Ey,_1 be
Ii.d. exponential random variables with paraméteiV,, and P be a Poisson random variable with

parameter’s Nye. Then from the scaling property of exponential random \deswe deduce

C4TZZP )g@g%ZZP(EJ—+---+E¢_1S€)
ko=

i=1 j=1

Zip (P>i—j)< %(1+E[P]) :%(1+C5Nke>.

=1 j=1

Allin all, we conclude that

T
imsup B | [ 1@, 00 Fynag)) = (@), 010 P ] ]

k—o0

is bounded above by, C5T«.

Term (Il) can be estimated from above by

sup | [ @60, 00 Fiy)) = (06). S0 Fevi) s
t€[0,T]
- ’/ P10 Fi) = (B(5), (10 Fiugy)) ds|
t€[0,7)

Now, recalling the definition of’, we bound the first summand from above by

t
Cy sup / sup\FL(Nk)( )( T) — (s (@)] ds. (1.22)
0

t€[0,T) z€R

Since for eachr € R the functionf; is Lipschitz with the Lipschitz constant being independent
of z and the convergena& ™) (s), 5°(s)) —k-0e 0 is uniform in s, the expression i (IL21)
tends to zero almost surely in the limkit— co. Moreover, for anyz, 2’ € R it holds

[P () () = Fe o @] < sup | £5(y) = Sy — 2+ ) < Lip(fg) - | — 21|
Yy

Hence, the uniformity i of the convergenceé(oV+) (s), 6°(s)) —k— 0 implies that the second
summand in the bound on term (1) tends to zero almost suretige limit 4 — oo. Thus, from
the Dominated Convergence Theorem we deduce that the exijpecdf term (Il) converges to
zero in the limitk — oo.

Due to the inequality

10



for all x € R the expectation of term (lll) can be bounded above by

C,E U/R (T 1 €) = Fogy ()3 (s)(d) ds

Moreover, applying the triangle inequality as in the probtle upper bound on term (ll) one
shows that with probability the integrand in thes-integral is the limit of the corresponding
objects withg> replaced byo!™+). Indeed, the difference between the two is bounded above in
absolute value by(Lip(f5) + 1) - d(a™V)(s), 3°(s)). We conclude from Fatou’s Lemma that the
expectation of term (1) is bounded above by

c4hmme[/ /FW)( (0 4+ &) = Fy ) (@)8)(s) (do) ds}

Bounding the integrand in thés-integral in the same way as in the corresponding estimate on
term (1) one obtains the upper bound

Cyliminf E
k—o0

/ N, Z {1 <j<Ni| [YA(s) = Y(s)| < 5}‘ d5] ,

Finally, proceeding as in the upper bound on term (I) we dedhat the expectation of term (llI)
is bounded above BC,C5Tx.

All in all, we have shown that

limsup E

k—00

sup ’/ MOF~<NM())) (@m(s)af,(MOFEW(S)))db“’]

t€[0,T

is bounded above by'se with Cs = 3C,C5T. By taking the limite | 0 we deduce that the
term inside the latter expectation tends to zerd.irin the limit & — oo and so, in particular, it
converges to zero in probability. O

3 Proof of Theorem 1.2

To be ready to prove Theorem 1.2 we show next that the init@bability measure (0) is the
same under each accumulation pdRit of the set= provided that the functiong ando? are
affine.

Proposition 3.1 Let the functiong: and o2 be affine, so that?(u) = cu + d for some constants
¢,d € R. Then for any choice dR* as in Theorem 1.1 the distribution of the initial probalyilit
measuré (0) underR> is a Dirac probability measure. Moreover, the atom of thedats given
by the unique\>* € M, (R) whose quantileg>(u), u € (0, 1) are given by

C(u) = c+d 0 d og(2u
q>(u) |u (O)\l g(2 —2u) + |u’(0)|1 g(2u). (11.23)

In particular, A> is absolutely continuous with respect to the Lebesgue measiR.
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Proof. 1) For eachV € Nletq¢™)(u), u € (0, 1) be the (random) quantiles of the initial probability
measure (0) underR™). Then for any fixedt < u < 1 it holds

[uN]—1
¢M(w)= Y (Yia(0) — Yi(0))
i=M(N)
[uN]—1 ' (V)
1(0) = Y:(0 m
Ez M(N( +1() ()) -\/Wer
vV)
forall N € Nsuch thafuN] —1 > M(N) where
[uN]—1 1 [uN]—1 1
(N) — = ) —
m®) = o V= > P (111.24)
t=M(N) % i=M(N) \""

and[x] denotes the smallest integer greater or equalfiar anyx € R. Using the definition of

(M) 1<i<N-1,N e Nandthe assumption thatis affine we see that for ar§/< u<1
there exist constants, (u), wo(u) > 0 such thatv; (u) N < al(.N) < wo(u)N forall M(N) <i <
[uN|] — 1, N € N. From this and Lindeberg’s Central Limit Theorem we dedut for any
fixed 7 < u < 1it holds

lim ¢™(u) = lim m® (111.25)

N—oo N—oo

in distribution, provided that the latter limit exists. ked, we can check Lindeberg’s condition
Yiy1(0)-Yi(0)~
for the triangular array——— il M(N) < i < [uN] =1, N € N as follows: for any

e > 0andanyN € NsuchthafuN] — 1> M(N) we have the estimates

;e 1 \2
- > E[(ml(O) —Yi(0) - W) @10y 2V
i=M(N) i "
1 [uNT—1 1 )
— o) (N)ya E[Gi’N . 1|Gi,N|2€VU<N)a5N)]
i (@)

|:GM(N ]‘|G’]M(N)’N‘28LU3(U)\/N]

where we have sa¥; v = (Vi1(0) — Y;(0))a™ — 1 for M(N) < i < [uN] -1, N € N
andws(u) > 0 is a constant such thatv™a\") > w;(u)V/N for all M(N) < i < [uN] — 1
and N € N. The latter expectation tends to zero in the lilNit— oo, since the random vari-
ableG vy, v + 1 is distributed according to the exponential distributiathvparametet for all
N > 3. Hence, Lindeberg’s condition is satisfied.
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2) Now, plugging in the definition o[iEN) for M(N) <i < [uN] —1andN € N we calculate

[uN]-1 citc/2
N —=+d
A}im mW) :]\}im Z N ) N, 0
& T 2o AN D) )
[uNT-1 [uN]-1
c 1 d 1 1
— . lim -+ - lim <—, + )
[ O) Mi%} N—i )] N%i% it N
! (c+d1 (N—M(N)>+ d ) ( ulN ))
= lim og og )
N=voo \ |1t/(0)] N —uN |1/ (0)] M(N)

Recalling that} < M (N) < & + 1 we can compute the last limit to

B c+d d
|1/ (0)] |1/ (0)]

An analogous application of Lindeberg’s Central Limit Therm and similar calculations to the
ones above show for the case: u < 1:

log(2 — 2u) +

log(2u).

lim ¢"(u) = — lim N __cetdy (2 —2u) +
S IO

d
o)) o)

in distribution.

3) If R is as in Theorem 1.1, then the Skorohod Representation &mer the form of The-
orem 3.5.1 in[|¥7] shows that we can find an increasing sequdihcé € N of natural numbers
and random variableg™¥*) (0), k € N andg™(0) defined on the same probability space such that
for eachk € N the distribution of the random variabf&"+)(0) is given by the law of (0) under
RN, 5°(0) is distributed according to the law ¢f0) underR> and g™¥)(0) —;_0c 0™(0)
weakly with probabilityl. It follows that the quantile functions @*)(0) converge in the limit

k — oo to the quantile function 0> (0) at all continuity points of the latter almost surely (see
e.g. the proof of Theorem 2.2.2 in/[8]). By Fubini’s Theorera wbtain that the:-quantile of
o™V (0) converges to the-quantile ofg>(0) almost surely in the limit: — oo for Lebesgue
almost everyu € (0, 1) and, in particular, for all: in a countable dense subset(6f1). Due to
the monotonicity of quantile functions and the computationsteps 1 and 2 the quantile function
of ¢>(0) has to coincide witly> (defined in the statement of the proposition) with probapili
1. Hence, the distribution a3*°(0), which is the same as the law §f0) underR>, is given by
the Dirac probability measure described in the propositieinally, the probability measurg™

is absolutely continuous with respect to the Lebesgue measiR, because its quantile function
g* is continuously differentiable and strictly increasing(onl). O

Combining the ideas of [9] and [15] with a result in [10] we aaow prove Theorem 1.2. In
the proof we use the following notations. For a measurabsett of a Euclidean space we
write LP(S) and||.||»(s) for the space of functiong : S — R such that f|” is integrable with
respect to the restriction of the Lebesgue measure aod the correspondinf?-norm, respec-
tively, wherep is a real number ifil, 00). In addition, for any real-valued random variableve
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denote byZ(Y) the law ofY".

Proof of Theorem 1.2.1) It suffices to prove that the initial value problem{1.6].7} has at
most one solution irC'([0, 7], M, (R)) for each initial condition which is absolutely continuous
with respect to the Lebesgue measureRgrsince then the law of large numbers follows from
Theorem 1.1 and Proposition 3.1. To achieve the former werfiatssolutely continuous initial
condition, letv;, i € {1, 2} be two solutions ofl(LI6) [{117) i ([0, T], M;(R)) with this initial
condition and will prove; = v». We show first that foi € {1,2} the measures;(¢), ¢t € [0, 7]
are given by one-dimensional distributions of solutiongppropriate martingale problems. To
this end, fori € {1,2} we defineZ;(t), t € [0,T] as the respective unique (in law) solutions of
the martingale problems associated with the families ofafpesL,,, t € [0, 7] such that for
any f € C>*(R) the processes

F(Z:(0)) — F(Z:(0)) - / (Lo D) Zi(s)) ds, ¢ € [0.7],

i € {1,2} are martingales and(7,(0)) = L£(Z»(0)) = X. Due to Exercise 7.3.3 in_[23] the
processe(t),t € [0,7] andZy(t),t € [0,T] are well-defined and (Z,(.)) € C([0,T], M1 (R))
fori € {1,2}. We claim thatv;(.) = L£(Z;(.)) for : € {1,2}. To prove the claim we fix an
i € {1,2}. By their respective definitions(¢), ¢t € [0,7] andL(Z;(t)), t € [0, T] solve the initial
value problem for the Fokker-Planck equation

VIECE®): (E0.1)- (0. = | () L) ds, (11.26)
£(0) = A (11.27)

on [0, T]. We show now that the latter has a unique solutio6'{f0, 7], M, (R)). To this end, we
observe that the operat® = % + Ly, is continuous as an operator from the Sobolev space
W22(0,T] x [—r,r]) (the space functions iB?([0, T] x [—r,r]) whose generalized first time
derivative and generalized first two spatial derivativeobg to L*([0, 7] x [—r,r]), endowed
with the usual Sobolev norm) inte?([0, 7] x [—r,r]) for anyp > 1 and anyr > 0. This is due
to the boundedness pfando. Moreover, following the steps in the proof of Theorem A.19h
we obtain for any > 3 andr > 0:

T

/OT (). <;+Lm(t)>f> dtZ/O (£, (;+Lw(t)f) dt  (1.28)

forall f € Wy *P([0,T] x [—r,r]) (the space of functions i’ 12?([0, T] x [—r, r]) vanishing on
([0,T] x {=r,r})U({T} x [—-r,r])) such thatR f > 0 Lebesgue almost everywhere. Hereby, we
have used the conventi¢®; + L, ) f = 0 on the complement db, 7] x [—r, 7] in [0, 7] x R. By
Theorem 9.1 in chapter IV of [17] the image of the just desatibunctions undeR is given by

L¥ ([0, T] x [—r,r]), the set of functions il?(]0, T] x [—r,r]) which are non-negative Lebesgue
almost everywhere. Indeed, from Proposition 3.1 and thenagson of the theorem we conclude
that for everyt € [0, 7] the measure;(t) is absolutely continuous with respect to the Lebesgue
measure ofR. Thus, the functiortt, ) — o(F,, (x)) is continuous and Theorem 9.1 in chapter
IV of [L7] is applicable. Since > 0 was arbitrary, we deduce from the Monotone Convergence
Theorem that

// o (s) 1i(s)(de) ds>// o (s) £(Zi(s))(da) ds



for all non-negative continuous bounded functignen R and allt € [0,7]. Using the same
inequality with (sup,r g(x)) — g instead ofg we infer that equality must hold in the latter in-
equality. Differentiating the resulting identity with @sct tot we see that;(t) = L£(Z;(t)) for
allt [0, 7).

2) To finish the proof we aim to apply Theorem 4/0f|[10]. Approgiting the functiong;(z) = «
and f»(z) = 2* by functions inC2>°*(R) coinciding with f;, f, on [— A, A] for increasing values of
A e Nand applying Proposition 4.6 in chapter 5[of|[16] we concltit there exist probability
spaces on which processes of the same law,aand 7, (which we will also denote by/; and
Z5) are defined such that

dZ;(t) = p(Fo,)(Zi(1))) dt + o (F,1)(Zi(t))) dWi(t), t €[0T (11.29)

holds fori € {1,2} and appropriate standard Brownian motid#ig W,. Next, we fix arbitrary
numbersz; < z, in R and#; < ¢, in [0,7] and introduce the functiofi(t,z) = [~ ¥(t,y) dy
on [t1, ts] x R where is an arbitrary continuous function dfy, t;] x R which is continuously
differentiable in both variables with(., z) = %(.,x) = 0 whenever: ¢ (x1,z2). Applying Ito’s
formula tof (¢, Z;(t)) and taking the expectation we obtain

(vi(t2), f(t2,.)) — (vi(ta), f(t1,-))
= [ (50 G )+ S DB () + 555 0 o P ()

fori € {1,2}. Recalling thav,; andv, are solutions of the Fokker-Planck equations in step 1 and
following the proof of Lemma A.2 in [9] we conclude that theifenmeasures corresponding to the
functionalsh — fOT Jg h(t, ) vi(t)(dx) dt, h — fOT Jz h(t, z) vo(t)(dx) dt acting on continuous
bounded functions of), 7] x R are absolutely continuous with respect to the Lebesgueureas
on [0,7] x R. Moreover, the proof of Lemma A.2 inl[9] shows that the copeeding density
functionsk;, k, on [0,7] x R are locally square integrable. Setting(t,z) = F,,«) () for

t €10, 7],z € R,i € {1,2} and applying integration by parts with respect to the spasiaable

in the last equation (recalling from step 1 that the measuigs, ¢t € [0,7], i € {1,2} are
absolutely continuous with respect to the Lebesgue measuRd we see that for € {1,2} it
holds

/Q/J to, T)w;(ta, x dx—/z/; t1, v)w;(ty, x) dx

/lt1 / (,% (t, z)w;(t, x) + g—i}(t x)@(wi(t,x))> dr dt

/tZ/ "w;(t, z))ki(t, x) de dt

which we will call equation (*). Hereby9 andX are the antiderivatives gfando?, respectively,
for which©(0) = ¥(0) = 0. Next, we note that for any € N and any continuous function
[ﬁ . [t1,te] xR — R which is supported o = [t;, t5] x [z, 25] @and is continuously differentiable
in ¢t and twice continuously differentiable inon D we can find a function,, of the same type as
the functiony in equation (*) such thap,, —,, .., ¥ uniformly on D and

| W O 0, O

L2(D) H ot L2(D) H Oz IlL2(D)

¢n_¢ !

n
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This can be achieved by modifyin@on small neighborhoods of

([t ta] x {z1}) U ([tr, 2] x {z2})

in D. Thus, an approximation argument together with the Caittywarz inequality shows that
equation (*) holds for all functions of the described type and amy {1, 2}. Choosingk; such
that for eacht € [0, 7] the functionk; (¢, .) is a density function of the probability measurét)
for i € {1,2} and applying integration by parts to the last term in equafi) we see thatu;,

i € {1,2} are generalized solutions of the Cauchy problem for the rg¢imed porous medium
equation with non-linearity> and convection-0 in the sense of Definition 4 in [10]. From
Theorem 4 in[[10] we deduce; = w, by noting that:, ando can be easily extended to the whole
of R, without violating Hypothesis 1 of[10]. Hence,(t) = 1»(t) for all ¢ € [0, T| as desired]
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