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LARGE SYSTEMS OF DIFFUSIONS INTERACTING THROUGH THEIR RANKS
∗

BY M. SHKOLNIKOV

Stanford University

Abstract

We study the limiting behaviour of the empirical measure of asystem of diffusions in-
teracting through their ranks when the number of diffusionstends to infinity. We prove that
the limiting dynamics is given by a McKean-Vlasov evolutionequation. Moreover, we show
that in a wide range of cases the evolution of the cumulative distribution function under the
limiting dynamics is governed by the generalized porous medium equation with convection.
The uniqueness theory for the latter is used to establish theuniqueness of solutions of the lim-
iting McKean-Vlasov equation and the law of large numbers for the corresponding systems
of interacting diffusions. The implications of the resultsfor rank-based models of capital
distributions in financial markets are also explained.

1 Introduction

The present article studies the behaviour of the weak solutions to the systems of stochastic differ-
ential equations

dXi(t) = µ(Fγ(t)(Xi(t))) dt+ σ(Fγ(t)(Xi(t))) dBi(t), 1 ≤ i ≤ N (I.1)

on an interval[0, T ] in the limit N → ∞. Hereby,γ(t) = 1
N

∑N
i=1 δXi(t) is the empirical mea-

sure of the particle systemX1(t), . . . , XN(t) at timet, Fγ(t) is its cumulative distribution func-
tion, µ andσ are measurable functions on[0, 1] taking values inR and(0,∞), respectively, and
B1, . . . , BN are i.i.d. standard Brownian motions. Informally, at any time t the drift and dif-
fusion coefficients of a fixed particlei are determined by its rank in the particle configuration
X1(t), . . . , XN(t) at timet, so that whenever a particle changes its rank, the coefficients change
accordingly. The existence and uniqueness of a weak solution to (I.1) for anyN ∈ N was pointed
out in [3] and is essentially due to the results in [2], makingthis description rigorous. For each
N ∈ N we fix such a weak solution and denote byQ(N) the probability measure on the space on
which it is defined.
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Viewing (I.1) as an equation for the evolution of the empirical measureγ(t) of the particle system
on [0, T ] we prove that under suitable assumptions onµ, σ and the initial positions of the particles
the limiting evolution is governed by a McKean-Vlasov evolution equation. Moreover, in the case
that the measure in the limiting dynamics is absolutely continuous with respect to the Lebesgue
measure onR at any timet ∈ [0, T ] we show that the cumulative distribution function of the
system evolves according to the generalized porous medium equation with convection:

∂w

∂t
=

d2

dx2
Σ(w)− d

dx
Θ(w) (I.2)

whereΣ andΘ are the antiderivatives of1
2
σ2 andµ, respectively, withΣ(0) = Θ(0) = 0. For

different values ofΣ andΘ the equation (I.2) describes various physical phenomena such as
infiltration of water into a porous medium or evaporation of water from soil (see [25] and the
references there). Our law of large numbers for the particlesystems in (I.1) shows that the latter
can be used to obtain numerical approximations of a continuous [0, 1]-valued weak solution of
the generalized porous medium equation with convection (I.2) provided thatΣ, Θ and the initial
condition satisfy the assumptions of Theorem 1.2 below. We conjecture that the same is true un-
der more general circumstances and, in particular, for any initial condition which is a cumulative
distribution function of a probability measure. This so-called particle method for numerical ap-
proximation of solutions of partial differential equations was successfully applied before for the
Burgers equation (see [4]) and the classical McKean-Vlasovequation as in [18] (see [5]).

The system of diffusions in (I.1) and related evolutions of particle systems were studied recently
for fixed values ofN ∈ N and in some cases forN = ∞. They are relevant in the study of capital
distributions in financial markets (see e.g. [3], [19], [6],[13] and [22]) and in their discrete time
version in the analysis of the Sherrington-Kirkpatrick model of spin glasses (see e.g. [20], [1],
[21]). They are also closely related to reflected Brownian motions (see [13] for the connection)
which are widely used as heavy traffic approximations of queueing networks (see e.g. [11], [12],
[24], [26]).

In the context of capital distributions in financial marketsthe processesX1, . . . , XN stand for
logarithmic capitalizations of the firms participating in the market. So, our analysis of the limit
N → ∞ of the described systems gives an understanding of the behaviour of the whole market
under the assumption that the number of firms operating in that market is large. It also allows to
approximate the evolution of the (logarithmic) capitalization of thej-th ranked firm or of thej
highest (or lowest) ranked firms in the market for a fixed1 ≤ j ≤ N under the assumption that
the number of firms in the market is large.

Following McKean’s seminal work [18] systems of diffusing particles in which the drift and dif-
fusion coefficients of each particle are functions of the empirical measure of the whole system
and the position of the particle were studied extensively inthe context of particle systems with
mean field interaction. A good summary of the developments inthis direction is given in [9].
However, in [9] and the references therein the drift and diffusion coefficients are assumed to be
continuous in the position of the particle and in the empirical measure of the system (with respect
to the topology of weak convergence on the space of probability measures). This was justified by
the continuity of potentials and interaction terms appearing in models of statistical mechanics. In
contrast to this, the coefficients in (I.1) are discontinuous both in the empirical measureγ(t) and

2



the position of the particleXi(t) which necessitates a more delicate analysis.

To state the main results of the paper we use the following setof notations. For any separable
metric spaceS we denote byM1(S) the space of probability measures onS endowed with the
metric

d(α, α′) = sup
z: ‖z‖∞+Lip(z)≤1

∣∣∣
∫

S

z(x) α(dx)−
∫

S

z(x) α′(dx)
∣∣∣ (I.3)

where‖z‖∞ andLip(z) denotesupx∈S |z(x)| and the Lipschitz constant of a functionz : S →
R, respectively. It is well-known thatd metrizes the topology of weak convergence onM1(S).
Moreover, we letC([0, T ], S) be the space of continuous functions from[0, T ] to S, endowed
with the topology of uniform convergence. We writeC([0, T ]) for C([0, T ],R). For k ∈ N we
defineCk

c (R) as the space ofk times continuously differentiable functions onR having compact
support, setC∞

c (R) =
⋂
k≥1C

k
c (R) and letCc(R) be the space of continuous functions onR

with compact support, all equipped with the topology of uniform convergence. For anyt ∈
[0, T ] we let Y1(t) ≤ · · · ≤ YN(t) be the ordered particle system such thatYi(t) = Xπt(i)(t)
for some (random) permutationπt of {1, . . . , N} depending ont. In addition, we introduce the
normalized version of the systemX1, . . . , XN given byRi(t) = Xi(t) − YM(N)(0), 1 ≤ i ≤ N
for t ∈ [0, T ] whereM(N) = 1 + N

2
if N is even andM(N) = N+1

2
if N is odd. For any fixed

N ∈ N we letR(N) be the distribution of1
N

∑N
i=1 δRi(.) as an element ofM1(C([0, T ],M1(R))).

In the statements on the sequenceR(N), N ∈ N we assume without further mentioning thatµ is
strictly decreasing and choose the initial condition of theparticles in such a way that(Y2(0) −
Y1(0), . . . , YN(0) − YN−1(0)) is distributed according to the unique invariant distribution of the
process(Y2(t)−Y1(t), . . . , YN(t)−YN−1(t)), t ∈ [0, T ] (see Proposition 1 of [13] for its existence
and uniqueness). Finally, for eachα ∈ M1(R) andf ∈ Cc(R) we write (α, f) for

∫
R
f dα and

define the operator

(Lαf)(x) = f ′(x)µ(Fα(x)) +
1

2
f ′′(x)σ(Fα(x))

2 (I.4)

acting onf ∈ C2
c (R) whereFα is the cumulative distribution function ofα.

Our main results can be now stated as follows.

Theorem 1.1 Let the functionµ be continuously differentiable and such that there exists acon-
stantω0 > 0 with µ′(u) ≤ −ω0 for all u ∈ [0, 1] and let the functionσ2 be affine. Then the set
Ξ = {R(N), N ∈ N} is relatively compact with respect to the topology of weak convergence
onM1(C([0, T ],M1(R))) and for any accumulation pointR∞ of Ξ and any random variable̺∞

distributed according toR∞ it holds

(̺∞(t), f)− (̺∞(0), f) =

∫ t

0

(̺∞(s), L̺∞(s)f) ds (I.5)

for all f ∈ C3
c (R) andt ∈ [0, T ] almost surely.

Theorem 1.2 Suppose that the functionsµ andσ are twice continuously differentiable and such
that for every solutionξ of the system

∀f ∈ C∞
c (R) : (ξ(t), f)− (ξ(0), f) =

∫ t

0

(ξ(s), Lξ(s)f) ds, (I.6)

ξ(0) = λ (I.7)
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in C([0, T ],M1(R)) the measuresξ(t), t ∈ [0, T ] are absolutely continuous with respect to
the Lebesgue measure onR whenever the initial conditionλ is absolutely continuous with re-
spect to the Lebesgue measure onR. Then the solution of the system (I.6), (I.7) is unique in
C([0, T ],M1(R)) for each such initial condition. If, in addition, the functionsµ andσ2 are affine,
then the sequenceR(N), N ∈ N converges weakly inM1(C([0, T ],M1(R))) to the Dirac prob-
ability measure whose atom is the unique solution of the system (I.6), (I.7) inC([0, T ],M1(R))
with the corresponding initial condition being given in Proposition 3.1 below.

Remark 1.3. A careful reading of the proof shows that the statement of Theorem 1.1 is true
for any sequence of particle systems of the form (I.1) provided thatµ is strictly decreasing and
that it holds

sup
N∈N

1

N

N∑

i=1

E[|Yi(0)− YM(N)(0)|] <∞, (I.8)

lim
ε↓0

lim sup
N→∞

1

N2

N∑

i,l=1

P(|Yi(0)− Yl(0)| ≤ ε) = 0 (I.9)

where for any fixedN ∈ N the random vector(Y2(0)−Y1(0), . . . , YN(0)−YN−1(0)) is distributed
according to the unique invariant distribution of the process(Y2(t)−Y1(t), . . . , YN(t)−YN−1(t)),
t ∈ [0, T ]. As we show below conditions (I.8) and (I.9) are satisfied under the assumptions of
Theorem 1.1.

Remark 1.4. In the case thatµ is twice continuously differentiable andσ is a constant function
one can deduce the following stochastic representation foran arbitrary solutionξ ∈ C([0, T ],M1(R))
of the system (I.6), (I.7) whenever the initial condition isabsolutely continuous with respect to
the Lebesgue measure onR. LettingW (t), t ∈ [0, T ] be a one-dimensional standard Brownian
motion on the time interval[0, T ] andX(t), t ∈ [0, T ] be a weak solution to

dX(t) = µ(Fξ(t)(X(t))) dt+ σ(0) dW (t) (I.10)

on [0, T ] such that the law ofX(0) is given byξ(0) one can proceed as in the proof of Theorem
1.2 below to conclude that for allt ∈ [0, T ] the measureξ(t) coincides with the law of the random
variableX(t). Hence, a standard application of Girsanov’s Theorem showsthatξ(t) is absolutely
continuous with respect to the Lebesgue measure onR for all t ∈ [0, T ]. Thus, Theorem 1.2 shows
that in this case the solution of the system (I.6), (I.7) is unique inC([0, T ],M1(R)) whenever the
initial condition is absolutely continuous with respect tothe Lebesgue measure onR. If, in addi-
tion, the functionµ is affine, then the law of large numbers of Theorem 1.2 holds for the particle
systems in (I.1).

Assume now that the functionsµ andσ are such that the law of large numbers of Theorem 1.2
applies. In the context of capital distributions in financial markets this means that if the logarith-
mic capitalizations of the firms in the market follow the dynamics in (I.1) and the number of the
firms is large, then the evolution of the empirical measure1

N

∑N
i=1 δRi(t) of normalized logarith-

mic capitalizations is approximately given by the unique solution of the system (I.6), (I.7) with
the initial condition of Proposition 3.1 below. Moreover, the evolution of the capitalization of the
j-th ranked firm or of thej highest (or lowest) ranked firms in the market can be approximated
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by the evolution of theN−j+1
N

quantile or theN
N
, . . . , N−j+1

N
quantiles (or1

N
, . . . , j

N
quantiles) of

the solution of the system (I.6), (I.7) with the initial condition of Proposition 3.1, respectively. In
addition, the proof of Theorem 1.2 shows that the cumulativedistribution function of the probabil-
ity measure1

N

∑N
i=1 δRi(t), which describes the fraction of firms whose capitalizations are below

a certain threshold, can be approximately described by the unique generalized solution to the
Cauchy problem for the generalized porous medium equation with convection (I.2) in the sense of
[10], with the initial condition being given by the cumulative distribution function of the measure
λ∞ in Proposition 3.1.

The rest of the paper is organized as follows. In section 2 we give the proof of Theorem 1.1
which relies on a characterization of compact subsets ofC([0, T ],M1(R)) obtained in [9], a char-
acterization of tight sequences of probability measures onC([0, T ]) as in [23] and results on
convergence of semimartingales in the spirit of [14]. In section 3 we determine the appropriate
initial condition for the limiting dynamics using Lindeberg’s Central Limit Theorem in Proposi-
tion 3.1 and present the proof of Theorem 1.2 subsequently. In the latter we use a computation
similar to the one in section 1 of [15] together with the analysis of the Fokker-Planck equation in
[9] to demonstrate that under the limiting dynamics the cumulative distribution function evolves
according to the generalized porous medium equation with convection (I.2). Using the results of
[10] on the latter we obtain the uniqueness of solutions for the system (I.6), (I.7) for any absolutely
continuous initial condition and as a consequence the law oflarge numbers of Theorem 1.2.

2 Proof of Theorem 1.1

Before proving Theorem 1.1 we recall the results of [13] on the invariant distribution of the gap
process(Y2(t) − Y1(t), . . . , YN(t) − YN−1(t)), t ∈ [0, T ] for a fixedN ∈ N. We remark that the

results of [13] are applicable here, since by subtracting1
N

∑N
i=1 µ

(
i
N

)
t from X1(t), . . . , XN(t)

for all t ∈ [0, T ] and by reversing the order of the labels of the particles we can transform the
particle system in (I.1) into an instance of the particle systems considered in [13]. It is shown
in Proposition 1 of [13] that ifµ is strictly decreasing, an invariant distribution exists and is
unique. Moreover, if the functionσ2 is affine, then under the invariant distribution the joint law
of Y2(0)− Y1(0), . . . , YN(0)− YN−1(0) is that of independent exponential random variables with
parameters

a
(N)
i =

4i(N − i)

N
·

1
i

∑i
j=1 µ

(
j
N

)
− 1

N−i
∑N

j=i+1 µ
(
j
N

)

σ
(
i
N

)2

+ σ
(
i+1
N

)2 , 1 ≤ i ≤ N − 1

by Proposition 3 of [13]. If, in addition,µ is as in Theorem 1.1, then a straightforward computation

using the inequalitiesµ(u) − µ
(
i
N

)
≥ ω0

(
i
N

− u
)

for all u ∈
[
0, i

N

]
andµ

(
i
N

)
− µ(u) ≥

ω0

(
u− i

N

)
for all u ∈

[
i
N
, 1
]

shows that

4 ·
1
i

∑i
j=1 µ

(
j
N

)
− 1

N−i
∑N

j=i+1 µ
(
j
N

)

σ
(
i
N

)2

+ σ
(
i+1
N

)2 ≥ ω0

supu∈[0,1] σ(u)
2

(II.11)
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for all 1 ≤ i ≤ N − 1,N ∈ N.

Proof of Theorem 1.1.1) By Prokhorov’s Theorem it suffices to prove that the sequenceR(N),
N ∈ N is tight to show thatΞ is relatively compact. To this end, we fix an arbitraryε > 0 and a
countable dense subset{f1, f2, . . . } of Cc(R) contained inC2

c (R). From the proof of Lemma 1.3
in [9] we see that it is enough to find a compact setK0 in M1(R) and compact setsK1, K2, . . . in
C([0, T ]) such that for allN ∈ N:

R(N)({ξ ∈ C([0, T ],M1(R))|∀t ∈ [0, T ] : ξ(t) ∈ K0}) ≥ 1− ε, (II.12)

R(N)({ξ ∈ C([0, T ],M1(R))|(ξ(.), fr) ∈ Kr}) ≥ 1− ε · 2−r, r ≥ 1. (II.13)

To defineK0 we introduce the functionϕ(x) =
√
1 + x2 and apply Ito’s formula to compute

d(̺(N)(t), ϕ) =
1

N

N∑

i=1

ϕ′(Ri(t))σ(F̺(N)(t)(Ri(t)))dBi(t)

+
1

N

N∑

i=1

(
ϕ′(Ri(t))µ(F̺(N)(t)(Ri(t))) +

1

2
ϕ′′(Ri(t))σ(F̺(N)(t)(Ri(t)))

2
)
dt

where̺(N)(t) = 1
N

∑N
i=1 δRi(t). The boundedness ofϕ′, ϕ′′, µ andσ shows that there exists a

constantC1 > 0 such that

1

N

N∑

i=1

(
ϕ′(Ri(t))µ(F̺(N)(t)(Ri(t))) +

1

2
ϕ′′(Ri(t))σ(F̺(N)(t)(Ri(t)))

2
)
≤ C1

for all t ∈ [0, T ] andN ∈ N. Moreover, for any fixedN ∈ N the process

Z(t) =
1

N

N∑

i=1

∫ t

0

ϕ′(Ri(s))σ(F̺(N)(s)(Ri(s)))dBi(s), t ∈ [0, T ] (II.14)

is a continuous martingale. Applying Doob’s maximal inequality for non-negative continuous
submartingales and Jensen’s inequality we obtain for allA > 0:

Q(N)
(

sup
t∈[0,T ]

(̺(N)(t), ϕ) ≥ A + C1T
)
≤ Q(N)

(
sup
t∈[0,T ]

(b(N) + |Z(t)|) ≥ A
)

≤ 1

A
E
Q(N)

[b(N)] +
1

A
E
Q(N)

[
Z(T )2

] 1
2

whereb(N) = (̺(N)(0), ϕ). Provided that we can show thatE
Q(N)

[b(N)] is bounded by a constant
independent ofN , we may employ the Ito isometry to find a constantC2 > 0 depending only on
T andsupu∈[0,1] σ(u) such that for allN ∈ N andA > 0:

Q(N)
(

sup
t∈[0,T ]

(̺(N)(t), ϕ) ≥ A+ C1T
)
≤ C2

A
.

Hence, we can chooseA such thatC2

A
< ε and let

K0 = {α ∈M1(R)| (α, ϕ) ≤ A+ C1T}. (II.15)
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As explained in the proof of Lemma 1.4 in [9] the compactness of the setK0 in M1(R) is a con-
sequence of Prokhorov’s Theorem. It remains to show thatE

Q(N)
[b(N)] is bounded by a constant

independent ofN . It is clear from the definition of̺ (N)(0), N ∈ N thatEQ
(N)

[b(N)] is finite for
all N ∈ N. Moreover, forN ≥ 4 we can useϕ(x) ≤ 1 + |x| and inequality (II.11) to compute

E
Q(N)

[b(N)] =
1

N

N∑

i=1

E[ϕ(Yi(0)− YM(N)(0))] ≤ 1 +
1

N

N∑

i=1

E[|Yi(0)− YM(N)(0)|]

= 1 +
1

N

M(N)−1∑

i=1

M(N)−1∑

j=i

1

a
(N)
j

+
1

N

N∑

i=M(N)+1

i−1∑

j=M(N)

1

a
(N)
j

≤ 1 +
2

N
·
supu∈[0,1] σ(u)

2

ω0

M(N)−1∑

i=1

M(N)−1∑

j=i

N

j(N − j)
.

Finally, the upper bound

M(N)−1∑

i=1

M(N)−1∑

j=i

1

j(N − j)
=

M(N)−1∑

j=1

1

N − j
≤ log(N − 1)− log(N −M(N)) ≤ log 3

for all N ≥ 4 shows thatEQ
(N)

[b(N)] is bounded by a constant independent ofN .

2) To prove the existence of setsK1, K2, . . . with the desired properties it suffices to show that for
any fixedr ∈ N the sequence of probability measuresP (N),fr , N ∈ N onC([0, T ]) induced by
R(N),N ∈ N through the mappingξ 7→ (ξ(.), fr) is tight. To this end, we fix anr ∈ N and aim to
deduce the tightness of the sequenceP (N),fr , N ∈ N from Theorem 1.3.2 of [23]. To do this we
need to show

lim
θ↑∞

inf
N∈N

P (N),fr(|y(0)| ≤ θ) = 1

and

∀∆ > 0 : lim
ε↓0

lim sup
N→∞

P (N),fr
(

sup
0≤s≤t≤T,t−s≤ε

|y(t)− y(s)| > ∆
)
= 0.

The first assertion follows immediately by consideringθ > supx∈R |fr(x)|. To show the second
assertion we fix a∆ > 0, defineZ(t), t ∈ [0, T ] as in step 1, but replacingϕ by fr and redefine the
constantC1 correspondingly. Using theL2-version of Doob’s maximal inequality for non-negative
continuous submartingales we obtain for each0 < ε < ∆

C1
:

P (N),fr
(

sup
0≤s≤t≤T,t−s≤ε

|y(t)− y(s)| > ∆
)
≤ Q(N)

(
sup

0≤s≤t≤T,t−s≤ε
|Z(t)− Z(s)| > ∆− C1ε

)

≤
⌊T

ε ⌋−1∑

l=0

Q(N)
(

sup
lε≤s≤min((l+2)ε,T )

|Z(s)− Z(lε)| ≥ ∆− C1ε

2

)

≤
⌊T

ε ⌋−1∑

l=0

(
∆− C1ε

2

)−2

E
Q(N)

[
|Z(min((l + 2)ε, T ))− Z(lε)|2

]
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where⌊.⌋ denotes the integer part of a positive real number. The Ito isometry shows that the
latter expression is bounded byT

ε

(
∆−C1ε

2

)−2 C3ε
N

with a constantC3 > 0 depending only on
supx∈R |f ′

r(x)| andsupu∈[0,1] σ(u). Taking limits we end up with the second assertion. We con-
clude that the sequenceR(N),N ∈ N is tight.

3) To prove (I.5) we letR∞ be the limit of a converging subsequenceR(Nk), k ∈ N of the
sequenceR(N), N ∈ N. Next, for eachk ∈ N we let ˜̺(Nk) be a random variable with distribu-
tionR(Nk) and˜̺∞ be a random variable with distributionR∞, all defined on the same probability
space and such that˜̺(Nk) →k→∞ ˜̺∞ inC([0, T ],M1(R)) almost surely. This is possible due to the
Skorohod Representation Theorem in the form of Theorem 3.5.1 in [7]. Indeed, the metric space
C([0, T ],M1(R)) is separable, since the countable set of functions whose values at0, 1

j
, 2
j
, . . . , 1

belong to a fixed countable dense subset ofM1(R) and which interpolate linearly on the intervals[
0, 1

j

]
, . . . ,

[
j−1
j
, 1
]

for a j ∈ N is dense inC([0, T ],M1(R)).

From the dynamics computed in step 1 we observe that for eachk ∈ N and f ∈ C3
c (R) the

process(˜̺(Nk)(t), f), t ∈ [0, T ] is a semimartingale in the sense of definition II.2.6 in [14] with its
characteristics being given by

∫ t

0

∫

R

f ′(x)µ(F
˜̺
(Nk)(s)(x)) +

1

2
f ′′(x)σ(F

˜̺
(Nk)(s)(x))

2 ˜̺(Nk)(s)(dx) ds,

1

Nk

∫ t

0

∫

R

f ′(x)2σ(F
˜̺
(Nk)(s)(x))

2 ˜̺(Nk)(s)(dx) ds

which we denote byB(Nk)(t) andC(Nk)(t), respectively. We claim that in order to establish (I.5)
it suffices to show that for anyf ∈ C3

c (R) we have

sup
t∈[0,T ]

∣∣∣B(Nk)(t)−
∫ t

0

(˜̺∞(s), L˜̺∞(s)f) ds
∣∣∣ p→ 0, (II.16)

E[C(Nk)(T )] →k→∞ 0 (II.17)

where
p→ denotes the convergence in probability. Indeed, the secondconvergence together with

theL2-version of Doob’s maximal inequality for non-negative continuous submartingales would
imply

sup
t∈[0,T ]

∣∣∣(˜̺(Nk)(t), f)− (˜̺(Nk)(0), f)− B(Nk)(t)
∣∣∣ p→ 0. (II.18)

Hence, from the first convergence we would be able to concludethat

sup
t∈[0,T ]

∣∣∣(˜̺(Nk)(t), f)− (˜̺(Nk)(0), f)−
∫ t

0

(˜̺∞(s), L˜̺∞(s)f ds
∣∣∣ p→ 0. (II.19)

By a diagonalization argument relying on the separability of C3
c (R), endowed with the topology

of uniform convergence of functions and their first and second derivatives, we would be able to
find a subsequence ofNk, k ∈ N such that the latter convergence holds for allf ∈ C3

c (R) in the
almost sure sense. But since(˜̺(Nk)(t), f) − (˜̺(Nk)(0), f) −

∫ t
0
(˜̺∞(s), L˜̺∞(s)f) ds converges to
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(˜̺∞(t), f) − (˜̺∞(0), f) −
∫ t
0
(˜̺∞(s), L˜̺∞(s)f) ds in the limit k → ∞ for all f ∈ C3

c (R) and
t ∈ [0, T ] almost surely, we would obtain equation (I.5).

4) We now show the two claimed convergence results. The convergence in (II.17) is a direct
consequence of the boundedness off ′ andσ. To prove the convergence in (II.16) we introduce
for anyε > 0 andx ∈ R a Lipschitz functionf εx such that

1(−∞,x−ε] ≤ f εx ≤ 1(−∞,x] (II.20)

andf εx′ is a translate off εx by x′ − x for anyx, x′ ∈ R andε > 0. Moreover, for any probability
measureα onR we setF ε

α(x) = (α, f εx). We noteB(Nk)(t) =
∫ t
0
(˜̺(Nk)(s), L

˜̺
(Nk)(s)f) ds for all

t ∈ [0, T ] andk ∈ N and deduce from the triangle inequality that

sup
t∈[0,T ]

∣∣∣
∫ t

0

(˜̺(Nk)(s), L
˜̺
(Nk)(s)f) ds−

∫ t

0

(˜̺∞(s), L˜̺∞(s)f) ds
∣∣∣

≤ sup
t∈[0,T ]

∣∣∣
∫ t

0

(˜̺(Nk)(s), f ′(µ ◦ F
˜̺
(Nk)(s)))− (˜̺∞(s), f ′(µ ◦ F˜̺∞(s))) ds

∣∣∣

+ sup
t∈[0,T ]

∣∣∣
∫ t

0

(˜̺(Nk)(s),
f ′′

2
(σ ◦ F

˜̺
(Nk)(s))

2)− (˜̺∞(s),
f ′′

2
(σ ◦ F˜̺∞(s))

2) ds
∣∣∣

where◦ denotes the composition of functions. We claim that the latter two terms converge to zero
in probability. Since the proof of this claim is identical for both terms, we only carry it out for the
first (drift) term. To this end, we fix anε > 0 and ak ∈ N and observe

sup
t∈[0,T ]

∣∣∣
∫ t

0

(˜̺(Nk)(s), f ′(µ ◦ F
˜̺
(Nk)(s)))− (˜̺∞(s), f ′(µ ◦ F˜̺∞(s))) ds

∣∣∣

≤
∫ T

0

|(˜̺(Nk)(s), f ′(µ ◦ F
˜̺
(Nk)(s)))− (˜̺(Nk)(s), f ′(µ ◦ F ε

˜̺
(Nk)(s)

))| ds

+ sup
t∈[0,T ]

∣∣∣
∫ t

0

(˜̺(Nk)(s), f ′(µ ◦ F ε
˜̺
(Nk)(s)

))− (˜̺∞(s), f ′(µ ◦ F ε
˜̺∞(s))) ds

∣∣∣

+

∫ T

0

|(˜̺∞(s), f ′(µ ◦ F ε
˜̺∞(s)))− (˜̺∞(s), f ′(µ ◦ F˜̺∞(s)))| ds.

We call the summands on the right-hand side (I), (II) and (III). We will bound the three terms
consecutively.

Denoting byY R
1 (t) ≤ · · · ≤ Y R

Nk
(t) the ordered particles of the normalized systemR1(t), . . . , RNk

(t)
for any timet ∈ [0, T ] we can bound term (I) from above by

C4

∫ T

0

1

Nk

Nk∑

i=1

1

Nk

∣∣∣{1 ≤ j ≤ i| Y R
j (s) ∈ (Y R

i (s)− ε, Y R
i (s)]}

∣∣∣ ds

where the constantC4 is the product ofsupx∈R |f ′(x)| andsupu∈[0,1] |µ′(u)|. By Fubini’s Theorem
and the defining property of the initial condition (see the paragraph preceeding Theorem 1.1) it
follows that the expectation of (I) is bounded above byC4T

N2
k

∑Nk

i=1

∑i
j=1 P(Yi(0)− Yj(0) < ε). To
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bound this expression further we first choose aC5 > 0 such thata(N)
i ≤ C5N for all N ∈ N and

1 ≤ i ≤ N − 1. This is possible due to the obvious bounda(N)
i ≤ 4i(N−i)

N
· supu∈[0,1] |µ(u)|

infu∈[0,1] σ(u)2
which

holds for allN ∈ N and1 ≤ i ≤ N − 1. Next, for any fixedk ∈ N we letE1, . . . , ENk−1 be
i.i.d. exponential random variables with parameterC5Nk andP be a Poisson random variable with
parameterC5Nkε. Then from the scaling property of exponential random variables we deduce

C4T

N2
k

Nk∑

i=1

i∑

j=1

P(Yi(0)− Yj(0) ≤ ε) ≤ C4T

N2
k

Nk∑

i=1

i∑

j=1

P(Ej + · · ·+ Ei−1 ≤ ε)

=
C4T

N2
k

Nk∑

i=1

i∑

j=1

P(P ≥ i− j) ≤ C4T

Nk

(
1 + E[P ]

)
=
C4T

Nk

(
1 + C5Nkε

)
.

All in all, we conclude that

lim sup
k→∞

E

[∫ T

0

|(˜̺(Nk)(s), f ′(µ ◦ F
˜̺
(Nk)(s)))− (˜̺(Nk)(s), f ′(µ ◦ F ε

˜̺
(Nk)(s)

))| ds
]

is bounded above byC4C5Tε.

Term (II) can be estimated from above by

sup
t∈[0,T ]

∣∣∣
∫ t

0

(˜̺(Nk)(s), f ′(µ ◦ F ε
˜̺
(Nk)(s)

))− (˜̺(Nk)(s), f ′(µ ◦ F ε
˜̺∞(s))) ds

∣∣∣

+ sup
t∈[0,T ]

∣∣∣
∫ t

0

(˜̺(Nk)(s), f ′(µ ◦ F ε
˜̺∞(s)))− (˜̺∞(s), f ′(µ ◦ F ε

˜̺∞(s))) ds
∣∣∣.

Now, recalling the definition ofC4 we bound the first summand from above by

C4 sup
t∈[0,T ]

∫ t

0

sup
x∈R

|F ε
˜̺
(Nk)(s)

(x)− F ε
˜̺∞(s)(x)| ds. (II.21)

Since for eachx ∈ R the functionf εx is Lipschitz with the Lipschitz constant being independent
of x and the convergenced(˜̺(Nk)(s), ˜̺∞(s)) →k→∞ 0 is uniform in s, the expression in (II.21)
tends to zero almost surely in the limitk → ∞. Moreover, for anyx, x′ ∈ R it holds

|F ε
˜̺∞(s)(x)− F ε

˜̺∞(s)(x
′)| ≤ sup

y∈R
|f εx(y)− f εx(y − x+ x′)| ≤ Lip(f ε0 ) · |x− x′|.

Hence, the uniformity ins of the convergenced(˜̺(Nk)(s), ˜̺∞(s)) →k→∞ 0 implies that the second
summand in the bound on term (II) tends to zero almost surely in the limit k → ∞. Thus, from
the Dominated Convergence Theorem we deduce that the expectation of term (II) converges to
zero in the limitk → ∞.

Due to the inequality

|F ε
˜̺∞(s)(x)− F˜̺∞(s)(x)| ≤ F ε

˜̺∞(s)(x+ ε)− F ε
˜̺∞(s)(x) (II.22)
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for all x ∈ R the expectation of term (III) can be bounded above by

C4 E

[∫ T

0

∫

R

(F ε
˜̺∞(s)(x+ ε)− F ε

˜̺∞(s)(x))˜̺∞(s)(dx) ds

]
.

Moreover, applying the triangle inequality as in the proof of the upper bound on term (II) one
shows that with probability1 the integrand in theds-integral is the limit of the corresponding
objects with˜̺∞ replaced bỹ̺ (Nk). Indeed, the difference between the two is bounded above in
absolute value by4(Lip(f ε0 ) + 1) · d(˜̺(Nk)(s), ˜̺∞(s)). We conclude from Fatou’s Lemma that the
expectation of term (III) is bounded above by

C4 lim inf
k→∞

E

[∫ T

0

∫

R

(F ε
˜̺
(Nk)(s)

(x+ ε)− F ε
˜̺
(Nk)(s)

(x))˜̺(Nk)(s)(dx) ds

]
.

Bounding the integrand in theds-integral in the same way as in the corresponding estimate on
term (I) one obtains the upper bound

C4 lim inf
k→∞

E

[∫ T

0

1

Nk

Nk∑

i=1

1

Nk

∣∣∣{1 ≤ j ≤ Nk| |Y R
j (s)− Y R

i (s)| ≤ ε}
∣∣∣ ds

]
.

Finally, proceeding as in the upper bound on term (I) we deduce that the expectation of term (III)
is bounded above by2C4C5Tε.

All in all, we have shown that

lim sup
k→∞

E

[
sup
t∈[0,T ]

∣∣∣
∫ t

0

(˜̺(Nk)(s), f ′(µ ◦ F
˜̺
(Nk)(s)))− (˜̺∞(s), f ′(µ ◦ F˜̺∞(s)))ds

∣∣∣
]

is bounded above byC6ε with C6 = 3C4C5T . By taking the limitε ↓ 0 we deduce that the
term inside the latter expectation tends to zero inL1 in the limit k → ∞ and so, in particular, it
converges to zero in probability. �

3 Proof of Theorem 1.2

To be ready to prove Theorem 1.2 we show next that the initial probability measureξ(0) is the
same under each accumulation pointR∞ of the setΞ provided that the functionsµ andσ2 are
affine.

Proposition 3.1 Let the functionsµ andσ2 be affine, so thatσ2(u) = cu + d for some constants
c, d ∈ R. Then for any choice ofR∞ as in Theorem 1.1 the distribution of the initial probability
measureξ(0) underR∞ is a Dirac probability measure. Moreover, the atom of the latter is given
by the uniqueλ∞ ∈M1(R) whose quantilesq∞(u), u ∈ (0, 1) are given by

q∞(u) = − c+ d

|µ′(0)| log(2− 2u) +
d

|µ′(0)| log(2u). (III.23)

In particular,λ∞ is absolutely continuous with respect to the Lebesgue measure onR.
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Proof.1) For eachN ∈ N let q(N)(u), u ∈ (0, 1) be the (random) quantiles of the initial probability
measureξ(0) underR(N). Then for any fixed1

2
< u < 1 it holds

q(N)(u) =

⌈uN⌉−1∑

i=M(N)

(Yi+1(0)− Yi(0))

=

∑⌈uN⌉−1
i=M(N)(Yi+1(0)− Yi(0))−m(N)

√
v(N)

·
√
v(N) +m(N)

for all N ∈ N such that⌈uN⌉ − 1 ≥ M(N) where

m(N) =

⌈uN⌉−1∑

i=M(N)

1

a
(N)
i

, v(N) =

⌈uN⌉−1∑

i=M(N)

1

(a
(N)
i )2

(III.24)

and⌈x⌉ denotes the smallest integer greater or equal tox for anyx ∈ R. Using the definition of
a
(N)
i , 1 ≤ i ≤ N − 1, N ∈ N and the assumption thatµ is affine we see that for any1

2
< u < 1

there exist constantsω1(u), ω2(u) > 0 such thatω1(u)N ≤ a
(N)
i ≤ ω2(u)N for all M(N) ≤ i ≤

⌈uN⌉ − 1, N ∈ N. From this and Lindeberg’s Central Limit Theorem we deduce that for any
fixed 1

2
< u < 1 it holds

lim
N→∞

q(N)(u) = lim
N→∞

m(N) (III.25)

in distribution, provided that the latter limit exists. Indeed, we can check Lindeberg’s condition

for the triangular array
Yi+1(0)−Yi(0)− 1

aN
i√

v(N)
, M(N) ≤ i ≤ ⌈uN⌉ − 1, N ∈ N as follows: for any

ε > 0 and anyN ∈ N such that⌈uN⌉ − 1 ≥ M(N) we have the estimates

1

v(N)
·
⌈uN⌉−1∑

i=M(N)

E

[(
Yi+1(0)− Yi(0)−

1

a
(N)
i

)2

· 1|Yi+1(0)−Yi(0)− 1

a
(N)
i

|≥ε
√
v(N)

]

≤ 1

v(N)
·
⌈uN⌉−1∑

i=M(N)

1

(a
(N)
i )2

· E
[
G2
i,N · 1|Gi,N |≥ε

√
v(N)a

(N)
i

]

≤ E

[
G2
M(N),N · 1|GM(N),N |≥εω3(u)

√
N

]

where we have setGi,N = (Yi+1(0) − Yi(0))a
(N)
i − 1 for M(N) ≤ i ≤ ⌈uN⌉ − 1, N ∈ N

andω3(u) > 0 is a constant such that
√
v(N)a

(N)
i ≥ ω3(u)

√
N for all M(N) ≤ i ≤ ⌈uN⌉ − 1

andN ∈ N. The latter expectation tends to zero in the limitN → ∞, since the random vari-
ableGM(N),N + 1 is distributed according to the exponential distribution with parameter1 for all
N ≥ 3. Hence, Lindeberg’s condition is satisfied.
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2) Now, plugging in the definition ofa(N)
i for M(N) ≤ i ≤ ⌈uN⌉ − 1 andN ∈ N we calculate

lim
N→∞

m(N) = lim
N→∞

⌈uN⌉−1∑

i=M(N)

N

i(N − i)
·
ci+c/2
N

+ d

|µ′(0)|

=
c

|µ′(0)| · lim
N→∞

⌈uN⌉−1∑

i=M(N)

1

N − i
+

d

|µ′(0)| · lim
N→∞

⌈uN⌉−1∑

i=M(N)

(
1

i
+

1

N − i

)

= lim
N→∞

( c+ d

|µ′(0)| log
(N −M(N)

N − uN

)
+

d

|µ′(0)| log
( uN

M(N)

))
.

Recalling thatN
2
≤M(N) ≤ N

2
+ 1 we can compute the last limit to

− c+ d

|µ′(0)| log(2− 2u) +
d

|µ′(0)| log(2u).

An analogous application of Lindeberg’s Central Limit Theorem and similar calculations to the
ones above show for the case0 < u ≤ 1

2
:

lim
N→∞

qN(u) = − lim
N→∞

M(N)−1∑

i=⌈uN⌉

1

a
(N)
i

= − c+ d

|µ′(0)| log(2− 2u) +
d

|µ′(0)| log(2u)

in distribution.

3) If R∞ is as in Theorem 1.1, then the Skorohod Representation Theorem in the form of The-
orem 3.5.1 in [7] shows that we can find an increasing sequenceNk, k ∈ N of natural numbers
and random variables̺̃(Nk)(0), k ∈ N and ˜̺∞(0) defined on the same probability space such that
for eachk ∈ N the distribution of the random variablẽ̺(Nk)(0) is given by the law ofξ(0) under
R(Nk), ˜̺∞(0) is distributed according to the law ofξ(0) underR∞ and ˜̺(Nk)(0) →k→∞ ˜̺∞(0)
weakly with probability1. It follows that the quantile functions of̺̃(Nk)(0) converge in the limit
k → ∞ to the quantile function of̺̃∞(0) at all continuity points of the latter almost surely (see
e.g. the proof of Theorem 2.2.2 in [8]). By Fubini’s Theorem we obtain that theu-quantile of
˜̺(Nk)(0) converges to theu-quantile of ˜̺∞(0) almost surely in the limitk → ∞ for Lebesgue
almost everyu ∈ (0, 1) and, in particular, for allu in a countable dense subset of(0, 1). Due to
the monotonicity of quantile functions and the computations in steps 1 and 2 the quantile function
of ˜̺∞(0) has to coincide withq∞ (defined in the statement of the proposition) with probability
1. Hence, the distribution of̺̃∞(0), which is the same as the law ofξ(0) underR∞, is given by
the Dirac probability measure described in the proposition. Finally, the probability measureλ∞

is absolutely continuous with respect to the Lebesgue measure onR, because its quantile function
q∞ is continuously differentiable and strictly increasing on(0, 1). �

Combining the ideas of [9] and [15] with a result in [10] we cannow prove Theorem 1.2. In
the proof we use the following notations. For a measurable subsetS of a Euclidean space we
write Lp(S) and‖.‖Lp(S) for the space of functionsf : S → R such that|f |p is integrable with
respect to the restriction of the Lebesgue measure toS and the correspondingLp-norm, respec-
tively, wherep is a real number in[1,∞). In addition, for any real-valued random variableY we
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denote byL(Y ) the law ofY .

Proof of Theorem 1.2.1) It suffices to prove that the initial value problem (I.6), (I.7) has at
most one solution inC([0, T ],M1(R)) for each initial condition which is absolutely continuous
with respect to the Lebesgue measure onR, since then the law of large numbers follows from
Theorem 1.1 and Proposition 3.1. To achieve the former we fix an absolutely continuous initial
conditionλ, let νi, i ∈ {1, 2} be two solutions of (I.6), (I.7) inC([0, T ],M1(R)) with this initial
condition and will proveν1 = ν2. We show first that fori ∈ {1, 2} the measuresνi(t), t ∈ [0, T ]
are given by one-dimensional distributions of solutions ofappropriate martingale problems. To
this end, fori ∈ {1, 2} we defineZi(t), t ∈ [0, T ] as the respective unique (in law) solutions of
the martingale problems associated with the families of operatorsLνi(t), t ∈ [0, T ] such that for
anyf ∈ C∞

c (R) the processes

f(Zi(t))− f(Zi(0))−
∫ t

0

(Lνi(s)f)(Zi(s)) ds, t ∈ [0, T ],

i ∈ {1, 2} are martingales andL(Z1(0)) = L(Z2(0)) = λ. Due to Exercise 7.3.3 in [23] the
processesZ1(t), t ∈ [0, T ] andZ2(t), t ∈ [0, T ] are well-defined andL(Zi(.)) ∈ C([0, T ],M1(R))
for i ∈ {1, 2}. We claim thatνi(.) = L(Zi(.)) for i ∈ {1, 2}. To prove the claim we fix an
i ∈ {1, 2}. By their respective definitionsνi(t), t ∈ [0, T ] andL(Zi(t)), t ∈ [0, T ] solve the initial
value problem for the Fokker-Planck equation

∀f ∈ C∞
c (R) : (ξ(t), f)− (ξ(0), f) =

∫ t

0

(ξ(s), Lνi(s)f) ds, (III.26)

ξ(0) = λ (III.27)

on [0, T ]. We show now that the latter has a unique solution inC([0, T ],M1(R)). To this end, we
observe that the operatorR = ∂

∂t
+ Lνi(.) is continuous as an operator from the Sobolev space

W 1,2,p([0, T ] × [−r, r]) (the space functions inLp([0, T ] × [−r, r]) whose generalized first time
derivative and generalized first two spatial derivatives belong toLp([0, T ] × [−r, r]), endowed
with the usual Sobolev norm) intoLp([0, T ]× [−r, r]) for anyp ≥ 1 and anyr > 0. This is due
to the boundedness ofµ andσ. Moreover, following the steps in the proof of Theorem A.1 in[9]
we obtain for anyp > 3 andr > 0:

∫ T

0

(
νi(t),

( ∂
∂t

+ Lνi(t)

)
f
)
dt ≥

∫ T

0

(
L(Zi(t)),

( ∂
∂t

+ Lνi(t)

)
f
)
dt (III.28)

for all f ∈ W 1,2,p
0 ([0, T ]× [−r, r]) (the space of functions inW 1,2,p([0, T ]× [−r, r]) vanishing on

([0, T ]×{−r, r})∪ ({T}× [−r, r])) such thatRf ≥ 0 Lebesgue almost everywhere. Hereby, we
have used the convention( ∂

∂t
+Lνi(t))f = 0 on the complement of[0, T ]× [−r, r] in [0, T ]×R. By

Theorem 9.1 in chapter IV of [17] the image of the just described functions underR is given by
Lp+([0, T ]× [−r, r]), the set of functions inLp([0, T ]× [−r, r]) which are non-negative Lebesgue
almost everywhere. Indeed, from Proposition 3.1 and the assumption of the theorem we conclude
that for everyt ∈ [0, T ] the measureνi(t) is absolutely continuous with respect to the Lebesgue
measure onR. Thus, the function(t, x) 7→ σ(Fνi(t)(x)) is continuous and Theorem 9.1 in chapter
IV of [17] is applicable. Sincer > 0 was arbitrary, we deduce from the Monotone Convergence
Theorem that

∫ T

0

∫

R

g(x) · 1[0,t](s) νi(s)(dx) ds ≥
∫ T

0

∫

R

g(x) · 1[0,t](s) L(Zi(s))(dx) ds
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for all non-negative continuous bounded functionsg on R and all t ∈ [0, T ]. Using the same
inequality with(supx∈R g(x)) − g instead ofg we infer that equality must hold in the latter in-
equality. Differentiating the resulting identity with respect tot we see thatνi(t) = L(Zi(t)) for
all t ∈ [0, T ].

2) To finish the proof we aim to apply Theorem 4 of [10]. Approximating the functionsf1(x) = x

andf2(x) = x2 by functions inC∞
c (R) coinciding withf1, f2 on [−Ã, Ã] for increasing values of

Ã ∈ N and applying Proposition 4.6 in chapter 5 of [16] we concludethat there exist probability
spaces on which processes of the same law asZ1 andZ2 (which we will also denote byZ1 and
Z2) are defined such that

dZi(t) = µ(Fνi(t)(Zi(t))) dt+ σ(Fνi(t)(Zi(t))) dWi(t), t ∈ [0, T ] (III.29)

holds fori ∈ {1, 2} and appropriate standard Brownian motionsW1, W2. Next, we fix arbitrary
numbersx1 < x2 in R andt1 < t2 in [0, T ] and introduce the functionf(t, x) =

∫∞
x
ψ(t, y) dy

on [t1, t2] × R whereψ is an arbitrary continuous function on[t1, t2] × R which is continuously
differentiable in both variables withψ(., x) = ∂ψ

∂x
(., x) = 0 wheneverx /∈ (x1, x2). Applying Ito’s

formula tof(t, Zi(t)) and taking the expectation we obtain

(νi(t2), f(t2, .))− (νi(t1), f(t1, .))

=

∫ t2

t1

(
νi(t),

∂f

∂t
(t, .) +

∂f

∂x
(t, .)µ(Fνi(t)(.)) +

1

2

∂2f

∂x2
(t, .)σ(Fνi(t)(.))

2
)
dt

for i ∈ {1, 2}. Recalling thatν1 andν2 are solutions of the Fokker-Planck equations in step 1 and
following the proof of Lemma A.2 in [9] we conclude that the finite measures corresponding to the
functionalsh 7→

∫ T
0

∫
R
h(t, x) ν1(t)(dx) dt, h 7→

∫ T
0

∫
R
h(t, x) ν2(t)(dx) dt acting on continuous

bounded functions on[0, T ]× R are absolutely continuous with respect to the Lebesgue measure
on [0, T ] × R. Moreover, the proof of Lemma A.2 in [9] shows that the corresponding density
functionsk1, k2 on [0, T ] × R are locally square integrable. Settingwi(t, x) = Fνi(t)(x) for
t ∈ [0, T ], x ∈ R, i ∈ {1, 2} and applying integration by parts with respect to the spatial variable
in the last equation (recalling from step 1 that the measuresνi(t), t ∈ [0, T ], i ∈ {1, 2} are
absolutely continuous with respect to the Lebesgue measureon R) we see that fori ∈ {1, 2} it
holds ∫

R

ψ(t2, x)wi(t2, x) dx−
∫

R

ψ(t1, x)wi(t1, x) dx

=

∫ t2

t1

∫

R

(∂ψ
∂t

(t, x)wi(t, x) +
∂ψ

∂x
(t, x)Θ(wi(t, x))

)
dx dt

−
∫ t2

t1

∫

R

∂ψ

∂x
(t, x)Σ′(wi(t, x))ki(t, x) dx dt

which we will call equation (*). Hereby,Θ andΣ are the antiderivatives ofµ and1
2
σ2, respectively,

for which Θ(0) = Σ(0) = 0. Next, we note that for anyn ∈ N and any continuous function
ψ̃ : [t1, t2]×R → R which is supported onD = [t1, t2]×[x1, x2] and is continuously differentiable
in t and twice continuously differentiable inx onD we can find a functionψn of the same type as
the functionψ in equation (*) such thatψn →n→∞ ψ uniformly onD and

∥∥∥ψn − ψ̃
∥∥∥
L2(D)

+
∥∥∥
∂ψn
∂t

− ∂ψ̃

∂t

∥∥∥
L2(D)

+
∥∥∥
∂ψn
∂x

− ∂ψ̃

∂x

∥∥∥
L2(D)

<
1

n
.
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This can be achieved by modifying̃ψ on small neighborhoods of

([t1, t2]× {x1}) ∪ ([t1, t2]× {x2})

in D. Thus, an approximation argument together with the Cauchy-Schwarz inequality shows that
equation (*) holds for all functions̃ψ of the described type and anyi ∈ {1, 2}. Choosingki such
that for eacht ∈ [0, T ] the functionki(t, .) is a density function of the probability measureνi(t)
for i ∈ {1, 2} and applying integration by parts to the last term in equation (*) we see thatwi,
i ∈ {1, 2} are generalized solutions of the Cauchy problem for the generalized porous medium
equation with non-linearityΣ and convection−Θ in the sense of Definition 4 in [10]. From
Theorem 4 in [10] we deducew1 = w2 by noting thatµ andσ can be easily extended to the whole
of R+ without violating Hypothesis 1 of [10]. Hence,ν1(t) = ν2(t) for all t ∈ [0, T ] as desired.�
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