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Abstract

This paper deals with numerical solutions of maximizing expected utility from ter-

minal wealth under a non-bankruptcy constraint. The wealth process is subject to

shocks produced by a general marked point process. The problem of the agent is to

derive the optimal insurance strategy which allows ”lowering” the level of the shocks.

This optimization problem is related to a suitable dual stochastic control problem in

which the delicate boundary constraints disappear. In Mnif [14], the dual value function

is characterized as the unique viscosity solution of the corresponding Hamilton Jacobi

Bellman Variational Inequality (HJBVI in short). We characterize the optimal insur-

ance strategy by the solution of the variational inequality which we solve numerically

by using an algorithm based on policy iterations.
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1 Introduction

We study the optimal insurance demand problem of an agent whose wealth is subject to

shocks produced by some marked point process. Such a problem was formulated by Bryis

[3] in continuous-time with Poisson shocks. Gollier [10] studied a similar problem where

shocks are not proportional to wealth. An explicit solution to the problem is provided

by Bryis by writing the associated Hamilton-Jacobi-Bellman (HJB in short) equation. In

Bryis [3] and Gollier [10], they modeled the insurance premium by an affine function of the

insurance strategy θ = (θt)t∈[0,T ] which is the rate of insurance decided to be covered by

the agent. If the agent is subject to some accident at time t which costs an amount Z, then

he will pay θtZ and the insurance company reimburses the amount (1− θt)Z. They didn’t

assume any constraint on the insurance strategy which is not realistic.

In risk theory, Hipp and Plum [5] analysed the trading strategy, in risky assets, which

is optimal with respect to the criterion of minimizing the ruin probability. They derived

the HJB equation related to this problem and proved the existence of a solution and a

verification theorem. When the claims are exponentially distributed, the ruin probability

decreases exponentially and the optimal amount invested in risky assets converges to a con-

stant independent of the reserve level. Hipp and Schmidli [6] have obtained the asymptotic

behaviour of the ruin probability under the optimal investment strategy in the small claim

case. Schmidli [16] studied the optimal proportional reinsurance policy which minimizes

the ruin probability in infinite horizon. He derived the associated HJB equation, proved

the existence of a solution and a verification theorem in the diffusion case. He proved that

the ruin probability decreases exponentially whereas the optimal proportion to insure is

constant. Moreover, he gave some conjecture in the Cramér-Lundberg case. Højgaard and

Taksar [7] studied another problem of proportional reinsurance. They considered the issue

of reinsurance optimal fraction, that maximizes the return function. They modelled the

reserve process as a diffusion process.

In this paper, we model the claims by using a compound Poisson process. The insur-

ance trading strategy is constrained to remain in [0, 1]. We impose a constraint of non-

bankruptcy on the wealth process Xt of the agent for all t. The objective of the agent is to

maximize the expected utility of the terminal wealth over all admissible strategies and to

determine the optimal policy of insurance.

In Mnif [14], we studied the latter stochastic control problem with state constraint by du-

ality methods. Duality method was introduced by Karatzas et al. [12] and Cox and Huang

[4]. We characterized the dual value function by a PDE approach as the unique solution

of the associated HJBVI. In this paper, we determine numerically the optimal strategy of

investment and the optimal reserve process. Usually, the optimal strategy is determined in

a feedback form by using the primal approach and solving the associated HJB equation.

The originality of this work and thanks to a verification theorem, the optimal reserve pro-

cess is related to the derivative of the dual value function with respect to the dual state
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variable. When the shocks are modeled by a Poisson process, we can obtain an explicit

expression of the optimal strategy of insurance in terms of the dual value function . The

paper is organized as follows. Section 2 describes the model. In Section 3, we formulate

the dual optimization problem and we derive the associated HJBVI for the value function.

In Section 4, we prove a verification theorem. We show that if there exists a solution to

the HJBVI, then subject to some regularity conditions, it is the value function of the dual

problem. The optimal insurance strategy could be characterized completely by the value

function of the dual problem. Section 5 is devoted to a numerical analysis of the HJBVI:

The HJBVI is discretized by using finite difference schemes and solved by using an algo-

rithm based on the “Howard algorithm”( policy iteration). Numerical results are presented.

They provide the optimal insurance strategy and the optimal wealth process of the agent.

2 Problem formulation

Let (Ω,F , P ) be a complete probability space. We assume that the claims are generated by

a compound Poisson process. More precisely, we consider an integer-valued randommeasure

µ(dt, dz) with compensator π(dz)dt. We assume that π(dz) = ̺G(dz) where G(dz) is a

probability distribution on the bounded set C ⊆ IR+ and ̺ is a positive constant. In this

case, the integral, with respect to the random measure µ(dt, dz), is simply a compound

Poisson process: we have
∫ t

0

∫

C
zµ(du, dz) =

∑Nt

i=1 Zi, where N = {Nt, t ≥ 0} is a Poisson

process with intensity ̺ and {Zi, i ∈ IN} is a sequence of random variables with common

distribution G which represent the claim sizes.

Let T > 0 be a finite time horizon. We denote by IF = (Ft)0≤t≤T the filtration generated

by the random measure µ(dt, dz).

By definition of the intensity π(dz)dt, the compensated jump process:

µ̃(dt, dz) := µ(dt, dz)− π(dz)dt

is such that {µ̃([0, t] × B), 0 ≤ t ≤ T} is a (P, IF ) martingale for all B ∈ C, where C is the

Borel σ-field on C.

An insurance strategy is a predictable process θ = (θt)0≤t≤T which represents the rate

of insurance covered by the agent. We assume that the insurance premium is an affine

function of the insurance strategy. Given an initial wealth x ≥ 0 at time t and an insurance

strategy θ, the wealth process of the agent at time s ∈ [t, T ] is then given by :

Xt,x,θ
s := x+

∫ s

t

(α− β(1− θu)) du−

∫ s

t

∫

C

θuzµ(du, dz). (2.1)

We assume that α ≥ β ≥ 0 which means that the premium rate received by the agent is

lower then the premium rate paid to the insurer. In the literature, this problem is known

as a proportional reinsurance one. The agent is an insurer who has to pay a premium to

the reinsurer. We impose that the insurance strategy satisfies:

θs ∈ [0, 1] a.s. for all t ≤ s ≤ T. (2.2)
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We also impose the following non-bankruptcy constraint on the wealth process:

Xt,x,θ
s ≥ 0 a.s. for all t ≤ s ≤ T. (2.3)

Given an initial wealth x ≥ 0 at time t, an admissible policy θ is a predictable stochastic

process (θs)t≤s≤T , such that conditions (2.2) and (2.3) are satisfied. We denote by A(t, x)

the set of all admissible policies and S(t, x) := {Xt,x,θ such that θ ∈ A(t, x)}.

Our agent has preferences modeled by a utility function U .

Assumption 2.1 We assume that the agent’s utility is described by a CRRA utility func-

tion i.e. U(x) = xη

η
, where η ∈ (0, 1).

We denote by I the inverse of U ′ and we introduce the conjugate function of U defined by

Ũ(y) := sup
x>0

{U(x)− xy}, y > 0

= U(I(y))− yI(y). (2.4)

A straightforward calculus shows that Ũ(y) =
y−γ

γ
where γ = η

1−η
and Ũ ′(y) = −I(y) for

all y > 0.

The objective of the agent is to find the value function which is defined as

v(t, x) := sup
θ∈A(t,x)

E(U(Xt,x,θ
T )). (2.5)

3 Dual optimization problem

First we introduce some notations. Let x ≥ 0 and t ∈ [0, T ]. We denote by P(S(t, x)) the

set of all probability measures Q ∼ P with the following property: there exists A ∈ Ip, set

of non-decreasing predictable processes with A0 = 0, such that :

X −A is a Q− local super-martingale for any X ∈ S(t, x). (3.1)

The upper variation process of S(t, x) under Q ∈ P(S(t, x)) is the element ÃS(t,x)(Q) in Ip

satisfying (3.1) and such that A− ÃS(t,x)(Q) ∈ Ip for any A ∈ Ip satisfying (3.1).

From Lemma 2.1 of Föllmer and Kramkov [9], we can derive P(S(t, x)) and ÃS(t,x)(Q). This

result states that Q ∈ P(S(t, x)) iff there is an upper bound for all the predictable processes

arising in the Doob-Meyer decomposition of the special semi-martingale V ∈ S(t, x) under

Q. In this case, the upper variation process is equal to this upper bound.

It is well-known from the martingale representation theorem for random measures (see e.g.

Brémaud [2]) that all probability measures Q ∼ P have a density process in the form :

Zρ
s = E

(
∫ s

t

∫

C

(ρu(z)− 1)µ̃(du, dz)

)

, s ∈ [t, T ], (3.2)

where ρ ∈ Ut = {(ρs(z))t≤s≤T predictable process : ρs(z) > 0, a.s., t ≤ s ≤ T ,z ∈ C,
∫ T

t

∫

C

(

| log ρs(z)| + ρs(z)π(dz)
)

ds < ∞ and E[Zρ
T ] = 1}.
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By Girsanov’s theorem, the predictable compensator of an element Xθ ∈ S(t, x) under P ρ

= Z
ρ
T .P is :

Aρ,θ
s =

∫ s

t

(α− β)du +

∫ s

t

θu(β −

∫

C

ρu(z) z π(dz))du.

We deduce from Lemma 2.1 of Föllmer and Kramkov [9] that P(S(t, x)) = {P ρ : ρ ∈ Ut}

and the upper variation process of P ρ is :

ÃS(t,x)
s (P ρ) =

∫ s

t

(α− β)du+

∫ s

t

(β −

∫

C

ρu(z) z π(dz))+du.

From the non-decreasing property of U , we have

v(t, x) = sup
H∈C+(t,x)

E[U(H)],

where C+(t, x) = {H ∈ L0
+(FT ) : X

t,x,θ
T ≥ H a.s. for θ ∈ A(t, x)}. Mnif and Pham [15] gave

the following dual characterization of the set C+(t, x)

H ∈ C+(t, x) (3.3)

⇐⇒ J(H) := sup
Z∈P0(t,x) ,τ∈Tt

E

[

ZTH1τ=T −

∫ τ

t

Zu(α− β + (β −

∫

C

ρu(z) z π(dz))+)du

]

≤ x,

where P0(t, x) is the subset of elements P ρ ∈ P(S(t, x)) such that Ã
S(t,x)
T (P ρ) is bounded

and Tt is the set of all stopping times valued in [0, T ].

Following Mnif [14], the dual problem of (2.5) is written as:

ṽ(t, y) := inf
Y ∈Y0(t)

E

[

Ũ(yY ρ,D
T ) +

∫ T

t

yY ρ,D
u (α− β + (β −

∫

C

ρu(z) z π(dz))+)du

]

, (3.4)

where

Y0(t) := {Y ρ,D = ZρD, Zρ ∈ P0(t, x), D ∈ Dt},

andDt the set of nonnegative, nonincreasing predictable and càdlàg processesD = (Ds)t≤s≤T

with Dt = 1. We shall adopt a dynamic programming principle approach to study the dual

value function (3.4). We recall the dynamic programming principle for our stochastic con-

trol problem: for any stopping time 0 ≤ τ ≤ T , 0 ≤ t ≤ T and 0 ≤ h ≤ T − t,

ṽ(t, y) = inf
Y ρ,D∈Y0(t)

E
[

ṽ
(

(t+ h) ∧ τ, Y
ρ,D
(t+h)∧τ

)

(3.5)

+

∫ (t+h)∧τ

t

Y ρ,D
u

(

α− β +

(

β −

∫

C

ρu(z) z π(dz)

)

+

)

du

]

,

where a ∧ b = min(a, b) ( see e.g. Fleming and Soner [8]).

We denote by Lt the set of adapted processes (Ls)t≤s≤T with possible jump at time s = t

and satisfying the equation

dLs = −
dDs

Ds
1{Ds>0}, t ≤ s ≤ T, Lt− = 0. (3.6)
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The Hamilton Jacobi Bellman Variational Inequality arising from the dynamic program-

ming principle (3.5) is written as

min

{

∂ṽ

∂t
(t, y) +H

(

t, y, ṽ,
∂ṽ

∂y

)

,−
∂ṽ

∂y
(t, y)

}

= 0, (t, y) ∈ [0, T ) × (0,∞), (3.7)

with terminal condition

ṽ(T, y) = Ũ(y) , y ∈ (0,∞), (3.8)

where

H

(

t, y, ṽ,
∂ṽ

∂y

)

:= inf
ρ∈Σ

{

Aρ

(

t, y, ṽ,
∂ṽ

∂y

)

+ y

(

α− β + (β −

∫

C

ρ(z) z π(dz))+

)}

,

Aρ

(

t, y, ṽ,
∂ṽ

∂y

)

:=

∫

C

(

ṽ(t, ρ(z)y) − ṽ(t, y)− (ρ(z)− 1)y
∂ṽ

∂y
(t, y)

)

π(dz),

and Σ :=
{

ρ positive Borel function defined on C s.t.
∫

C

(

| log ρ(z)|+ ρ(z)
)

π(dz) < ∞
}

.

This divides the time-space solvency region [0, T ) × (0,∞) into a no-jump region

R1 =

{

(t, y) ∈ [0, T ]× (0,∞), s.t.
∂ṽ

∂t
(t, y) +H

(

t, y, ṽ,
∂ṽ

∂y

)

= 0

}

and a jump region

R2 =

{

(t, y) ∈ [0, T ] × (0,∞), s.t.
∂ṽ

∂y
(t, y) = 0

}

.

In Mnif [14], The dual value function is characterized as the unique viscosity solution of the

associated HJBVI (3.7)- (3.8) in the set of functions Dγ([0, T ]× (0,∞)) defined as follows:

Dγ([0, T ]× (0,∞)) :=
{

f : [0, T ] ∗ ×(0,∞) → IR such that ,

sup
y>0

|f(t, y)|

y + y−γ
< ∞ and sup

x>0,y>0

|f(t, x)− f(t, y)|

|x− y|(1 + x−(γ+1) + y−(γ+1))
< ∞

}

.

4 Verification Theorem

The main result of this section is the following verification theorem. It characterizes the

optimal wealth process. When we model the jump by a Poisson process, the optimal

insurance strategy is expressed in terms of the HJBVI solution. Our stochastic control

problem is unusual, in the sense that, the control ρ is unbounded predictable process and

L, given by (3.6), is also unbounded. For technical reason, we need to add the following

integrability conditions that we will check later in the case of Poisson process.

Assumption 4.1 we fix t ∈ [0, T ] and (ρ,D) ∈ Ut ×Dt. We assume that :

(i) for all γ
′

≥ 2γ, we have E[exp(γ
′

LT )] < ∞,

(ii) there exist two Borel functions C1ρ, C2ρ such that

C1ρ(z) ≤ ρs(z) ≤ C2ρ(z) ds⊗ π(dz) a.e., (s, z) ∈ [t, T ]× C,

∫

C
C1ρ(z)

−γ
′

π(dz) < ∞ and
∫

C
C2ρ(z)π(dz) < ∞.
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The following lemma states the growth condition of the dual value function ṽ.

Lemma 4.1 The dual value function ṽ is locally bounded and satisfies

sup
y>0

|ṽ(t, y)|

y + Ũ(y)
< ∞. (4.1)

Proof. See Appendix. 2

Theorem 4.1 Suppose that there exists a solution to the HJBVI (3.7), denoted by v̂ with

terminal condition

v̂(T, y) = Ũ(y) for all y ∈ (0,∞),

such that v̂ is continuously differentiable w.r.t t and y,
∂v̂

∂y
is continuously differentiable

w.r.t t and y in the no jump region R1 and v̂ satisfies the growth condition (4.1).

Suppose that Assumption 4.1 holds. Suppose further that there exist a Borel function ρ̂ ∈ Ut,

a process D̂ ∈ Dt, t ∈ [0, T ] and a positive real ŷ such that with probability 1 we have

(s, ŷŶs) ∈ R1 ds⊗ dP a.s. s ∈ [t, T ], (4.2)

∫ T

t

∂v̂

∂y
(s, ŷŶs−)Ŷs−dL̂s = 0, (4.3)

∂v̂

∂y
(t, ŷŶt) + x = 0, (4.4)

where Ŷ := Z ρ̂D̂ = ẐD̂. Then v̂ is the value function of the dual problem, (D̂, ρ̂) is the

solution of the dual problem. The optimal wealth process is given by:

X∗
s = −

∂v̂

∂y
(s, ŷŶs) ds ⊗ dP a.s. s ∈ [t, T ]. (4.5)

Proof. See Appendix 2

Remark 4.1 Hypothesis (4.2) means that ((s, ŷŶs))s∈[t,T ] stays in the no jump region

almost surely. The process might have jumps in the region R2 but reaches immediately the

region R1.

Remark 4.2 Hypothesis(4.3) means that the process D̂ regulates the process Ŷ and de-

creases only when the wealth process hits zero.
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Remark 4.3 If all the shocks have the same size denoted by δ, then the optimal insurance

strategy is given by

θ∗s =

∂v̂
∂y
(s, ρ̂sŷŶs−)−

∂v̂
∂y
(s, ŷŶs−)

δ
a.e. in s ∈ [t, T ]. (4.6)

From definition of L̂ (see assumption 4.3), L̂ decreases only on the set {∂v̂
∂y
(s, ŷŶs) = 0}

or on this set, we have ∂2v̂
∂y2

(s, ŷŶs) = 0 and so
∂2v̂

∂y2
(s, ŷŶs)D̂sdL̂s = 0. By Itô’s lemma we

obtain

dX∗
s =

∂2v̂

∂y2
(s, ŷŶs)ŶsdL̂s + ̺(ρ̂s − 1)ŷŶs

∂2v̂

∂y2
(s, ŷŶs)ds (4.7)

−
∂2v̂

∂s∂y
(s, ŷŶs)ds− (

∂v̂

∂y
(s, ρ̂sŷŶs−)−

∂v̂

∂y
(s−, ŷŶs−))dNs

= ̺(ρ̂s − 1)ŷŶs
∂2v̂

∂y2
(s, Ŷs)ds−

∂2v̂

∂s∂y
(s, ŷŶs)ds

− θ∗sδdNs.

Using Hypothesis (4.2), the regularity on the function v̂ and Itô’s lemma, we have

∂2v̂

∂y∂s
(s, ŷŶs−) + ̺(ρ̂s

∂v̂

∂y
(s, ρ̂sŷŶs−)−

∂v̂

∂y
(s, ŷŶs−)) (4.8)

− ̺(ρ̂s − 1)
∂v̂

∂y
(s, ŷŶs−)− ̺(ρ̂s − 1)ŷŶs−

∂2v̂

∂y2
(s, ŷŶs−)

+ (α− β + (β − ̺δρ̂s)+) = 0.

Plugging (4.8) into (4.7) and using (4.4), we obtain

X∗
s = x+

∫ s

t

(α − β + (β − ̺δρ̂u)+)du−

∫ s

t

θ∗uδdNu

+

∫ s

t

̺δρ̂uθ
∗
udu,

and so θ∗ is the optimal insurance strategy.

Remark 4.4 If all the shocks have the same size denoted by δ, then the set Ut is given by

Ut = {(ρs)t≤s≤T predictable process : ρs > 0, a.s., t ≤ s ≤ T and E[Zρ
T ] = 1}. In this case

Assumption 4.1(ii) is automatically checked.

Remark 4.5 Theorem 5.1 of Mnif and Pham [15] could be viewed as a dual verification

theorem which caracterizes the solution of the primal approach. The theorem 4.1 brings

a new information by using PDE arguments which concerns the wealth process and the

optimal strategy in the case of Poisson process.

Example 4.1 If all the shocks have the same size denoted by δ and if α = β = πδ (cheap

reinsurance), then the Hamiltonian H has the following expression

H

(

t, y, ṽ,
∂ṽ

∂y

)

= inf
ρ>0

{

π

(

ṽ(t, ρy)− ṽ(t, y)− (ρ− 1)y
∂ṽ

∂y
(t, y)

)

+ yβ(1− ρ)+

}

8



As it is seen in Lemma 4.1 in Mnif [14], the dual value function is convex in y and so

π

(

ṽ(t, ρy)− ṽ(t, y)− (ρ− 1)y
∂ṽ

∂y
(t, y)

)

+ yβ(1− ρ)+ ≥ 0

and the equality is obtained when ρ = 1. In this case H

(

t, y, ṽ,
∂ṽ

∂y

)

= 0. The solution of

the HJBVI (3.7) with terminal condition (3.8) is given by

ṽ(t, y) = Ũ(y),

and the solution of the dual problem is given by ρ̂ ≡ 1 and D̂ ≡ 1. From the Verification

Theorem the optimal wealth process is given by X∗ ≡ x, the insurance strategy θ∗ ≡ 0 and

so Assumption 4.1 is checked.

5 Numerical study

Here we restrict ourselves to the case where the integer valued random measure µ(dt, dz)

is a Poisson process with constant intensity π. All the claims have the same size denoted

by δ. Our purpose is to solve the following variational inequality:

min

{

∂ṽ

∂t
(t, y) + inf

ρ>0

{

Aρ(t, y, ṽ,
∂ṽ

∂y
) + y (α− β + (β − ρδπ)+)

}

,−
∂ṽ

∂y
(t, y)

}

= 0, (5.1)

for all (t, y) ∈ [0, T )× (0,∞), with terminal condition ṽ(T, y) = Ũ(y), where

Aρ(t, y, ṽ,
∂ṽ

∂y
) = π

(

ṽ(t, ρy)− ṽ(t, y)− (ρ− 1)y
∂ṽ

∂y
(t, y)

)

.

It is more appropriate to study numerically the function

J(t, y) := e−rtṽ(t, y), (5.2)

where r is a positive constant. We will explain in Remark 5.2 the advantage of the intro-

duction of the function J . We proceed with another technical change of variable which

brings [0, T ]× (0,∞) into [0, T ] × (0, 1), namely
{

ỹ = y
1+y

v̄(t, ỹ) = J(t, y).

The function v̄ satisfies

min

{

∂v̄

∂t
(t, ỹ) + inf

ρ>0

{

Āρ(t, ỹ, v̄,Dv̄) +
ỹ

(1− ỹ)
(α− β + (β − ρδπ)+)

}

,

−(1− ỹ)2Dv̄(t, ỹ)
}

= 0 (5.3)

for all (t, ỹ) ∈ [0, T )× (0, 1), where

Āρ(t, ỹ, v̄,Dv̄) = π

(

v̄(t,
ρỹ

1 + ỹ(ρ− 1)
)− v̄(t, ỹ)− (ρ− 1)(1 − ỹ)ỹDv̄(t, ỹ)

)

− rv̄(t, ỹ)
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and Dv̄ is the derivative of v̄ with respect to the state variable. The terminal condition is

given by

v̄(T, ỹ) =
e−rT ỹ−γ

γ(1 − ỹ)−γ
(5.4)

for all ỹ ∈ (0, 1).

In Mnif [14], we have proved that the dual value function (3.4), within a change of vari-

ables, is the unique viscosity solution of variational inequality (5.3). This solution can be

approximated by the following numerical method:

(i) approximate variational inequality (5.3) by using a consistent finite difference approx-

imation which satisfies the discrete maximum principle (DMP) ( see Lapeyre, Sulem and

Talay [13] ),

(ii) solve the discrete equation by means of the Howard algorithm (policy iteration) (see

Howard [11]). Finally a reverse change of variables is performed in order to display results

of variational inequality (5.1).

5.1 Finite difference approximation

Let h := (ht, hỹ) be the finite difference step in the time coordinate and the finite difference

step in the state coordinate. The step ht is defined by ht :=
T
N
, (N ∈ IN∗). Let M ∈ IN∗

be the number of discretization steps in the state coordinate ( hỹ is not uniform for all

elements of the grid). Let (ti, ỹj), 0 ≤ i ≤ N, 1 ≤ j ≤ M − 1 be the points of the grid

ΩN,M .We choose a fully implicit θ-scheme. We consider an approximation scheme of (5.3)

of the following form:

S(h, t, ỹ, v̄h(t, ỹ), v̄h) = 0, (t, ỹ) ∈ ΩN,M , (5.5)

where

S(h, t, ỹ, v̄h(t, ỹ), v̄h) := min
{ v̄h(t+ ht, ỹ)− v̄h(t, ỹ)

ht
− rv̄h(t, ỹ)

+ inf
ρ>0

{

π
(

v̄h(t, Pr
( ρỹ

1 + ỹ(ρ− 1)

)

)− v̄h(t, ỹ) + ((1− ρ)(1− ỹ)ỹ)+D+v̄
h(t, ỹ)

+ ((1 − ρ)(1− ỹ)ỹ)−D−v̄
h(t, ỹ)

)

+
ỹ

(1− ỹ)
(α− β + (β − ρδπ)+)

}

, −(1− ỹ)2Dv̄h(t, ỹ)
}

;

D+v̄
h(t, ỹ) :=

v̄h(t, ỹ + hỹ)− v̄h(t, ỹ)

hỹ
, D−v̄

h(t, ỹ) :=
v̄h(t, ỹ)− v̄h(t, ỹ − hỹ)

hỹ
,

((1− ρ)(1− ỹ)ỹ)+ = max ((1− ρ)(1 − ỹ)ỹ, 0) , ((1− ρ)(1− ỹ)ỹ)− = max (−(1− ρ)(1− ỹ)ỹ, 0)
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and (t, Pr
(

ρỹ
1+ỹ(ρ−1)

)

) is the projection of (t, ρỹ
1+ỹ(ρ−1)) on the grid. We take v̄h(ti, ỹM ) =

v̄h(ti, ỹM−2) for all 0 ≤ i ≤ N − 1. For terminal condition, we set

v̄h(T, ỹj) =
e−rT ỹ

−γ
j

γ(1 − ỹj)−γ
for all 1 ≤ j ≤ M − 1.

The approximation (5.5) leads to a system of N × (M − 1) equations with N × (M − 1)

unknowns {v̄h(ti, ỹj) , 0 ≤ i ≤ N − 1, 1 ≤ j ≤ M − 1}:

min

{

v̄h(ti+1, ỹj)− v̄h(ti, ỹj) + min
ρ∈Mρ

{

htĀ
ρ,ti v̄h(ti, ỹj) + htl

ρ(ỹj)
}

, B̄v̄h(ti, ỹj)

}

= 0, (5.6)

for all 0 ≤ i ≤ N − 1, 1 ≤ j ≤ M − 1, with terminal condition:

v̄h(T, ỹj) =
e−rT ỹ

−γ
j

γ(1− ỹj)−γ
for all 1 ≤ j ≤ M − 1,

where Mρ = {(ρij)0≤i≤N−1 , 1≤j≤M−1, ρij > 0}, Āρ,ti is the (M − 1) × (M − 1) matrix

associated to the approximation of the operator Āρ at time ti, l
ρ is (M − 1) vector such

that

lρ(ỹj) =
ỹj

1− ỹj
(α− β + (β − ρδπ)+), for all 1 ≤ j ≤ M − 1

and B̄ is a (M − 1) × (M − 1) matrix associated to the second term of our variational

inequality, which verifies















B̄(j, j) = − 1
ỹj−ỹj−1

for all 2 ≤ j ≤ M − 1

B̄(j, j − 1) = 1
ỹj−ỹj−1

for all 2 ≤ j ≤ M − 1

B̄(i, j) = 0 if not .

Let Ap denote the set of control functions ρ : ΩN,M −→ Mρ. The system of equations

(5.6) can be written as a system of N stationary inequalities:

min

{

v̄h,ti+1 − v̄h,ti + min
ρ∈Ap

{

htĀ
ρ,ti v̄h,ti + htl

ρ
}

, B̄v̄h,ti
}

= 0, (5.7)

for all i = 0...N − 1, with terminal condition:

v̄h,T = (
e−rT ỹ

−γ
j

γ(1 − ỹj)−γ
)j=1..M−1,

where v̄h,ti a vector which approximates (v̄(ti, ỹj))j=1...M−1.

The convergence of the numerical scheme in not proved in our situation as in the case of

Tourin and Zariphopoulou [17] ( They studied numerical schemes for investment consump-

tion models with transaction costs). The system of N stationary inequalities (5.7) can be

solved by Howard algorithms. We describe below this algorithm.
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Remark 5.1 Barles and Souganidis [1] proved that a numerical scheme consistent mono-

tone and stable converges to the unique viscosity solution of the HJB since a comparison

theorem holds for the limiting equation in class of bounded functions. In our case, the

dual value function is not bounded and it is not obvious that the semi-relaxed limits of our

sequence is in the space Dγ([0, T ] × (0,∞))

Remark 5.2 The introduction of the function J (see equality (5.2)), insures that the

matrix Āρ,ti , i = 0...N − 1 is diagonally dominant.

5.2 The Howard algorithm

To solve Equation (5.7), we use the Howard algorithm (see Lapeyre Sulem and Talay [13]),

also named policy iteration.

It consists on computing two sequences (ρti,n)n∈IN and (v̄h,ti,n)n∈IN , i = 0...N − 1, (starting

from v̄h,ti,1, i = 0...N − 1) defined by:

• Step 2n− 1. To v̄h,ti,n is associated another strategy ρti,n

ρti,n ∈ arg min
ρ∈Ap

{

Āρ,ti v̄h,ti,n + lρ,n
}

, i = 0...N − 1.

• Step 2n. To the strategy ρti,n, we compute a partition (Dn
1 ∪Dn

2 ) such that

v̄h,ti+1,n + (htĀ
ρti,n,ti − I)v̄h,ti,n + htl

ρti,n ≤ B̄v̄h,ti,n, i = 0...N − 1, on Dn
1 ,

v̄h,ti+1,n + (htĀ
ρti,n,iht − I)v̄h,ti,n + htl

ρiht,n ≥ B̄v̄h,ti,n, i = 0...N − 1, on Dn
2 .

The solution v̄h,ti,n+1 is obtained by solving two linear systems:

v̄h,ti+1,n+1 + (htĀ
ρti,n,ti − I)v̄h,ti,n+1 + htl

ρti,n = 0, i = 0...N − 1, on Dn
1 ,

and

B̄v̄h,ti,n+1 = 0, i = 0...N − 1, on Dn
2 .

• If |v̄h,ti,n+1 − v̄h,ti,n| ≤ ǫ , i = 0...N − 1, stop, otherwise, go to step 2n+ 1.

The convergence the Howard algorithm is obtained heuristically. We have no theoretical

result for the convergence. The matrix arising after the discretization of the HJBVI does not

satisfy the discrete maximum principle which is a sufficient condition for the convergence

of such algorithm.
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5.3 Algorithm for the optimal strategy

After the numerical resolution of Variational Inequality (5.3), we compute the optimal

strategy of insurance and the wealth process. From the Verification Theorem, we need to

evaluate ŷ and to construct the process (Ŷti)0≤i≤N−1.

The optimal insurance strategy and the wealth process are given by formulas (4.6) and

(4.5). We describe below the algorithm.

First step: Given an initial wealth x,

• we compute ỹj0 s.t (0, ỹj0) ∈ ΩN,M and X̂(0, ỹj0) = x,

where X̂(ti, ỹj) = −(1− ỹj)
2
(

v̄(ti,ỹj)−v̄(ti,ỹj−1)
ỹj−ỹj−1

)

, 0 ≤ i ≤ N − 1 and 1 ≤ j ≤ M

• we compute ŷ =
ỹj0

1−ỹj0
.

Second step: Let Ẑ0 = D̂0 = 1. For i = 1 to N−1, we construct the process Ŷti = ŷẐtiD̂ti

as follows:

• We compute
Ŷti−1

1+Ŷti−1

and we select the nearest point of the grid to (ti,
Ŷti−1

1+Ŷti−1

). This

point will be denoted by (ti, ỹji).

• We determine the optimal control ρ which is obtained by Howard Algorithm at point

(ti, ỹji). We denote this control by ρ̂ji .

• We evaluate Ẑti = Ẑti−1
exp (−πh(ρ̂ji − 1))(1 + (ρ̂ji − 1)1{△µ(ti)=1}). We take Dti =

Dti−1
.

• We compute
ρ̂ji Ŷti−1

1+ρ̂ji Ŷti−1

(resp
Ŷti

1+Ŷti

) and we select the point of the grid which is the

nearest to (ti
ρ̂ji Ŷti−1

1+ρ̂ji Ŷti−1

) (resp
ŷŶti

1+ŷŶti

) . This point will be denoted by (ti, ỹj′i
) (resp

(ti, ỹj′′i
)).

• We make the following instruction: while X̂(ti, ỹj′′i
) < 0 , we decrease the process

Dti . We denote by (ti, ỹj′′
i
) the new point of the grid.

• The optimal insurance strategy and the optimal wealth process are given by

θ∗ti =
−X̂(ti, ỹ

′

j) + X̂(ti, ỹj)

δ
, (5.8)

X∗
ti
= X̂(ti, ỹ

′′

j ). (5.9)

5.4 Numerical results

Equation (5.1) is solved by using the Howard algorithm. Numerical tests are performed

with the parameters given in Table 1. We suppose that there are two claims at times t1 =
2
5
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Table 1: Values for the model’s parameters

η α β r δ π T

0.5 2.1 2.15 0.05 1 2 1

and t2 =
4
5 . We first choose a uniform discretization step in the state coordinate. It is equal

to hỹ = p = 1
100 . For the discretization step in time, we take ht =

1
50 . We compute the

value of ŷ and the corresponding index j0. Then we choose two discretization steps in the

state coordinate. If ỹ ∈ (0, (j0 − 2)p] ∪ [(j0 + 2)p, 1), we keep the same discretization step.

If ỹ ∈ [(j0 − 2)p, (j0 + 2)p], the discretization step is equal to hỹ = 1
4000 . We mention that

the operation of choosing the point nearest to the grid is delicate which oblige us to reduce

the discretization step in the zone [(j0 − 2)p, (j0 + 2)p]. The optimal insurance strategy

and the optimal wealth process are displayed in Figures 1 and 2. At the claim, the optimal

wealth process decreases only by the amount of the shock covered by the agent. We observe

in Figure 1, that after the first claim (t = 0.4), the optimal insurance strategy falls, then

it increases until a certain level reached at time t = 0.6. The agent who expects a new

claim (the intensity is equal to 2), decides to reduce the fraction of the insurance strategy

until a lower level then it increases. This explains the lack of monotony of the optimal

insurance strategy. After the second claim (t = 0.8), the fraction of risk covered by the

agent decreases again, then when we approach the horizon T , it increases. When we replace

formulas (5.9) and (5.8) in the expression of the wealth process (2.1), we obtain

sup
1≤i≤N

|X∗
ti
−X∗

ti−1
− (α− β(1 − θ∗ti))△ti + θ∗ti△µ(ti)| = 0.0107
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6 Appendix

6.1 Proof of Lemma 4.1

Since the controls ρs = 1 and Ds = 1, s ∈ [t, T ] lie in Ut ×Dt, we have

ṽ(t, y) ≤ Ũ(y) +Ky, (6.1)

where K is a constant.

Let (Zn := Zρn ,Dn) be a minimizing sequence of ṽ(t, y). From the definition of these

minimizing sequences, there exist ǫn and n0 ∈ IN such that ǫn −→ 0 when n −→ ∞ and

for all n ≥ n0, we have

ṽ(t, y) ≥ E
[

Ũ(yZn
TD

n
T )
]

+ yE

[
∫ T

t

Zn
uD

n
u(α− β + (β −

∫

C

ρnu(z) z π(dz))+)du

]

− ǫn. (6.2)

Since ǫn −→ 0 when n −→ ∞, there exists n1 ∈ IN such that for all n ≥ n1, we have

ǫn ≤ Ũ(y) + y. We recall That Ũ(y) ≥ U(0+) ≥ 0 and so Ũ(y) + y > 0 since y > 0. Using

the boundedness of Dn, Jensen’s inequality and the martingale property of Zn, we have:

E
[

Ũ(yZn
TD

n
T )
]

≥ Ũ(yE [Zn
T ])

≥ Ũ(y). (6.3)

For the second term of the r.h.s of inequality (6.2), since Dn
s ≤ 1 for all s ∈ [t, T ], using

Fubini’s theorem and the martingale property of Zn, we have

E

[
∫ T

t

yZn
uD

n
u(α− β + (β −

∫

C

ρu(z) z π(dz))+)du

]

≥ y(α− β)E

[
∫ T

t

Zn
uD

n
udu

]

≥ y(α− β)

∫ T

t

E [Zn
u ] du

≥ K ′y, (6.4)

where K ′ is a constant independent of y. Inequalities (6.3) and (6.4) imply that

ṽ(t, y) ≥ Ũ(y) +K ′y. (6.5)

From inequalities (6.1) and (6.5), we deduce that

sup
y>0

|ṽ(t, y)|

y + Ũ(y)
< ∞ (6.6)

2
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6.2 Proof of Theorem 4.1

The proof of the theorem is broken in three steps. Let t ∈ [0, T ] and y ∈ (0,∞).

First step: We show that

v̂(t, y) ≤ inf
Y ρ,D∈Y0(t)

E

[

Ũ(yY ρ,D
T ) +

∫ T

t

yY ρ,D
u (α− β + (β −

∫

C

ρu(z) z π(dz))+)du

]

. (6.7)

Let Y ρ,D ∈ Y0(t). Let

τn = inf{u ≥ t such that
∣

∣

∣

∫

C

v̂(u, ρu(z)yY
ρ,D

u−
)− v̂(u, yY ρ,D

u−
)π(dz)

∣

∣

∣
> n} ∧ T.

Applying the generalized Itô’s formula, we have

v̂(T ∧ τn, yY
ρ,D
T∧τn

) +

∫ T∧τn

t

yY ρ,D
u (α− β + (β −

∫

C

ρu(z) z π(dz))+)du

= v̂(t, y) +

∫ T∧τn

t

∂v̂

∂u
(u, yY ρ,D

u−
)du−

∫ T∧τn

t

∂v̂

∂y
(u, yY ρ,D

u−
)yY ρ,D

u−
dLu

−

∫ T∧τn

t

∫

C

∂v̂

∂y
(u, yY ρ,D

u−
)yY ρ,D

u−
(ρu(z)− 1)π(dz)du +

∑

t≤u≤T∧τn

(

v̂(u, yY ρ,D
u )− v̂(u, yY ρ,D

u−
)
)

+

∫ T∧τn

t

yY ρ,D
u (α− β + (β −

∫

C

ρu(z) z π(dz))+)du

and so we have

v̂(T ∧ τn, yY
ρ,D
T∧τn

) +

∫ T∧τn

t

yY ρ,D
u (α− β + (β −

∫

C

ρu(z) z π(dz))+)du

= v̂(t, y) +

∫ T∧τn

t

(

∂v̂

∂u
(u, yY ρ,D

u ) +Aρ(u, yY ρ,D
u , v̂,

∂v̂

∂y
)

)

ds (6.8)

+

∫ T∧τn

t

yY ρ,D
u (α− β + (β −

∫

C

ρu(z) z π(dz))+)du−

∫ T∧τn

t

∂v̂

∂y
(u, yY ρ,D

u−
)yY ρ,D

u−
dLu

+

∫ T∧τn

t

∫

C

v̂(u, ρu(z)yY
ρ,D

u−
)− v̂(u, yY ρ,D

u−
)µ̃(du, dz).

Since v̂ is a classical solution of the variational inequality (3.7), we have

∂v̂

∂u
(u, yY ρ,D

u ) +Aρ(u, yY ρ,D
u , v̂,

∂v̂

∂y
) + yY ρ,D

u (α− β + (β −

∫

C

ρu(z) z π(dz))+) ≥ 0

and −
∂v̂

∂y
(u, yY ρ,D

u−
)Y ρ,D

u−
dLu ≥ 0 a.e. in u ∈ [t, T ].

Taking expectation in (6.8), we have

v̂(t, y) ≤ E

[

v̂(T ∧ τn, yY
ρ,D
T∧τn

) +

∫ T∧τn

t

Y ρ,D
u (α− β + (β −

∫

C

ρu(z) z π(dz))+)du

]

,

for all Y ρ,D ∈ Y0(t). It remains to show that

the family
(

ṽ(T ∧ τn, yY
ρ,D
T∧τn

)
)

n
is uniformly integrable under P. (6.9)
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We consider the function g(z) = zp, p > 1 will be chosen later, z ≥ 0. By using Itô’s

formula and since the function U is a power utility function, we have

g
(

Ũ(Y ρ,D
T )

)

= g(Ũ (y)) +

∫ T

t

γpg
(

Ũ(yY ρ,D
u )

)

dLu (6.10)

+

∫ T

t

∫

C

g
(

Ũ(yY ρ,D
u )

)

(

ρu(z)
−γp − 1

)

µ̃(du, dz)

+

∫ T

t

∫

C

g
(

Ũ(yY ρ,D
u )

)

(

ρu(z)
−γp − 1 + γp(ρu(z)− 1)

)

π(dz)du.

The solution of (6.10) is given by the Doléans-Dade exponential formula

g
(

Ũ(yY ρ,D
T )

)

= g(Ũ (y))Zρ
1T exp

(

γpLT +

∫ T

t

∫

C

(

ρu(z)
−γp − 1 + γp(ρu(z)− 1)

)

π(dz)du

)

,

≤
1

2
g(Ũ (y))

(

(Zρ
1T )

2 + exp

(

2γpLT + 2

∫ T

t

∫

C

(

ρu(z)
−γp − 1 + γp(ρu(z)− 1)

)

π(dz)du

)

)

where (Zρ
1u)u∈[t,T ] is a local martingale defined by

Z
ρ
1u = E

(
∫ u

t

∫

C

(

ρu(z)
−γp − 1

)

µ̃(du, dz)

)

.

We choose p = γ
′

2γ where γ
′

is defined in Assumption 4.1(i). From Assumption 4.1(ii) and

by Jensen inequality, we have

∫ T

0

∫

C

ρs(z)
−γpπ(dz)ds ≤

∫ T

0

(

∫

C

ρs(z)
−2γpπ(dz)

)
1

2

ds

and so by Assumption 4.1 there exists a positive constant C1 such that :

E
[

exp

(

2γpLT + 2

∫ T

0

∫

C

(

ρs(z)
−γp − 1 + γp(ρs(z) − 1)

)

π(dz)ds

)

]

≤ C1. (6.11)

From the definition of (Zρ
1s)s∈[t,T ], we have

Z
ρ
1s = 1 +

∫ s

t

∫

C

Z
ρ

1u−

(

ρu(z)
−γp − 1

)

µ̃(du, dz)

Taking expectation under P and using Assumption 4.1(ii), we obtain

E
[

(Zρ
1s)

2
]

≤ 2
(

1 +

∫ s

t

∫

C

|Zρ
1u|

2
(

ρu(z)
−γp − 1

)2
π(dz)du

)

≤ 2
(

1 + E

∫ s

t

|Zρ
1u|

2du
)

.

By Fubini’s theorem and Gronwall’s lemma , we have

E
[

(Zρ
1s)

2
]

≤ C1 (6.12)
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From inequalities (6.11) and (6.12), we obtain that

E
[

g
(

Ũ(yY ρ,D
T∧τn

)
)]

≤ C1g(Ũ (y)),

and so

sup
n∈IN

E
[

g
(

Ũ(yY ρ,D
T∧τn

)
)]

< ∞. (6.13)

Similarly, one can prove that sup
n∈IN

E
[

g
(

yY
ρ,D
T∧τn

)]

< ∞. Since
g(x)

x
−→ ∞ when x goes to

infinity and from the growth condition (4.1) , the property (6.9) holds. Sending n → ∞,

we have τn −→ ∞ P a.s. By dominated convergence theorem, we have (6.7).

Second step: We show that v̂ is the dual value function and (ρ̂, D̂) is the solution of the

dual problem i.e:

v̂(t, y) = E

[

Ũ(yŶ t
T ) +

∫ T

t

yŶ t
u(α− β + (β −

∫

C

ρ̂u(z) z π(dz))+)du
∣

∣ŷŶt = y

]

,(6.14)

where Y t
s := Ŷs

Ŷt
, s ∈ [t, T ]. We consider the processes ρ̂ and D̂ and the positive number ŷ

such that (4.2) and (4.3) hold. Then, we have

∂v̂

∂u
(u, ŷŶu) +Aρ(u, ŷŶu, v̂,

∂v̂

∂y
) + ŷŶu(α− β + (β −

∫

C

ρu(z) z π(dz))+) = 0

and −
∂v̂

∂y
(u, ŷŶu−)Ŷu−dLu = 0 a.e. in u ∈ [t, T ].

Let

τ̂n = inf{u ≥ t such that
∣

∣

∣

∫

C

v̂(s, ŷρ̂s(z)Ŷs)− v̂(s, ŷŶs)π(dz)
∣

∣

∣
≥ n}.

Taking expectation in (6.8), we have

v̂(t, y) = E

[

v̂(T ∧ τ̂n, yŶ
t
T∧τ̂n) +

∫ T∧τ̂n

t

ŷŶ t
s (α− β + (β −

∫

C

ρ̂s(z) z π(dz))+)ds
∣

∣ŷŶt = y

]

.(6.15)

Since the family
(

v̂(T ∧ τ̂n, yŶ
t
T∧τ̂n

)
)

n
is uniformly integrable under P , equation (6.15)

implies (6.14) and so (ρ̂, D̂) is the solution of the dual problem.

Third step: We show that X∗ defined by X∗
s := −

∂v̂

∂y
(s, ŷŶs), s ∈ [t, T ] is the solution of

the primal problem.

Following same arguments as in Lemma 6.6 of Mnif and Pham [15], we have from (6.14):

∂v̂

∂y
(t, y) = −E

[

Ŷ t
T I(yŶ

t
T )−

∫ T

t

Ŷ t
u(α− β + (β −

∫

C

ρ̂u(z) z π(dz))+)du

]

, (6.16)

J(I(yŶ t
T )) = −

∂v̂

∂y
(t, y) and in particular I(yŶ t

T ) ∈ C+(t,−
∂v̂

∂y
(t, y)) (see characterization

3.3). Moreover, from definition of Ũ and (2.4), we have for all H ∈ C+(t, x) :

U(H) ≤ Ũ(yŶ t
T ) + yŶ t

TH

= U(I(yŶ t
T ))− yŶ t

T I(yŶ
t
T ) + yŶ t

TH.
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Hence, by taking expectation, we obtain :

E[U(H)] ≤ E[U(I(yŶ t
T ))] + y

(

J(H) +
∂v̂

∂y
(t, y)

)

≤ E[U(I(yŶ t
T ))],

where we used expression of
∂v̂

∂y
(t, y) given in equation (6.16), expression of J(H) in Lemma

3.2 in Mnif [14], and the fact that J(H) ≤ x = −
∂v̂

∂y
(t, y) (see equality (4.4)). From

characterization 3.3, there exists θ∗ ∈ A(t, x) such that :

I(yŶ t
T ) ≤ X

t,x,θ∗

T , a.s. (6.17)

Since Ŷ.X
t,x,θ∗

. −
∫ .

t
Ŷu(α−β+(β−

∫

C
ρ̂u(z) z π(dz))+)du is a supermartingale under P (see

Lemma 3.1 in Mnif [14]), we have :

E

[

Ŷ t
TX

t,x,θ∗

T −

∫ T

t

Ŷu(α− β + (β −

∫

C

ρ̂u(z) z π(dz))+)du

]

≤ x. (6.18)

From equation (6.16), and by (6.17), we actually have

Ŷ t
TX

t,x,θ∗

T = Ŷ t
T I(yŶ

t
T ) a.s.

and equality in (6.18). Therefore Ŷ.X
t,x,θ∗

. −
∫ .

t
Ŷu(α − β + (β −

∫

C
ρu(z) z π(dz))+)du is a

martingale under P , and so relation X∗
s = −

∂v̂

∂y
(s, ŷŶs) = Xt,x,θ∗

s holds for all s ∈ [t, T ]. 2
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