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We study the continuous-variable quantum teleportation ofstates, statistical moments of observables, and
scale parameters such as squeezing. We investigate the problem both in ideal and imperfect Vaidman-
Braunstein-Kimble protocol setups. We show how the teleportation fidelity is maximized and the difference
between output and input variances is minimized by using suitably optimized entangled resources. Specifically,
we consider the teleportation of coherent squeezed states,exploiting squeezed Bell states as entangled resources.
This class of non-Gaussian states, introduced in References [1, 2], includes photon-added and photon-subtracted
squeezed states as special cases. At variance with the case of entangled Gaussian resources, the use of entan-
gled non-Gaussian squeezed Bell resources allows for different optimization procedures that lead to inequivalent
results. Performing two independent optimization procedures one can either maximize the state teleportation
fidelity, or minimize the difference between input and output quadrature variances. The two different procedures
are compared depending on the degrees of displacement and squeezing of the input states and on the working
conditions in ideal and non-ideal setups.

PACS numbers: 03.67.Hk, 03.67.Mn, 42.50.Pq

I. INTRODUCTION

Non-Gaussian quantum states, endowed with properly en-
hanced nonclassical properties, may constitute powerful re-
sources for the efficient implementation of quantum informa-
tion, communication, computation and metrology tasks [1–
13]. Indeed, it has been shown that, at fixed first and second
moments, Gaussian statesminimizevarious nonclassical prop-
erties [14, 15]. Therefore, many theoretical and experimental
efforts have been made towards engineering and controlling
highly nonclassical, non-Gaussian states of the radiationfield
(for a review on quantum state engineering, see e.g. [16]).
In particular, several proposals for the generation of non-
Gaussian states have been presented [17–23], and some suc-
cessful ground-breaking experimental realizations have been
already performed [24–29]. Concerning continuous-variable
(CV) quantum teleportation, to date the experimental demon-
stration of the Vaidman-Braunstein-Kimble (VBK) teleporta-
tion protocol [30, 31] has been reported both for input coher-
ent states [32–36], and for squeezed vacuum states [37, 38].In
particular, Ref. [38] has reported the teleportation of squeez-
ing, and consequently of entanglement, between upper and
lower sidebands of the same spatial mode. It is worth to re-
mark that the efficient teleportation of squeezing, as well as
of entanglement, is a necessary requirement for the realiza-
tion of a quantum information network based on multi-step
information processing [39].

In this paper, adopting the VBK protocol, we study in full
generality, e.g. including loss mechanisms and non-unity
gain regimes, the teleportation of input single-mode coherent
squeezed states using as non-Gaussian entangled resourcesa
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class of non-Gaussian entangled quantum states, the class of
squeezed Bell states [1, 2]. This class includes, for specific
choices of the parameters, non-Gaussian photon-added and
photon-subtracted squeezed states. In tackling our goal, we
use the formalism of the characteristic function introduced in
Ref. [40] for an ideal protocol, and extended to the non-ideal
instance in Ref. [2]. Here, in analogy with the teleportation
of coherent states, we first optimize the teleportation fidelity,
that is, we look for the maximization of the overlap between
the input and the output states. But the presence of squeez-
ing in the unknown input state to be teleported prompts also
an alternative procedure, depending on the physical quanti-
ties of interest. In fact, if one cares about reproducing in the
most faithful way the initial state in phase-space, then thefi-
delity is the natural quantity that needs to be optimized. On
the other hand, one can be interested in preserving as much
as possible the squeezing degree at the output of the teleporta-
tion process, even at the expense of the condition of maximum
similarity between input and output states. In this case, one
aims at minimizing the difference between the output and in-
put quadrature averages and the quadrature variances. It isim-
portant to observe that this distinction makes sense only ifone
exploits non-Gaussian entangled resources endowed with tun-
able free parameters, so that enough flexibility is allowed to
realize different optimization schemes. Indeed, it is straight-
forward to verify that this is impossible using Gaussian en-
tangled resources. We will thus show that exploiting non-
Gaussian resources one can identify the best strategies forthe
optimization of different tasks in quantum teleportation,such
as state teleportation vs teleportation of squeezing. Compari-
son with the same protocols realized using Gaussian resources
will confirm the greater effectiveness of non-Gaussian states
vs Gaussian ones as entangled resources in the teleportation
of quantum states of continuous variable systems.

The paper is organized as follows. In Section II, we intro-
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duce the single-mode input states and the two-mode entangled
resources, and we recall the basics of both the ideal and the
imperfect VKB quantum teleportation protocols. With respect
to the instance of Gaussian resources (twin beam), the further
free parameters of the non-Gaussian resource (squeezed Bell
state) allow for an optimization procedure to improve the ef-
ficiency of the protocols. In Section III we investigate the
optimization procedure based on the maximization of the tele-
portation fidelity. We then analyze an alternative optimization
procedure leading to the minimization of the difference be-
tween the quadrature variances of the output and input fields.
This analysis is carried out in Section IV. We show that, un-
like Gaussian resources, in the instance of non-Gaussian re-
sources the two procedures lead to different results and, more-
over, always allow to improve on the optimization procedures
that can be implemented with Gaussian resources. Finally, in
Section V we draw our conclusions and discuss future out-
looks.

II. TELEPORTATION OF SQUEEZED COHERENT
STATES USING SQUEEZED BELL RESOURCES

In this Section, we briefly recall the basics of the ideal and
imperfect VBK CV teleportation protocols (for details see
Ref. [2]). The scheme of the (CV) teleportation protocol is
the following. Alice wishes to send to Bob, who is at a re-
mote location, a quantum state, drawn from a particular set
according to a prior probability distribution. The set of in-
put states and the prior distribution are known to Alice and
Bob, however the specific state to be teleported that is pre-
pared by Alice remains unknown. Alice and Bob share a re-
source, e.g. a two-mode entangled state. The input state and
one of the modes of the resource are available for Alice, while
the other mode of the resource is sent to Bob. Alice performs
a suitable (homodyne) Bell measurement, and communicates
the result to Bob exploiting a classical communication chan-
nel. Then Bob, depending on the result communicated by Al-
ice, performs a local unitary (displacement) transformation,
and retrieves the output teleported state. The non-ideal (real-
istic) teleportation protocol includes mechanisms of lossand
inefficiency: the photon losses occurring in the realistic Bell
measurements, and the noise arising in the propagation of op-
tical fields in noisy channels (fibers) when the second mode
of the resource is sent to Bob. The photon losses occurring
in the realistic Bell measurements are modeled by placing in
front of an ideal detector a fictitious beam splitter with non-
unity transmissivityT 2 (and corresponding non-zero reflec-
tivity R2 = 1 − T 2) [41]. The propagation in fiber is mod-
eled by the interaction with a Gaussian bath with an effective
photon numbernth, yielding a damping process with inverse-
time rateγ [42, 43]. Denoting byin the input field mode,
and by1 and2, respectively, the first and the second mode
of the entangled resource, the decoherence due to imperfect
photo-detection in the homodyne measurement performed by
Alice involves the input field modein, and one mode of the
resource, e.g. mode1. Throughout, we assume a pure entan-
gled resource. Indeed, it is simple to verify that considering

mixed (impure) resources is equivalent to a consider a suit-
able nonvanishing detection inefficiencyR [2]. The degra-
dation due to propagation in fiber affects the other mode of
the resource, e.g. mode2, which has to reach Bob’s remote
place at the output stage. Denoting now byρin = |φ〉in in〈φ|
andρres = |ψ〉12 12〈ψ| the projectors corresponding, respec-
tively, to a generic pure input single-mode state and a generic
pure two-mode entangled resource, the characteristic function
χout of the single-mode output fieldρout can be written as [2]:

χout(α) = Tr[D(α)ρout]

= e−Γτ,R|α|2χin (gT α)χres

(

gT α∗; e−
τ
2 α

)

,
(1)

whereD(α) = eαa
†
out+α∗aout is the Glauber displacement

operator,χin = Tr[D(α)ρin] is the characteristic function
of the input state,χres = Tr[D(α)ρres] is the characteristic
function of the resource,g is the gain factor of the protocol
[44], τ ≡ γt is the scaled dimensionless time proportional to
the fiber propagation length, and the functionΓτ,R is defined
as:

Γτ,R = (1− e−τ )

(

1

2
+ nth

)

+ g2R2 . (2)

We assume in principle to have some knowledge about the
characteristics of the experimental apparatus: the inefficiency
R (orT ) of the photo-detectors, and the loss parametersτ and
nth of the noisy communication channel.

We consider as input state a single-mode coherent and
squeezed (CS) state|ψCS〉in with unknown squeezing param-
eter(ε = s eiϕ) and unknown coherent amplitudeβ. We then
consider as non-Gaussian entangled resource the two-mode
squeezed Bell (SB) state|ψSB〉12, defined as [1, 2]:

|ψCS〉in = D(β)S(ε)|0〉in , (3)

|ψSB〉12 = S12(ζ){cos δ|0, 0〉12 + eiθ sin δ|1, 1〉12} . (4)

HereD(β) = eβa
†
in

+β∗ain is, as before, the displacement op-

erator,S(ε) = e−
1

2
εa†2

in
+ 1

2
ε∗a2

in is the single-mode squeezing

operator,S12(ζ) = e−ζa†
1
a†
2
+ζa1a2 is the two-mode squeez-

ing operator(ζ = reiφ), with aj denoting the annihilation
operator for modej (j = in, 1, 2), |m,n〉12 ≡ |m〉1 ⊗ |n〉2
is the two-mode Fock state (of modes 1 and 2) withm pho-
tons in the first mode andn photons in the second mode, and
θ andδ are two intrinsic free parameters of the resource en-
tangled state, in addition tor andφ, which can be exploited
for optimization. Note that particular choices of the angleδ
in the class of squeezed Bell states Eq. (4) allow to recover
different instances of two-mode Gaussian and non-Gaussian
entangled states: forδ = 0 the Gaussian twin beam (TwB);
for δ = arccos

[

(cosh 2r)−1/2 sinh r
]

and θ = φ − π the
two-mode photon-added squeezed (PAS) state|ψPAS〉12; for
δ = arccos

[

(cosh 2r)−1/2 cosh r
]

andθ = φ − π the two-
mode photon-subtracted squeezed (PSS) state|ψPSS〉12. The
last two non-Gaussian states are defined as:

|ψPAS〉12 = (cosh 2r)−1/2a†1a
†
2S12(ζ)|0, 0〉12 , (5)

|ψPSS〉12 = (cosh 2r)−1/2a1a2S12(ζ)|0, 0〉12 , (6)
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object parameter description

input state
β displacement

s squeezing degree

ϕ squeezing phase

two-mode resource state

r squeezing degree

φ squeezing phase

δ mixing angle

θ mixing phase

teleportation apparatus

R=
√
1− T 2 detection inefficiency

τ fiber loss factor

nth fiber bath temperature

g gain of the protocol

TABLE I: Summary of the notation employed throughout this work
to describe the different parameters that characterize theinput coher-
ent squeezed (CS) states [Eq. (3)], the shared entangled two-mode
squeezed Bell (SB) resources [Eq. (4)], and the characteristics of
non-ideal teleportation setups [2]. See text for further details on the
role of each parameter.

and are already experimentally realizable with current tech-
nology [24–28].

In the following Section we study, in comparison with the
instance of two-mode Gaussian entangled resources, the per-
formance of the optimized two-mode squeezed Bell states
when used as entangled resources for the teleportation of in-
put single-mode coherent squeezed states. For completeness,
in the same context we make also a comparison with the per-
formance, as entangled resources, of the more specific real-

izations (5), (6). The characteristic functions of states (3), (4),
(5), and (6) are computed and their explicit expressions are
given in Appendix A.

For ease of reference, table I provides a summary of the pa-
rameters associated with the input states, the shared resources,
and the sources of noise in the teleportation protocol.

III. OPTIMAL TELEPORTATION FIDELITY

The commonly used measure of the success probability in
the teleportation protocol is the fidelity of teleportation[45],
F = Tr[ρinρout]. In the formalism of the characteristic func-
tion the fidelity reads

F =
1

π

∫

d2α χin(α)χout(−α) , (7)

whereχin(α) is the characteristic function of the single-mode
input stateρin = |ψCS〉in in〈ψCS |, Eq. (3), andχout(α) is the
characteristic function for the output teleported state, Eq. (1).
In this Section, we will make use of Eq. (7) to analyze the
efficiency of the CV teleportation protocol.

In the instance of non-Gaussian squeezed Bell resources
(4), at fixed squeezing parameter, the optimization procedure
amounts to the maximization of the teleportation fidelity (7)
over the free parameters of the entangled resource. It can be
shown that the optimal choice for the phasesφ andθ is φ = π
andθ = 0. The analytic expression for the fidelityFCS of the
non-ideal quantum teleportation of coherent squeezed states
using squeezed Bell resources reads

FCS =
4√
Λ1Λ2

e
ω2
1

Λ1
−ω2

2

Λ2

{

1 + e−(2r+τ) sin δ(∆2 cos δ −∆1 sin δ)

[

1

Λ1

(

1 +
2ω2

1

Λ1

)

+
1

Λ2

(

1− 2ω2
2

Λ2

)]

+
1

4
e−2(2r+τ)∆2

2 sin
2 δ

[

1

Λ2
1

(

3 +
12ω2

1

Λ1
+

4ω4
1

Λ2
1

)

+
1

Λ2
2

(

3− 12ω2
2

Λ2
+

4ω4
2

Λ2
2

)

(8)

+
2

Λ1Λ2

(

1 +
2ω2

1

Λ1
− 2ω2

2

Λ2
− 4ω2

1ω
2
2

Λ1Λ2

)]}

,

where, introducing̃g = gT , the quantitiesΛ1, Λ2, ∆1, ∆2,
ω1, andω2 are defined by the following relations:

∆1 = 1 + e4r + 2e
τ
2 (1− e4r)g̃ + eτ (1 + e4r)g̃2 ,

∆2 = 1− e4r + 2e
τ
2 (1 + e4r)g̃ + eτ (1 − e4r)g̃2 ,

Λ1 = e−2r−τ∆1 + 2e2s(1 + g̃2) + 4Γτ,R ,

Λ2 = e−2r−τ∆1 + 2e−2s(1 + g̃2) + 4Γτ,R ,

ω2
1 = (1− g̃)2(β − β∗)2 , ω2

2 = (1− g̃)2(β + β∗)2 ,

g̃ = gT . (9)

For different choices ofδ in Eq. (9), see Section II, one
obtains the teleportation fidelities associated to photon-added

and photon-subtracted squeezed resource states. Let us ob-
serve that the fidelity in Eq. (9) depends both on the input
coherent amplitudeβ, and on the input single-mode squeez-
ing parameters, while it is independent of the input squeezing
phaseϕ. Once again, it is worth stressing that, in the telepor-
tation paradigm, the input state is unknown and only partial
(probabilistic) knowledge on the alphabet of input states is ad-
mitted. It is thus required, in principle, to assume teleportation
protocols independent of the input parameters, as it turns out
to be the case for the VBK protocol with Gaussian entangled
resources and input coherent states. However, in more general
cases, one can study the behavior of the so-called one-shot fi-
delity, that is the teleportation success probability at specific
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values of the input parameters. Suitable averages of the one-
shot fidelity over the set of input states and parameters, ac-
cording to an assigned prior distribution, will then resultin
the average quantum teleportation fidelity. The latter quantity
can then be confronted with so-called classical fidelity thresh-
olds (benchmarks) that correspond to the maximum achiev-
able average fidelity between the input state (measured by Al-
ice in order to achieve an optimal estimation of it) and the out-
put state (prepared by Bob according to Alice’s measurement
outcomes), without the use of any shared entanglement [45].
While teleportation benchmarks are available for the cases
of coherent input states (with completely unknownβ) [46],
purely squeezed input states (withβ = ϕ = 0 and completely
unknowns) [47], as well as for states with known squeezing
degree and unknown displacement and phase [48], a bench-
mark for the case of input states with totally unknown dis-
placement and squeezing has not yet been derived, and stands
as a challenging problem in quantum estimation theory.

Henceforth, assuminga priori that the input parameters
(displacement and squeezing degree) have a uniform distri-
bution, we adopt then the following approach to optimize the
quantum teleportation fidelity. We exploit a non-unity gain
strategy to remove at least theβ-dependence in the one-shot
fidelity; then, we study the behavior of theβ-independent one-
shot fidelity for specific values of the input squeezing parame-
ter s, in order to identify an effective,s-independent approxi-
mation. Indeed, fixing the gaing at the valueg = 1/T (g̃ = 1)
in Eq. (9) yields theβ-independent fidelityFS:

FS =
4√
Λ1Λ2

{

e−2(2r+τ)

4
∆2

2 sin
2 δ

(

3

Λ2
1

+
3

Λ2
2

+
2

Λ1Λ2

)

+e−(2r+τ) sin δ(∆2 cos δ −∆1 sin δ)

(

1

Λ1
+

1

Λ2

)

+1

}

, (10)

where the quantitiesΛ1, Λ2, ∆1, ∆2, ω1, andω2 are defined
in Eq. (9). For different choices ofδ (see Section II), one ob-
tains the teleportation fidelities associated to the use of differ-
ent Gaussian and non-Gaussian entangled resources: the twin
beam, the photon-added, and the photon-subtracted squeezed
states. For such resources no optimization procedure is possi-
ble asδ is a specific function ofr. Instead, the optimization of
the fidelity (10) with respect to the free non-Gaussian param-
eterδ identifies the optimal squeezed Bell resource associated
to the optimal value:

δopt=
1

2
arctan

[

4∆2Λ1Λ2(Λ1+Λ2)
4∆1Λ1Λ2(Λ1+Λ2)−e−2r−τ∆2

2
(3Λ2

1
+2Λ1Λ2+3Λ2

2
)

]

.

(11)
Let us notice that, forτ = nth = R = 0 (ideal protocol) and
s = 0 (input coherent states), Eq. (11) reduces to [1]:

δopt =
1

2
arctan

[

1 + e−2r
]

. (12)

The displacement-independent one-shot fidelityFS and the
optimal angleδopt are still dependent ons, the input squeez-
ing. Unfortunately, the optimization of the non-Gaussian

0 10 20

0.5

0.9

s HdBL

FS

FIG. 1: (Color online) One-shot fidelityFS at fixed s, and as a
function of the angleδ parameterized bȳs, expressed in dB, i.e.
δ(s̄) = δsubopt, see Eq. (13), both in the instance of the ideal pro-
tocol τ = nth = R = 0 (full lines), and of a non-ideal protocol,
with τ = 0.1, nth = 0, andR2 = 0.05 (dashed lines). The one-shot
fidelities are drawn for three different values of the input squeezing:
s = 0, 5, 10 dB. The curves are ordered from top to bottom for
increasings.

resource based on the choice (11) as optimal angle would
be practically unfeasible because the input squeezing is not
known. In order to circumvent this problem, we introduce a
sub-optimal angleδsubopt such that

δsubopt ≡ δopt
∣

∣

s=s̄
, (13)

wheres̄ is a fixed effective value of the input squeezing cho-
sen, according to a suitable criterion that will be clarifiedbe-
low, in the range of possible values of the squeezing parameter
s.

In the following we will express the squeezing parameters
r ands in decibels, according to the relation [49]:

κ (dB) = 10 log10 e
2κ , κ = s, r . (14)

The practical rationale for introducing a sub-optimal charac-
terization in the maximization of the output fidelity is based
on the observation that the assumption of a uniform distribu-
tion of the squeezing is clearly unrealistic. It is instead very
sensible to consider that the range of possible values ofs falls
in a window[0, smax] dB. Indeed, to date, the experimentally
reachable values of squeezing fall roughly in such a range with
smax ≃ 10 dB [50].

We can then study the behavior ofFS corresponding to the
angleδsubopt as a function of the effective input squeezing pa-
rameters̄, at fixed squeezing parameters of the resource and
of the input state, respectivelyr ands, and at fixed loss param-
etersτ , nth, andR. Fig. 1 shows thatFS is quite insensitive
to the value of̄s. Assuming the realistic ranges ∈ [0, 10] dB,
the choice of a sub-optimal angle such thats̄ = 5 dB (aver-
age value of the interval), leads to a decrease of the optimized
fidelity, compared to the choice ofδopt, of at most0.3% in
ideal conditions, and even smaller in realistic conditions. In
other words, the teleportation fidelity is essentially constant
in the considered interval of variability for the angleδ. There-
fore, throughout in the following, we fixs = s̄ = 5 dB in the
expression Eq. (11) to make its-independent.



5

0 5 10 15 20 25
0.25

0.5

0.75

1

r HdBL

FS

I

0 5 10 15 20 25
0.25

0.5

0.75

1

r HdBL

FS

II

FIG. 2: (Color online) One-shot fidelityFS as a function of the squeezing parameterr of the entangled resource, expressed in dB, for the
sub-optimal squeezed Bell resource (full black line), for the photon-subtracted squeezed resource (dotted red line),and for the twin beam
resource (dashed blue line), in the instance of the ideal protocol (panel I),τ = nth = R = 0, and the non-ideal protocol (panel II), with
τ = 0.1, nth = 0, andR2 = 0.05. The one-shot fidelities are drawn for three different values of the input squeezing:s = 0, 5, 10 dB. The
curves are ordered from top to bottom for increasings.

In Fig. 2, we plot the teleportation fidelity associated to
the various considered resources (Gaussian twin beam, opti-
mized two-mode squeezed Bell-like state, two-mode squeezed
photon-subtracted state) both for the ideal protocol (panel I)
and for the non-ideal protocol (panel II). We see that, at fixed
squeezingr of the resource, the Gaussian twin beam is always
outperformed by the optimal non-Gaussian squeezed Bell re-
source, but at one point (see below). All the one-shot fideli-
ties decrease for increasing squeezings of the input and, in
the non-ideal protocol, they achieve a maximum at a finite
value rm of the squeezingr of the resource. The optimal
squeezed Bell resource and the twin beam share the same
rm ≃ 15 dB and coincide at that point. In Fig. 2 we also plot
the one-shot fidelities associated with the two-mode photon-
subtracted squeezed states, Eq. (6). The two-mode photon-
subtracted squeezed state always outperforms the twin beam
in the ideal protocol, and at low and intermediate values of the
resource squeezingr in the non-ideal case. It is always outper-
formed by the optimized squeezed Bell resource. However, in
a given range of the squeezingr, |ψPSS〉12 and|ψSB〉12 ex-
hibit comparable levels in the success probability of telepor-
tation. In conclusion, properly optimized non-Gaussian re-
sources maximize the success probability in the teleportation
of squeezed coherent states both in the ideal and imperfect
VBK protocols, outperforming the corresponding Gaussian
resources. In the next Section we carry out a similar analy-
sis with the aim of identifying the optimal strategy that maxi-
mizes the reproduction at the output of the input squeezing.

IV. TELEPORTATION OF QUADRATURE MOMENTS

In this Section, we introduce a different approach to the op-
timization of the teleportation protocol, aimed at retaining and
faithfully reproducing at the output the variances and thusthe
squeezing of the input state. The strategy is to constrain the

first and second order moments of the output field to repro-
duce the ones of the input field, by exploiting the free param-
eters of the non-Gaussian resources. We introduce the mean
values〈Zj〉 = Tr[Zjρj ], with Zj = Xj , Pj (j = in, out),
and the variances〈∆Z2

j 〉 = Tr[Z2
j ρj ] − Tr[Zjρj ]

2 of the

quadrature operatorsXj = 1√
2
(aj+a

†
j),Pj = i√

2
(a†j−aj),

associated with the single-mode input stateρin and the output
stateρout of the teleportation protocol. The explicit expres-
sions for the quantities〈Zj〉 and 〈∆Z2

j 〉 are reported in the
Appendix B.

The quantities measuring the deviation of the output from
the input are the differences between the output and input first
and second quadrature moments:

D(X) ≡ 〈Xout〉 − 〈Xin〉 = (g̃ − 1)〈Xin〉 ,
D(P ) ≡ 〈Pout〉 − 〈Pin〉 = (g̃ − 1)〈Pin〉 ,
D(∆X2) ≡ 〈∆X2

out〉 − 〈∆X2
in〉 = (g̃2 − 1)〈∆X2

in〉+Σ ,

D(∆P 2) ≡ 〈∆P 2
out〉 − 〈∆P 2

in〉 = (g̃2 − 1)〈∆P 2
in〉+Σ ,

with Σ given by Eq. (B9). From the above equations, we see
that the assumptioñg = 1 (i.e.g = 1/T ) yieldsD(X) =
D(P ) = 0 andD(∆X2) = D(∆P 2) = Σ

∣

∣

g̃=1
. There-

fore, for g̃ = 1, the input and output fields possess equal
average position and momentum (equal first moments), and
the optimization procedure reduces to the minimization of the
quantityΣ

∣

∣

g̃=1
with respect to the free parameters of the non-

Gaussian squeezed Bell resource, i.e.minδ,θ,φΣ
∣

∣

g̃=1
. More-

over, as for the optimization procedure of Section III, it can
be shown that the optimal choice forφ andθ is, once again,
φ = π andθ = 0. The optimization on the remaining free
parameterδ yields the optimal valueδoptvar:

δoptvar =
1

2
arctan

[

(1 + e
τ
2 )2 − e4r(1 − e

τ
2 )2

(1 + e
τ
2 )2 + e4r(1 − e

τ
2 )2

]

. (15)

The optimal angleδoptvar , corresponding to the minimization
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FIG. 3: (Color online) Output variances〈∆X2

out〉 and〈∆P 2

out〉, as a function of the squeezing parameterr of the resource, expressed in dB,
for the optimized squeezed Bell resource (full black line),for the photon-subtracted squeezed resource (dotted red line), and for the twin beam
resource (dashed blue line). PanelsI andII : ideal protocol. PanelsIII andIV : non-ideal protocol. The various curves are to be compared
with the given input variances of the input single-mode squeezed coherent state (horizontal solid lines). The squeezing of the input state is
fixed ats = 5 dB andϕ = 0. In the non-ideal protocol, the experimental parameters are fixed atτ = 0.1, nth = 0, andR2 = 0.05.

of the differencesD(∆X2) andD(∆P 2) between the out-
put and input quadrature variances, is independent ofR, at
variance with the optimal valueδopt, Eq. (11), correspond-
ing to the maximization of the teleportation fidelity. It is also
important to note that in this case there are no questions re-
lated to a dependence on the input squeezings. For τ = 0
Eq. (15) reduces toδoptvar = π/8. Such a value is equal
to the asymptotic value given by Eq. (12) forr → ∞, so
that, in this extreme limit the two optimization proceduresbe-
come equivalent. In the particular cases of photon-added and
photon-subtracted resources, no optimization procedure can
be carried out, and the parameterδ is simply a given specific
function ofr (see Section II).

In order to compare the performances of the Gaussian
and non-Gaussian resources, and to emphasize the improve-
ment of the efficiency of teleportation with squeezed Bell-like
states, we consider first the instance of ideal protocol (τ = 0,
nth = 0, R = 0), and compute, and explicitly report below,
the output variances〈∆Z2

out〉f of the teleported state associ-
ated with non-Gaussian resources (i.e. optimized squeezed
Bell-like states(f = SB), photon-added squeezed states
(f = PAS), photon-subtracted squeezed states(f = PSS)),
and with Gaussian resources, i.e. twin beams(f = TwB).

From Eqs. (B7)–(B11), we get:

〈∆Z2
out〉TwB = 〈∆Z2

in〉+ e−2r . (16)

〈∆Z2
out〉PAS = 〈∆Z2

in〉+ e−2r

{

1 +
2e−2r(1 + e−2r)

1 + e−4r

}

,

(17)

〈∆Z2
out〉PSS = 〈∆Z2

in〉+ e−2r

{

1− 2e−2r(1− e−2r)

1 + e−4r

}

,

(18)

〈∆Z2
out〉SB = 〈∆Z2

in〉+ e−2r(2−
√
2) , (19)

Eq. (19) is derived exploiting the optimal angle (15), which
reduces to Eq. (12) in the ideal case. Independently of the
resource, the teleportation process will in general resultin an
amplification of the input variance. However, the use of non-
Gaussian optimized resources reduces, compared to the Gaus-
sian ones, reduces sensibly the amplification of the variances
at the output. Looking at Eq. (16), we see that the teleporta-
tion with the twin beam resource produces an excess, quanti-
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fied by the exponential terme−2r, of the output variance with
respect to the input one. On the other hand, the use of the non-
Gaussian squeezed Bell resource Eq. (19) yields a reductionin
the excess of the output variance with respect to the input one
by a factor(2−

√
2). In analogy with the findings of the previ-

ous Section, the photon-subtracted squeezed resources exhibit
an intermediate behavior, performing better than the Gaussian
twin beam but worse than the optimized squeezed Bell states.
On the other hand, again in analogy with the analysis of the
optimal fidelity, there exists a region in which the performance
of photon-subtracted squeezed states and optimized squeezed
Bell states are comparable. Finally, again in analogy with
the case of the fidelity optimization, the output variance as-
sociated with the Gaussian twin beam and with the optimized
squeezed Bell states coincide at a specific, large value ofr, at
which the two resources become identical.

The input variances〈∆Z2
in〉 (B3) and (B4), and the output

variances (16), (17), (18), (19), are plotted in panelsI andII
of Fig. 3 for the ideal VKB protocol and in panelsIII andIV
of Fig. 3 for the non-ideal protocol.

Rather than minimizing the differences between output and
input quadrature variances, one might be naively tempted to
consider minimizing the difference between the ratio of the
output variances〈∆X2

out〉/〈∆P 2
out〉 and the ratio of the in-

put variances〈∆X2
in〉/〈∆P 2

in〉. This quantity might appear
to be of some interest because it is a good measure of how
well squeezing is teleported in all those cases in which the in-
put and output quadrature variances are very different, that is
those situations in which the statistical moments are teleported
with very low efficiency. However, it is of little use to preserve
formally a scale parameter if the noise on the quadrature av-
erages grows out of control. The procedure of minimizing the
difference between output and input quadrature statistical mo-
ments is the only one that guarantees the simultaneous preser-
vation of the squeezing degree and the reduction of the excess
noise on the output averages and statistical moments of the
field observables.

V. CONCLUSIONS

We have studied the efficiency of the VBK CV quantum
teleportation protocol for the transmission of quantum states
and averages of observables using optimized non-Gaussian
entangled resources. We have considered the problem of tele-
porting Gaussian squeezed and coherent states, i.e. input
states with two unknown parameters, the coherent amplitude
and the squeezing. The non-Gaussian resources (squeezed
Bell states) are endowed with free parameters that can be
tuned to maximize the teleportation efficiency either of the
state or of physical quantities such as squeezing, quadrature
averages, and statistical moments. We have discussed two dif-
ferent optimization procedures: the maximization of the tele-
portation fidelity of the state, and the optimization of the tele-
portation of average values and variances of the field quadra-
tures. The first procedure maximizes the similarity in phase
space between the teleported and the input state, while the
second one maximizes the preservation at the output of the

displacement and squeezing contents of the input.
We have shown that optimized non-Gaussian entangled re-

sources such as the squeezed Bell states, as well as other
more conventional non-Gaussian entangled resources, suchas
the two-mode squeezed photon-subtracted states, outperform
entangled Gaussian resources both for the maximization of
the teleportation fidelity and for the maximal preservationof
the input squeezing and statistical moments. These findings
are consistent and go in line with previous results on the im-
provement of various quantum information protocols replac-
ing Gaussian with suitably identified non-Gaussian resources
[1, 2, 6–9]. In the process, we have found that the two op-
timal values of the resource angleδ associated with the two
optimization procedures are different and identified, respec-
tively, by Eqs. (11) and (15). This inequivalence is connected
to the fact that, when using entangled non-Gaussian resources
with free parameters that allow for optimization, the success
probability is closely related to the form of the different input
properties that one wishes to teleport, e.g. quasi-probability
distribution in the phase space, squeezing, statistical moments
of higher order, and so on. Different quantities correspondto
different optimal teleportation strategies.

Finally, regarding the VBK protocol, it is worth remarking
that the maximization of the teleportation fidelity corresponds
to the maximization of the squared modulus of the overlap be-
tween the input and the output (teleported) state, without tak-
ing into account the characteristics of the output with respect
to the input state. Therefore, part of the non-Gaussian charac-
ter of the entangled resource is unavoidably transferred tothe
output state. The latter then acquires unavoidably a certain de-
gree of non-Gaussianity, even if the presence of pure Gaussian
inputs. Moreover, as verified in the case of non-ideal proto-
cols, the output state is also strongly affected by decoherence.
Thus, in order to recover the purity and the Gaussianity of
the teleported state,purification and Gaussification protocols
should be implemented serially after transmission throughthe
teleportation channel is completed [51]. If the second (squeez-
ing preserving) procedure is instead considered, the possible
deformation of the Gaussian character is not so relevant, be-
cause the shape reproduction is not the main goal, while pu-
rification procedures are again needed to correct for the extra
noise added during teleportation when finite entanglement and
realistic conditions are considered.

An important open problem is determining a proper telepor-
tation benchmark for the class of Gaussian input states with
unknown displacement and squeezing. Such a benchmark is
expected to be certainly smaller than50% in terms of telepor-
tation fidelity, the latter being the benchmark for purely co-
herent input states with uniform distribution of displacement
in phase space [45, 46]. Our results indicate that optimized
non-Gaussian entangled resources will allow to beat the clas-
sical benchmark, thus achieving unambiguous quantum state
transmission via a truly quantum teleportation, with a smaller
amount of nonclassical resources, such as squeezing and en-
tanglement, compared to the case of shared Gaussian twin
beam resources. In this context, Fig. 2 provides strong and
encouraging evidence that suitable uses of non-Gaussianity in
tailored resources, feasible with current technology [24–28],
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may allow a genuine demonstration of CV quantum teleporta-
tion of displaced squeezed states in realistic conditions of the
experimental apparatus. This would constitute a crucial step
forward after the successful recent experimental achievement
of the quantum storage of a displaced squeezed thermal state
of light into an atomic ensemble memory [52].
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Appendix A: Input states, entangled resources, and output states

Here we report the characteristic functions for the single-
mode input states and for the two-mode entangled resources.
The characteristic function for the coherent squeezed states
(3), i.e.χin(α) = in〈ψCS |D(α)|ψCS〉in , reads:

χin(α) = e
1

2
(αβ∗−α∗β)− 1

2 |(α+β) cosh s+(α∗+β∗)eiϕ sinh s|2 .
(A1)

The characteristic function for the squeezed Bell-like resource
(4), i.e. χSB(α1, α2) = 12〈ψSB |D(α1)D(α2)|ψSB〉12 ,
reads:

χSB(α1, α2) = e−
1

2
(|ξ1|2+|ξ2|2)

×
[

1 + sin δ cos δ(eiθξ1ξ2 + e−iθξ∗1ξ
∗
2 )

+ sin2 δ(|ξ1|2|ξ2|2 − |ξ1|2 − |ξ2|2)
]

,

(A2)

where the complex variablesξk are defined as:

ξk = αk cosh r + α∗
l e

iφ sinh r (k, l = 1, 2; k 6= l). (A3)

It is worth noticing that, forδ = 0, Eq. (A2) reduces to
the well-known Gaussian characteristic function of the twin
beam. Given the characteristic functions for the single-mode
the input state and for the two-mode entangled resource,
Eqs. (A1) and (A2), respectively, it is straightforward to obtain
the characteristic function for the single-mode output state of

the teleportation protocol by using Eq. (1) and replacingχres

with χSB.

Appendix B: Mean values and variances of the quadratures

In this Appendix, we report the analytical expressions for
the mean values〈Zj〉 = Tr[Zjρj ], with Zj = Xj , Pj (j =
in, out), and the variances〈∆Z2

j 〉 = Tr[Z2
j ρj ] − Tr[Zjρj ]

2

of the quadrature operatorsXj = 1√
2
(aj + a†j), Pj =

i√
2
(a†j − aj), associated with the single-mode input state

ρin and the output stateρout of the teleportation protocol.
The mean values and the variances associated with the input
single-mode coherent squeezed state (3) can be easily com-
puted:

〈Xin〉 =
1√
2
(β + β∗), (B1)

〈Pin〉 =
i√
2
(β∗ − β), (B2)

and

〈∆X2
in〉 =

1

2
(cosh 2s− cosϕ sinh 2s), (B3)

〈∆P 2
in〉 =

1

2
(cosh 2s+ cosϕ sinh 2s). (B4)

The mean values and the variances associated with the output
single-mode teleported state, described by the characteristic
function (1) read:

〈Xout〉 =
g̃√
2
(β + β∗), (B5)

〈Pout〉 =
ig̃√
2
(β∗ − β), (B6)

and

〈∆X2
out〉 = g̃2〈∆X2

in〉+Σ , (B7)

〈∆P 2
out〉 = g̃2〈∆P 2

in〉+Σ , (B8)

with

Σ = Γτ,R + e−
τ
2 g̃ sin(θ − φ) sin φ sin 2δ − 1

4
e−2r−τ (1 + eτ g̃2 − 2e

τ
2 g̃ cosφ)[cos 2δ − cos(θ − φ) sin 2δ − 2]

− 1

4
e2r−τ (1 + eτ g̃2 + 2e

τ
2 g̃ cosφ)[cos 2δ + cos(θ − φ) sin 2δ − 2] . (B9)

For the particular choices̃g = 1, φ = π, andθ = 0, Eq. (B9) reduces to:

Σ
∣

∣

g̃=1
= Γτ,R

∣

∣

g=1/T
− 1

4
e−2r−τ(1 + e

τ
2 )2[cos 2δ + sin 2δ − 2]− 1

4
e2r−τ (1− e

τ
2 )2[cos 2δ − sin 2δ − 2] . (B10)
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In the instance of Gaussian resource(δ = 0), such quantity
simplifies to:

ΣG = Γτ,R

∣

∣

g=1/T
+

1

4
e−2r−τ(1+e

τ
2 )2+

1

4
e2r−τ (1−e τ

2 )2 .

(B11)

For suitable choices ofδ in Eq. (B10), see Section II, one
can easily obtain the output variances associated with photon-
added and photon-subtracted squeezed states.
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