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We study the continuous-variable quantum teleportatiostaftes, statistical moments of observables, and
scale parameters such as squeezing. We investigate théemprdiwth in ideal and imperfect Vaidman-
Braunstein-Kimble protocol setups. We show how the teligion fidelity is maximized and the difference
between output and input variances is minimized by usingslyi optimized entangled resources. Specifically,
we consider the teleportation of coherent squeezed se@lgjting squeezed Bell states as entangled resources.
This class of non-Gaussian states, introduced in Refesqi¢#], includes photon-added and photon-subtracted
squeezed states as special cases. At variance with thefcas&ngled Gaussian resources, the use of entan-
gled non-Gaussian squeezed Bell resources allows foreliffeptimization procedures that lead to inequivalent
results. Performing two independent optimization proceslone can either maximize the state teleportation
fidelity, or minimize the difference between input and otiuadrature variances. The two different procedures
are compared depending on the degrees of displacement aedzéog of the input states and on the working
conditions in ideal and non-ideal setups.

PACS numbers: 03.67.Hk, 03.67.Mn, 42.50.Pq

I. INTRODUCTION class of non-Gaussian entangled quantum states, the ¢lass o
squeezed Bell states [1, 2]. This class includes, for specifi

choices of the parameters, non-Gaussian photon-added and

ha':ggfn%unsjfsnsi%:?ntrl:)mesr:fggs}ne;dggv:;i‘t’&'ttg pg\;\?;% ?rlihoton-subtracted squeezed states. In tackling our gaal, w
prop ' y P use the formalism of the characteristic function introdlice

sources for the efficient implementation of quantum informa Ref. [40] for an ideal protocol, and extended to the nondidea

tion, communication, computation and metrology tasks [1_instance in Ref.[[2]. Here, in analogy with the teleportatio

%ghlg:tieg’a:tgg;?g; %ﬁmgﬁﬁbﬁgzﬁigiig;d fgc_ongf coherent states, we first optimize the teleportation ifiglel
f PIOP- hat is, we look for the maximization of the overlap between

erties [14] 15]. Therefore, many theoretical and expertaten the input and the output states. But the presence of squeez-

efforts have been made towards engineering and controllin%g in the unknown input state to be teleported prompts also

[}'g’rhg rnec\)l?g\lssosrzcah;&Eﬁzgse'aennsﬁt:;g thgergdmm] an alternative procedure, depending on the physical quanti
q 9 9, i )nes of interest. In fact, if one cares about reproducindgi t

In particular, several proposals for the generation of NON- <t faithful way the initial state in phase-space, therfithe

Seasusisianr;t?]tg-sb?eaa\lllfnbezn %ﬁfg%?%;._ 2a3t1<’)r?2?1 somt()e SH(STity is the natural quantity that needs to be optimized. On
alrea:jj 9 erl#ormedﬂl 9]XpC(|)ncernin C(I)Zntirlwous-&vudmm ilab the other hand, one can be interested in preserving as much
yPp ' ) as possible the squeezing degree at the output of the tédepor

g?rzzigrzji?ttlég \tg%r:;);tit; r;.utr(])sti‘lé\itne_}if?;g:;p(e\;gn;;rltea}gden:onﬂon process, even at the expense of the condition of maximum
PO similarity between input and output states. In this case, on

tion protocol [30] 31] has been reported both for input COheraims at minimizing the difference between the output and in-

e;ﬁ;éitlz‘:i%e f ﬂéaﬁgﬁgsgféﬁzﬁ%\gﬁu&ﬁ;f37|r88]‘ put quadrature averages and the quadrature variancesnit is
P ’ L38] P P S rtant to observe that this distinction makes sense oolyaf

g, anq consequently of entanglgment, betW(_aen upper argﬁploits non-Gaussian entangled resources endowed with tu
lower sidebands of the same spatial mode. It is worth to re-

mark that the efficient teleportation of squeezing, as well aabIe free parameters, so that enough flexibility is allowed t

. . ._ realize different optimization schemes. Indeed, it isigtra
qf entanglement, IS @ necessary requirement for the r.eal'z%rward to verify that this is impossible using Gaussian en-
tion of a quantum information network based on multi-ste

information processing [39] ptangleq resources. We will t.hus _show that exploiting non-
' Gaussian resources one can identify the best strategidsefor
In this paper, adopting the VBK protocol, we study in full gptimization of different tasks in quantum teleportatisnch

generality, e.g. including loss mechanisms and non-unitis state teleportation vs teleportation of squeezing. Goimp

gain regimes, the teleportation of input single-mode ceher  son with the same protocols realized using Gaussian ressurc

squeezed states using as non-Gaussian entangled resaurcegill confirm the greater effectiveness of non-Gaussiarestat
vs Gaussian ones as entangled resources in the teleportatio
of quantum states of continuous variable systems.

*Corresponding author. Electronic address: illuminati@éait The paper is organized as follows. In Secfidn Il, we intro-
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duce the single-mode input states and the two-mode entanglenixed (impure) resources is equivalent to a consider a suit-
resources, and we recall the basics of both the ideal and theble nonvanishing detection inefficiendy/ [2]. The degra-
imperfect VKB quantum teleportation protocols. With respe dation due to propagation in fiber affects the other mode of
to the instance of Gaussian resources (twin beam), thesfurththe resource, e.g. modg which has to reach Bob’s remote
free parameters of the non-Gaussian resource (squeezZed Bglace at the output stage. Denoting nowhy = |¢)in in(d]
state) allow for an optimization procedure to improve the ef andp,.s = |¢)12 12(¢| the projectors corresponding, respec-
ficiency of the protocols. In Sectidn]lll we investigate the tively, to a generic pure input single-mode state and a gener
optimization procedure based on the maximization of thee tel pure two-mode entangled resource, the characteristi¢cibmc
portation fidelity. We then analyze an alternative optirti@@® ... of the single-mode output fiela,.., can be written a$[2]:
procedure leading to the minimization of the difference be- (@) = Tr[D(@) pout]

tween the quadrature variances of the output and input fields Xout Pout

This analysis is carried out in SectibnllV. We show that, un- = e Trrlol’y i (9T @) Xres (9T ;e 2 @),
like Gaussian resources, in the instance of non-Gaussian re . . . )
sources the two procedures lead to different results antgmo Where D(a) = e®®owte @out s the Glauber displacement
over, always allow to improve on the optimization procedure OPerator,xi, = Tr[D(a)pi,] is the characteristic function
that can be implemented with Gaussian resources. Finally, O the input statex;..; = Tr[D(a)prs] is the characteristic
Sectior[Y we draw our conclusions and discuss future outfunction of the resourcey is the gain factor of the protocol

1)

looks. ], 7 = ~t is the scaled dimensionless time proportional to
the fiber propagation length, and the functiony is defined
as:
1
Il. TELEPORTATION OF SQUEEZED COHERENT FT,R _ (1 _ e_T) (_ + nth) + gQRQ. 2)
STATESUSING SQUEEZED BELL RESOURCES 2

We assume in principle to have some knowledge about the

In this Section, we briefly recall the basics of the ideal andcharacteristics of the experimental apparatus: the ineidy
imperfect VBK CV teleportation protocols (for details see R (orT") of the photo-detectors, and the loss parametensd
Ref. [2]). The scheme of the (CV) teleportation protocol isn.; of the noisy communication channel.
the following. Alice wishes to send to Bob, who is at a re- We consider as input state a single-mode coherent and
mote location, a quantum state, drawn from a particular sesqueezed (CS) stat@cs )., with unknown squeezing param-
according to a prior probability distribution. The set of in eter(e = s ¢%?) and unknown coherent amplituge We then
put states and the prior distribution are known to Alice andconsider as non-Gaussian entangled resource the two-mode
Bob, however the specific state to be teleported that is presqueezed Bell (SB) statgs )12, defined as [1.12]:
pared by Alice remains unknown. Alice and Bob share a re- o .
source, e.g. a two-mode entangled state. The input state and [bes)in = D(B)S(E)|0)in 3
one of the modes of the resource are available for Alice,avhil }
the other mode of the resource is sent to Bob. Alice performs  [sg)12 = S12(¢){cos §|0,0)12 + € sin |1, 1)12} . (4)
a suitable (homodyne) Bell measurement, and communicat _ Bal 4B am i .
the result to Bob exploiting a classical communication ehan ereD(f) =e e IS, as before, the displacement op-
nel. Then Bob, depending on the result communicated by Alerator,S(e) = e~ 2°%»*2¢ i is the single-mode squeezing
ice, performs a local unitary (displacement) transforomati  operator,S12(¢) = e—Caax+Caraz jg the two-mode squeez-
and retrieves the output teleported state. The non-ideal-(r ing operator(( = re'?), with a; denoting the annihilation
istic) teleportation protocol includes mechanisms of lasd  operator for modg (5 = in,1,2), [m,n)12 = |m)1 ® |n)o
inefficiency: the photon losses occurring in the realist@l B is the two-mode Fock state (of modes 1 and 2) wittpho-
measurements, and the noise arising in the propagation-of opons in the first mode and photons in the second mode, and
tical fields in noisy channels (fibers) when the second modé andé§ are two intrinsic free parameters of the resource en-
of the resource is sent to Bob. The photon losses occurrintangled state, in addition to and ¢, which can be exploited
in the realistic Bell measurements are modeled by placing ifior optimization. Note that particular choices of the andjle
front of an ideal detector a fictitious beam splitter with non in the class of squeezed Bell states Ed). (4) allow to recover
unity transmissivityZ? (and corresponding non-zero reflec- different instances of two-mode Gaussian and non-Gaussian
tivity R?2 = 1 — T2) [41]. The propagation in fiber is mod- entangled states: far = 0 the Gaussian twin beam (TwB);
eled by the interaction with a Gaussian bath with an effectiv for § = arccos [(cosh2r)~*/?sinhr| and§ = ¢ — = the
photon number,,, yielding a damping process with inverse- two-mode photon-added squeezed (PAS) State s )i2; for
time ratey [42,143]. Denoting byin the input field mode, § = arccos [(cosh2r)~'/2 coshr] and@ = ¢ — 7 the two-
and byl and2, respectively, the first and the second modemode photon-subtracted squeezed (PSS) Btatgs)12. The
of the entangled resource, the decoherence due to imperfédeist two non-Gaussian states are defined as:
photo-detection in the homodyne measurement performed by o : —1/2 t t
Alice involves the input field modén, and one mode of the pashiz = (cosh2r)7/a1a3S12(0)10, 01z, (5)
resource, e.g. mode Throughout, we assume a pure entan-
gled resource. Indeed, it is simple to verify that consiugri [Wpss)iz = (cosh2r) Y2a1a9515(¢)[0,0)12, (6)



object parameter description
B displacement
Input state s squeezing degree
%) squeezing phase
r squeezing degree
two-mode resource state ¢ squeezing phase
0 mixing angle
0 mixing phase

R=+/1—-T?2 detection inefficiency

fiber loss factor

teleportation apparatus T
Ntn fiber bath temperature
g gain of the protocol

TABLE I: Summary of the notation employed throughout thisrkvo
to describe the different parameters that characterizphg coher-
ent squeezed (CS) states [Eg. (3)], the shared entanglechodle

squeezed Bell (SB) resources [EQl (4)], and the charatitsrisf

non-ideal teleportation setufs [2]. See text for furtheaitieon the

role of each parameter.

3

izations[(%),[(6). The characteristic functions of staBs @),
(), and [6) are computed and their explicit expressions are
given in AppendixA.

For ease of reference, table | provides a summary of the pa-
rameters associated with the input states, the sharedroesou
and the sources of noise in the teleportation protocol.

IIl. OPTIMAL TELEPORTATION FIDELITY

The commonly used measure of the success probability in
the teleportation protocol is the fidelity of teleportatii@],
F = Tr[pinpout]. Inthe formalism of the characteristic func-
tion the fidelity reads

F = %/an Xin(a)XOut(_a)7 (7)

wherey;,, («) is the characteristic function of the single-mode
input state;,, = [¥cs)in in (Yesl, EQ. [3), andyou (o) is the
characteristic function for the output teleported statg, {#).
In this Section, we will make use of Eq.](7) to analyze the

and are already experimentally realizable with currenibtec efficiency of the CV teleportation protocol.

nology [24:28].

In the instance of non-Gaussian squeezed Bell resources

In the following Section we study, in comparison with the (@), at fixed squeezing parameter, the optimization proeedu
instance of two-mode Gaussian entangled resources, the pemounts to the maximization of the teleportation fidelifly (7
formance of the optimized two-mode squeezed Bell statesver the free parameters of the entangled resource. It can be
when used as entangled resources for the teleportation of ishown that the optimal choice for the phagseendf is ¢ = 7
put single-mode coherent squeezed states. For complsteneandfd = 0. The analytic expression for the fideli# s of the
in the same context we make also a comparison with the peron-ideal quantum teleportation of coherent squeezedsstat
formance, as entangled resources, of the more specific realsing squeezed Bell resources reads

F 1 A-4 {1+ ~(2r+7) g0 §(Ag cos § — Ay sind) {—1 (1+—2“’%) + L <1 _2“§>}
= e e SN 50 — Sin —
@8 A1A2 ? ! A1 A1 A2 A2
L ortr) a2 .2 1 1203 4wi 1 1203 4wj
- T+TIA2 g = =1 = _ 2w 8
1 el e G VR vl R Cl G PR ®
N 2 (1+2w%_2w§_4w%w§)]}’
AlAg Al A2 A1A2

where, introducingy = ¢T, the quantities\1, Ao, Ay, Ag,
w1, andws are defined by the following relations:

Ay = 1+e* +25(1—e*)g+e (1 +e*)g?,
Ay =1—e"+23(1+e")g+e"(1—e')g?,

A = 6_2T_TA1 + 2628(1

+ ) +4T, R,

Ay = e TA; + 21+ §*) + 4T, R,

wi = (1-9)%(8-5%?,
g =gT.

For different choices of in Eq. (), see Sectionlll, one
obtains the teleportation fidelities associated to phatdded

wi = (1-9)*(B+5")7,
(9)

and photon-subtracted squeezed resource states. Let us ob-
serve that the fidelity in Eq[{9) depends both on the input
coherent amplitud¢, and on the input single-mode squeez-
ing parametes, while itis independent of the input squeezing
phasep. Once again, it is worth stressing that, in the telepor-
tation paradigm, the input state is unknown and only partial
(probabilistic) knowledge on the alphabet of input stasesd-
mitted. Itis thus required, in principle, to assume telégtion
protocols independent of the input parameters, as it tuhs o
to be the case for the VBK protocol with Gaussian entangled
resources and input coherent states. However, in moreagener
cases, one can study the behavior of the so-called one-shot fi
delity, that is the teleportation success probability acsiic
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values of the input parameters. Suitable averages of the one
shot fidelity over the set of input states and parameters, ac-
cording to an assigned prior distribution, will then redalt
the average quantum teleportation fidelity. The latter ¢jtyan =~ Foooom o
can then be confronted with so-called classical fidelitgshr
olds (benchmarks) that correspond to the maximum achiev- #s
able average fidelity between the input state (measured-by Al
ice in order to achieve an optimal estimation of it) and thie ou
put state (prepared by Bob according to Alice’'s measurement
outcomes), without the use of any shared entanglerhent [45].  °%
While teleportation benchmarks are available for the cases ‘
of coherent input states (with completely unknogn[4€], 0 10 2
purely squeezed input states (with= » = 0 and completely § @B)
gnknowns)d[@]li as Wecljl. asl for Stateis Wgh %Wn488quee§|ng IG. .1: (Color online) One-shot.fidelity-'s at fixed s, find as a
egree and unknown displacement and phase [48], a ENChlinction of the angled parameterized by, expressed in dB, i.e.
mark for the case of input states with totally unknown dis-55y — 5., see Eq.[(II3), both in the instance of the ideal pro-
placement and squeezing has not yet been derived, and stanggo| - = n,, = R = 0 (full lines), and of a non-ideal protocol,
as a challenging problem in quantum estimation theory. with 7 = 0.1, ng, = 0, andR? = 0.05 (dashed lines). The one-shot
Henceforth, assuming priori that the input parameters fidelities are drawn for three different values of the inpyteezing:
(displacement and squeezing degree) have a uniform distrk = 0, 5, 10 dB. The curves are ordered from top to bottom for
bution, we adopt then the following approach to optimize theincreasings.
guantum teleportation fidelity. We exploit a non-unity gain
strategy to remove at least tivedependence in the one-shot
fidelity; then, we study the behavior of tlfeindependent one-
shot fidelity for specific values of the input squeezing pagam
ter s, in order to identify an effectives-independent approxi-
mation. Indeed, fixing the gaipat the valugy = 1/T (g = 1)

resource based on the choi¢el(11) as optimal angle would
be practically unfeasible because the input squeezingtis no
known. In order to circumvent this problem, we introduce a
sub-optimal anglé.,:.p,: such that

in Eq. () yields the3-independent fidelityFs: Osubopt = 6Opt|S:§, (13)
4 o—2(2r+7) 3 3 9 wheres is a fixed effective value of the input squeezing cho-
Fs = \/W{ 1 A2sin§ <P + 2 + W) sen, according to a suitable criterion that will be clarified
132 1 21 11 2 low, in the range of possible values of the squeezing pamet
—(2r47) o3 S(A 5 — Assind o o S.
e sin 9(As cos 15in0) Aq * Ay In the following we will express the squeezing parameters
10) r ands in decibels, according to the relatidn [49]:
+15,
} # (dB) = 101log,, e** K=s,T. (14)

where the quantitied, Ay, A;, Ay, wi, andw, are defined The practical rationale for introducing a sub-optimal @tar
in Eq. (9). For different choices @f (see Sectiofll), one ob- terization in the maximization of the output fidelity is bese
tains the teleportation fidelities associated to the uséfiefrd ~ on the observation that the assumption of a uniform distribu
ent Gaussian and non-Gaussian entangled resources: the tWion of the squeezing is clearly unrealistic. It is insteadyv
beam, the photon-added, and the photon-subtracted sgliee&ensible to consider that the range of possible valuedaifs
states. For such resources no optimization procedure &-posin a window|0, s,,.x] dB. Indeed, to date, the experimentally
ble asj is a specific function of. Instead, the optimization of reachable values of squeezing fall roughly in such a range wi
the fidelity [10) with respect to the free non-Gaussian paramsmax =~ 10 dB [50].
eters identifies the optimal squeezed Bell resource associated We can then study the behavior 6% corresponding to the
to the optimal value: angled,,iopt @s a function of the effective input squeezing pa-
rameters, at fixed squeezing parameters of the resource and
S 1 arctan[ 482A142(A1+A72) } of the input state, respectivetands, and at fixed loss param-
AR 401 A1 Ar (Ar+Az) —e=2 =T AZ(BAT+2A1 A2 43A3) etersr, ny;,, andR. Fig.[1 shows thafFy is quite insensitive
. . (11) {5 the value of. Assuming the realistic rangec [0, 10] dB,
Let us notice that, for = n,, = I = 0 (ideal protocol)and o chojce of a sub-optimal angle such that 5 dB (aver-
s = 0 (input coherent states), Eg.{11) reduces o [1]: age value of the interval), leads to a decrease of the opumiz
1 fidelity, compared to the choice of,,, of at most0.3% in
dopt = 3 arctan [1 + e‘”} . (12)  ideal conditions, and even smaller in realistic conditiols
other words, the teleportation fidelity is essentially ¢ans
The displacement-independent one-shot fideky and the  in the considered interval of variability for the angleThere-
optimal angléd,, are still dependent os, the input squeez- fore, throughout in the following, we fix = 5§ = 5 dB in the
ing. Unfortunately, the optimization of the non-Gaussianexpression Eq[{11) to makesitindependent.
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FIG. 2: (Color online) One-shot fidelitfFs as a function of the squeezing parametaf the entangled resource, expressed in dB, for the
sub-optimal squeezed Bell resource (full black line), foe photon-subtracted squeezed resource (dotted red dind)for the twin beam
resource (dashed blue line), in the instance of the ideabpob (panel I),r = ny, = R = 0, and the non-ideal protocol (panel I1), with
7= 0.1, nen, = 0, andR? = 0.05. The one-shot fidelities are drawn for three different valakthe input squeezing: = 0, 5, 10 dB. The
curves are ordered from top to bottom for increasing

In Fig.[2, we plot the teleportation fidelity associated tofirst and second order moments of the output field to repro-
the various considered resources (Gaussian twin beam, optiuce the ones of the input field, by exploiting the free param-
mized two-mode squeezed Bell-like state, two-mode squkezeeters of the non-Gaussian resources. We introduce the mean
photon-subtracted state) both for the ideal protocol (pBne values(Z;) = Tr[Z;p;], with Z; = X, P; (j = in, out),
and for the non-ideal protocol (panel Il). We see that, atfixe and the variance$AZ?) = Tr[Z7p;] — Tr[Z;p;]? of the
squeezing of the resource, the Gaussian twin beam is alwayg;adrature operatoss; = L(ajJra;),Pj = i (af

; . —a;),
outperformed by the optimal non-Gaussian squeezed Bell I'ssociated with the single—|\{n§ode input S‘}@éteaﬁ/g thje ouiput

source, but at one point (see below). All the one-shot f'de“'statepout of the teleportation protocol. The explicit expres-

ties decrease for increasing squeezingf the input and, in  gjqng for he quantitie$Z;) and (AZ?) are reported in the
the non-ideal protocol, they achieve a maximum at a f'n'teAppendbCB J

value r,,, of the squeezing of the resource. The optimal
squeezed Bell resource and the twin beam share the sal : - ; .
r., ~ 15 dB and coincide at that point. In Figl. 2 we also plotrgiedlZEEL%EJBZ(?rlggrrzn;%?nbee;g?en the outputand injsut fir
the one-shot fidelities associated with the two-mode photon '
subtracted squeezed states, E§. (6). The two-mode photon- D(X) = (X,u:) — (Xin) = (G — 1)(Xin)
subtracted squeezed state always outperforms the twin beam D(P) = (Pout) — (P) = (§ — 1)(Py),
in the ideal protocol, and at low and intermediate valuebef t DIAX2) = (AX2 ) — (AX2) — (62 — 1)(AX2 >
resource squeezingn the non-ideal case. Itis always outper- ( ) = (AXou) — (AXG) = (9 HAXG) + 2,
formed by the optimized squeezed Bell resource. However, in  D(AP?) = (AFP.,,) — (AP},) = (37 — 1)(AP}) + %,

a given range of the squeezing|ypss)12 and|ysp)12 €x- . . .

hibit comparable levels in the success probability of tetep \t??zt;\kt] ,?1 glgggu%pfi%.@@)'l l;irc;m trle ?7;;’?;%: EI)O(F;?) Wf see
tation. In conclusion, properly optimized non-Gaussian re (P) = 0 and D(AX2) o 'Dg(APQ) ~ Z| There-
sources maximize the success probability in the teleportat g=1"

of squeezed coherent states both in the ideal and imperfe

The quantities measuring the deviation of the output from

3

Eqre, for g = 1, the input and output fields possess equal

VBK protocols, outperforming the corresponding Gaussial verage position and momentum (equal f"?‘ _m_om(_ents), and

resources. In the next Section we carry out a similar analy-he optlmlzatlon_procedure reduces to the minimizatiormef t

sis with the aim of identifying the optimal strategy that max quantltyE\gzl with respect o the free parameters of the non-

mizes the reproduction at the output of the input squeezing. Gaussian squeezed Bell resource, ién; g, 3|, . More-
over, as for the optimization procedure of Secfiah Ill, inca
be shown that the optimal choice fgrandd is, once again,

IV. TELEPORTATION OF QUADRATURE MOMENTS ¢ = mandf = 0. The optimization on the remaining free
parameted yields the optimal valué,p;yq:

In this Section, we introduce a different approach to the op- 1 (14 e3)2 — et (1 —e3)?
timization of the teleportation protocol, aimed at retagand doptvar = 3 arctan (I1ei)2+eir(l—ch)
faithfully reproducing at the output the variances and tihas
squeezing of the input state. The strategy is to constrain thThe optimal anglé, ..., corresponding to the minimization

(15)
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FIG. 3: (Color online) Output variancé® X 2,;) and (A PZ,,), as a function of the squeezing parametef the resource, expressed in dB,
for the optimized squeezed Bell resource (full black lirie) the photon-subtracted squeezed resource (dottedmel éind for the twin beam
resource (dashed blue line). PanklandI: ideal protocol. PanelgIT and IV non-ideal protocol. The various curves are to be compared
with the given input variances of the input single-mode sgee coherent state (horizontal solid lines). The squgeziithe input state is
fixed ats = 5 dB andy = 0. In the non-ideal protocol, the experimental parametezdiged atr = 0.1, ny, = 0, andR? = 0.05.

of the differencesD(AX?) and D(AP?) between the out- From Egs.[(BV)-HBI1), we get:

put and input quadrature variances, is independert,oat ) ) )

variance with the optimal valué,,;, Eq. [I1), correspond- (AZj.)rws = (AZj,) +e 7" (16)
ing to the maximization of the teleportation fidelity. It is@

important to note that in this case there are no questions re- ) o 2e7 2" (1 +e27)
lated to a dependence on the input squeezingorr = 0 (AZsu)pas = (AZj,) +e {1 + W}’
Eq. (I8) reduces td,,t0ar = 7/8. Such a value is equal (17)
to the asymptotic value given by Ed._{12) for— oo, so

that, in this extreme limit the two optimization procedubes o o
come equivalent. In the particular cases of _photon-adddd an (AZ2 Vpss = (AZ2) + 2 {1 _ 2e (1 _,e )}’
photon-subtracted resources, no optimization procedame c ou o 1+e 4

be carried out, and the parameies simply a given specific (18)
function ofr (see Sectiofl!).

In order to compare the performances of_ the Gz_;tussian (AZ2, Vs = (AZ2) +e 2" (2—V2), (19)
and non-Gaussian resources, and to emphasize the improve-
ment of the efficiency of teleportation with squeezed Bigl-| Eq. (19) is derived exploiting the optimal angle](15), which
states, we consider first the instance of ideal protocet (0, reduces to Eq[{32) in the ideal case. Independently of the
ny, = 0, R = 0), and compute, and explicitly report below, resource, the teleportation process will in general réswn
the output variance&AZ2 ) ¢ of the teleported state associ- amplification of the input variance. However, the use of non-
ated with non-Gaussian resources (i.e. optimized squeezdslaussian optimized resources reduces, compared to the Gaus
Bell-like states(f = SB), photon-added squeezed statessian ones, reduces sensibly the amplification of the vaemnc
(f = PAS), photon-subtracted squeezed stdfes- PSS)),  at the output. Looking at E_{IL6), we see that the teleporta-
and with Gaussian resources, i.e. twin bedhs= TwB). tion with the twin beam resource produces an excess, quanti-



fied by the exponential teret 2", of the output variance with  displacement and squeezing contents of the input.

respect to the input one. Onthe other hand, the use of the non-\We have shown that Optimized non-Gaussian entang|ed re-
Gaussian squeezed Bell resource Eg. (19) yields a redustion sources such as the squeezed Bell states, as well as other
the excess of the output variance with respect to the inpeit onmore conventional non-Gaussian entangled resourcesasuch
by a factor(2—+/2). In analogy with the findings of the previ- the two-mode squeezed photon-subtracted states, outperfo
ous Section, the photon-subtracted squeezed resourdegt exhentangled Gaussian resources both for the maximization of
an intermediate behavior, performing better than the Ganiss  the teleportation fidelity and for the maximal preservatén
twin beam but worse than the optimized squeezed Bell stategne input squeezing and statistical moments. These findings
On the other hand, again in analogy with the analysis of theyre consistent and go in line with previous results on the im-
optimal fidelity, there exists a regionin which the perforo@  provement of various quantum information protocols replac
of photon-subtracted squeezed states and optimized seflieezng Gaussian with suitably identified non-Gaussian resesirc
Bell states are comparable. Finally, again in analogy withfyl [2, [6-£9]. In the process, we have found that the two op-
the case of the fidelity optimization, the output variance astimal values of the resource angleassociated with the two
sociated with the Gaussian twin beam and with the optimize@ptimization procedures are different and identified, eesp
squeezed Bell states coincide at a specific, large valugadf  tively, by Eqs.[Z]l) and{35). This inequivalence is conadct
which the two resources become identical. to the fact that, when using entangled non-Gaussian ressurc
The input variance$AZ? ) (B3) and [B4), and the output with free parameters that allow for optimization, the sissce
variances[(16)[(17)L.(18). (IL9), are plotted in padedsdI  probability is closely related to the form of the differenpit
of Fig.[3 for the ideal VKB protocol and in panel¢/ andIV' properties that one wishes to teleport, e.g. quasi-prdibabi
of Fig.[3 for the non-ideal protocol. distribution in the phase space, squeezing, statisticaiems
Rather than minimizing the differences between output an@f higher order, and so on. Different quantities corresptond
input quadrature variances, one might be naively tempted tdifferent optimal teleportation strategies.
consider minimizing the difference between the ratio of the Fina|ly, regarding the VBK protocol, it is worth remarking
output variancesAXZ,,) /(AP;,,) and the ratio of the in-  that the maximization of the teleportation fidelity corresgs
put varianceSA X7 )/(AP}). This quantity might appear o the maximization of the squared modulus of the overlap be-
to be of some interest because it is a good measure of NoWyeen the input and the output (teleported) state, withakit t
well squeezing is teleported in all those cases in whichrthe i i into account the characteristics of the output with eesp
put and output quadrature variances are very differentjsha 1o the input state. Therefore, part of the non-Gaussiarachar
those situations in which the statistical moments are teted {1 of the entangled resource is unavoidably transferréito
with very low efficiency. However, it is of little use to prase output state. The latter then acquires unavoidably a cedti
formally a scale parameter if the noise on the quadrature avree of non-Gaussianity, even if the presence of pure Gaussi
erages grows out of control. The procedure of minimizing thenpyts. Moreover, as verified in the case of non-ideal proto-
difference between output and input quadrature statistica o5 the output state is also strongly affected by decatvere
ments is the only one that guarantees the simultaneouspresg s in order to recover the purity and the Gaussianity of
vation of the squeezing degree and the reduction of the 8xceghe teleported state,purification and Gaussification paito
noise on the output averages and statistical moments of thgoyid be implemented serially after transmission thrahgh
field observables. teleportation channel is completéd|[51]. If the secondésgu
ing preserving) procedure is instead considered, the Iplessi
deformation of the Gaussian character is not so relevant, be
V. CONCLUSIONS cause the shape reproduction is not the main goal, while pu-
rification procedures are again needed to correct for tha ext

We have studied the efficiency of the VBK CV quantum Nnoise added during teleportation when finite entanglemeht a
teleportation protocol for the transmission of quantuntesta realistic conditions are considered.
and averages of observables using optimized non-GaussianAn important open problem is determining a proper telepor-
entangled resources. We have considered the problem of telation benchmark for the class of Gaussian input states with
porting Gaussian squeezed and coherent states, i.e. inputhiknown displacement and squeezing. Such a benchmark is
states with two unknown parameters, the coherent amplitudexpected to be certainly smaller thadt% in terms of telepor-
and the squeezing. The non-Gaussian resources (squeezation fidelity, the latter being the benchmark for purely co
Bell states) are endowed with free parameters that can beerent input states with uniform distribution of displaearh
tuned to maximize the teleportation efficiency either of thein phase spacé [45,146]. Our results indicate that optimized
state or of physical quantities such as squeezing, quadratunon-Gaussian entangled resources will allow to beat the cla
averages, and statistical moments. We have discussedftwo dsical benchmark, thus achieving unambiguous quantum state
ferent optimization procedures: the maximization of tHe-te transmission via a truly quantum teleportation, with a $enal
portation fidelity of the state, and the optimization of talket ~ amount of nonclassical resources, such as squeezing and en-
portation of average values and variances of the field quadrdanglement, compared to the case of shared Gaussian twin
tures. The first procedure maximizes the similarity in phaséoeam resources. In this context, Hig.. 2 provides strong and
space between the teleported and the input state, while thencouraging evidence that suitable uses of non-Gaussianit
second one maximizes the preservation at the output of thimilored resources, feasible with current technol@%ﬂ,—
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may allow a genuine demonstration of CV quantum teleportathe teleportation protocol by using Ef] (1) and replacing,
tion of displaced squeezed states in realistic conditidtiseo ~ with xsp.

experimental apparatus. This would constitute a cruceg st

forward after the successful recent experimental achiemém

of the quantum storage of a displaced squeezed thermal stateappendix B: Mean values and variances of the quadratures
of light into an atomic ensemble memory [52].

In this Appendix, we report the analytical expressions for
the mean value$Z;) = Tr[Z,p,], with Z; = XJ,P (j =

j t), and the varianceg\Z#) = Tr[Z?
Acknowledgments in, out) e\ ]> 1r[ pjl — Tr[ JPJ]
of the quadrature operators; = ﬁ(aj + a; ) P, =

We acknowledge financial support from the European%(az — aj), associated with the single-mode input state
Union under the FP7 STREP Project HIP (Hybrid Informa-p;, and the output statp,,; of the teleportation protocol.

tion Processing), Grant Agreement No. 221889. The mean values and the variances associated with the input
single-mode coherent squeezed sthte (3) can be easily com-
puted:
(Xin) = 7(5 +8%), (B1)
Appendix A: Input states, entangled resour ces, and output states
)
L _ , (Pin) = —=(8" = B), (B2)
Here we report the characteristic functions for the single- V2
mode input states and for the two-mode entangled resources. d
The characteristic function for the coherent squeeze@stat an
Q). i.e.xin(a) = in(Ycs|D(a)[Yes)im , reads: 1
(AX2) = i(cosh 25 — cos psinh 2s), (B3)
Xin(a) _ e%(aﬁ*fa*6)7%|(a+5)cosher(oc*JrB*)ei‘P sinhs|2 . :
o . . (A1) <AP2 } = —(cosh 2s + cos psinh 2s). (B4)
The characteristic function for the squeezed Bell-likotese 2

, Le. , = D D , . . .
@ Xsala1,a2) 12(sp|Dlen) Diaz)|Ysn)iz The mean values and the variances associated with the output

ds:
reads single-mode teleported state, described by the charsiiteri
Ysp(a1, az) = e~z (1 +&) function (1) read:
x [14sindcosd(e?é,6o + e ¢565) (A2) g .
[ .2 212 2 12 : (Xout) = i(ﬂ +B8%), (B5)
+sin® §(|& [P|&f* — [&]* — 1&7)] V2
g
where the complex variables are defined as: (Pout) = E(ﬂ - 08), (B6)
& = apcoshr +afe?sinhr (k,1=1,2k#1). (A3) 4
It is worth noticing that, for§ = 0, Eq. [AZ) reduces to (AX2 ) = (AX2) + 3, (B7)

the well-known Gaussian characteristic function of thentwi
beam. Given the characteristic functions for the singleteno
the input state and for the two-mode entangled resource, (AP2,) = *(AP2) + %, (B8)
Eqgs.[Al) and{AR), respectively, itis straightforward tatain

the characteristic function for the single-mode outputestd ~ with

Y = T, g+e 2gsin(f — ¢)sin ¢sin 25 — Z e (14 €7 — 2e% §cos ¢)[cos 26 — cos(f — ¢) sin 26 — 2]
1 T
- 162“7(1 +e7§? + 2e2 §cos ¢)[cos 26 + cos(f — ¢) sin 25 — 2] (B9)

For the particular choices= 1, ¢ = 7, andf = 0, Eq. [B9) reduces to:

1 5 z . 1o fd .
E‘g:l :FT7R|g:1/T_Ze 2 (1+€2)2[C0825+Sln26—2]—162 (1 —e2)?[cos20 — sin 26 — 2] . (B10)
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In the instance of Gaussian resoutée= 0), such quantity ~For suitable choices of in Eq. [BI10), see Sectidnlll, one
simplifies to: can easily obtain the output variances associated wittophot
added and photon-subtracted squeezed states.

-

1 —2r—7 N2 1 2r—r N2
EG:FT7R|g:1/T+Ze (I4+e?) —i—Ze (I—e2)”.
(B11)
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