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Abstract: We examine a class of Brownian based models which

produce tractable incomplete equilibria. The models are based

on finitely many investors with heterogeneous exponential util-

ities over intermediate consumption who receive partially un-

spanned income. The investors can trade continuously on a

finite time interval in a money market account as well as a

risky security. Besides establishing the existence of an equi-

librium, our main result shows that the resulting equilibrium

can display a lower risk-free rate and a higher risk premium

relative to the usual Pareto efficient equilibrium in complete

markets. Consequently, our model can simultaneously help

explaining the risk-free rate and equity premium puzzles.

Keywords: Incomplete markets · equity premium puzzle · risk-
free rate puzzle · non-Pareto efficiency · stochastic volatility ·
stochastic interest rates



1 Introduction and notation

We present incomplete Brownian based models allowing us to explicitly quan-

tify the impact that unspanned income and preference heterogeneity can

have on the resulting equilibrium interest rate and risk premium. The fi-

nite number of investors can trade continuously on a finite time horizon and

they maximize expected exponential utility of intermediate consumption. We

show that if the investors cannot consume continuously over time, unspanned

income can lower the risk-free rate and raise the risk premium when com-

pared to the standard complete Pareto efficient equilibrium. Subsequently,

we consider the limiting case where investors can consume continuously over

time and in a model-free manner we show that unspanned income can affect

the equilibrium risk-free rate but can never affect the equilibrium instan-

taneous risk premium relative to the complete Pareto efficient equilibrium.

However, if risk premia are measured over finite time-intervals (as in empir-

ical studies of asset pricing puzzles), our model with unspanned income and

stochastic volatility can raise the equilibrium risk premium (and lower the

equilibrium risk-free rate) relative to the Pareto efficient analogue.

The questions of existence and characterization of complete equilibria in

continuous time and state models are well-studied, and we refer to Chapter 4

in [KS98] and Chapter 10 in [Duf01] for a literature overview. More recent ref-

erences on complete equilibria include [Žit06], [CJMN09] and [HMT09]. The

most common technique is based on the martingale method from [KLS87]

and [CH89] which in complete markets settings provides an explicit charac-

terization of the investor’s optimizer. By using the so-called representative

agent method the search for a complete market equilibrium can be reduced to

a finite dimensional fixed point problem. To the best of our knowledge, only

[CH94] and [Žit10] consider the abstract existence of a non-Pareto efficient

equilibrium in a continuous trading setting. We provide tractable incomplete

models for which the equilibrium price processes can be computed explicitly

and, consequently, we can quantify the impact of market incompleteness.
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To obtain incompleteness effects on the equilibrium risk premium we in-

corporate a stochastic volatility v à la Heston’s model into the equilibrium

stock price dynamics. In Heston’s original model [Hes93] the stock’s relative

volatility is v whereas in this paper v will be the stock’s absolute volatility.

We explicitly derive expressions for equilibrium risk-free rate and the risk

premium in terms of the individual income dynamics as well as the absolute

risk aversion coefficients. The resulting type of equilibrium equity premium

has been widely used in various optimal investment models, see e.g., [CV05]

and [Kra05], whereas the resulting type of equilibrium interest rate is similar

to the celebrated CIR-term structure model.

Translation invariant models (such as the exponential model we consider)

allow consumption to be negative, see e.g., the discussion in the textbook

[Ski09]. [SS05] show that this class of models is fairly tractable even when

income is unspanned. We first conjecture the equilibrium form of the market

price of risk process and then use the idea in [CH94] to re-write the individ-

ual investor’s problem as a problem with spanned income and heterogeneous

beliefs. In certain affine settings with a deterministic interest rate the expo-

nential investor’s value function is available in closed form, see e.g., [Hen05],

[Wan04], [Wan06], and [CLM10]. However, the incorporation of stochastic

volatility produces a stochastic equilibrium interest rate preventing the corre-

sponding HJB-equation to have the usual exponential affine form. Therefore,

the individual investor’s value function is not available in closed form in our

setting, however, by using martingale methods we obtain tractable expres-

sions for the individual optimal consumption policies which turn out to be

sufficient to produce the incomplete equilibrium.

In a discrete infinite time horizon model with a continuum of agents,

[Wan03] illustrates the negative effect unhedgeable income risk can have on

the risk-free interest rate. [CLM10] present a continuous model with a fi-

nite number of agents exhibiting the same risk-free rate phenomena. In a

discrete setting [KL10] provide conditions for power preferences under which
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non-hedgeable idiosyncratic income risk will lower the risk-free rate, but not

affect the risk premium. We extend these results by proving that as long as

the income dynamics are continuous over time, any equilibrium based on ex-

ponential preferences produces the same instantaneous risk premium as the

standard Pareto efficient analogue. Nevertheless, we also prove that risk pre-

mia measured over finite time-intervals can be higher due to non-hedgeable

income risk components.

[CD96] produce similar conclusions but they perform a discrete trading

analysis under various assumptions including bounds on aggregate endow-

ments and requiring agents to have identical risk preferences. Our model

does not rely on such assumptions, and it quantifies the role of preference

heterogeneity.

(Ω,F ,P) denotes the probability space on which all stochastic quantities

are defined. We consider a pure exchange economy with a single consumption

good which we use as the numéraire. (W,Z) denotes an I + 1 dimensional

Brownian motion where W is scalar valued and I is the (finite) number of

investors. The standard Brownian filtration generated by (W,Z) is denoted

by Ft, t ∈ [0, T ], where T is the finite time horizon and we consider F := FT .

We will write Et[·] instead of EP[·|Ft]. As usual Lp denotes the space of

measurable and adapted processes f such that

∫ T

0

|fu|pdu < ∞, P-almost surely, p ∈ {1, 2}.

Finally, Λ denotes the set of bounded real-valued functions on [0, T ].

2 The financial market

We start by defining the exogenous Feller process

dvt := µvdt+ σv

√
vtdWt, t ∈ [0, T ], v0 > 0.(2.1)
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The constants (µv, σv) satisfy Feller’s condition µv ≥ σ2
v/2 which ensures that

v remains strictly positive on [0, T ]. We conjecture (and confirm) that there

exists an interest rate process r ∈ L1 such that the equilibrium dynamics of

the money market account S(0) are given by

dS
(0)
t = S

(0)
t rtdt, t ∈ [0, T ], S

(0)
0 > 0,(2.2)

for some process r adapted to the filtration generated by v, i.e., rt is F v
t :=

σ(vu)u∈[0,t]-measurable for t ∈ [0, T ]. We conjecture (and confirm) that there

exists µS ∈ Λ such that the equilibrium stock price dynamics are given by

dSt =
(

rtSt + µS(t)vt

)

dt+
√
vtdWt, t ∈ [0, T ], S0 > 0.(2.3)

The idiosyncratic Brownian motions Zi do not appear directly in the stock

price dynamics (2.3) nor in the spot rate dynamics. However, as we shall see,

the presence of (Zi)
I
i=1 has a significant impact on these quantities. Since

d〈S, v〉t = vtσvdt, the parameter σv controls the cross variation between the

stock and the volatility. In what follows σv plays an important role and to

be consistent with empirical observations this parameter should be negative,

see, e.g., the discussions in Chapter 5 in [Gat06].

A strictly positive progressively measurable process ξ is a state-price de-

flator if both ξtS
(0)
t and ξtSt are driftless (under P), see, e.g., Chapter 6 in

[Duf01]. An important ingredient will be the minimal state-price density

defined by

dξmin
t := −ξmin

t

(

rtdt+ µS(t)
√
vtdWt

)

, ξmin
0 > 0.(2.4)

The corresponding minimal martingale measureQmin is defined via the Radon-

Nikodym derivative on FT as

dQmin

dP
:=

ξT
ξ0

exp

(
∫ T

0

rudu

)

> 0.
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Since v is a Feller process and µS ∈ Λ, we see that Novikov’s condition is

satisfied2. Consequently, Girsanov’s theorem ensures that

dWmin
t := dWt + µS(t)

√
vtdt, Wmin

0 := 0,

is a Brownian motion under Qmin which is independent of (Z1, ..., ZI).

3 The individual investor’s problem

In this section we first set up the investors’ problems and subsequently

present partial solutions.

3.1 Problem formulation

Investor i, i = 1, ..., I, receives income determined by the process

dYit :=
√
vt

(

σYi
dWt + βYi

dZit

)

, t ∈ [0, T ], Yi0 ≥ 0.(3.1)

Here σYi
and βYi

, i = 1, ..., I, are constants. The W -Brownian motion affects

all investors whereas Zi models investor i’s idiosyncratic risk. The Feller

process v affects each investor’s individual income process Yi and acts as a

common stochastic volatility. The investor’s cumulative income at time t is

defined by
∫ t

0
YiuΓ(du) where Γ is a finite measure on [0, T ]. It is straight-

forward to allow Γ to be investor specific in what follows. We will need two

specifications of Γ: For N ∈ N we first define ΓN by

∫ t

0

YiuΓN(du) := ∆
∑

n : tn≤t

Ytn , ∆ :=
T

N
, tn := n∆, n = 0, 1, ..., N.

2More specifically, since vt is non-centrally χ2-distributed Novikov’s condition is sat-
isfied for T > 0 sufficiently small. We can then use a localization argument (see, e.g.,
Section 6.2 in [LS77]) to obtain the global martingale property. We will use this observa-
tion without mentioning multiple times in what follows.
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Secondly, we need the continuous case where Γ∞ is the Lebesgue measure,

i.e., the cumulative income up to time t is given by

∫ t

0

YiuΓ∞(du) :=

∫ t

0

Yiudu, t ∈ [0, T ].

The following analysis remains valid if we allow v and (Yi)
I
i=1 defined by

(2.1) and (3.1) to have an affine drift of v. On the other hand, it is not imme-

diate how to adjust our approach to cover the mean-reverting income models

used in [Wan04] and [Wan06]. These optimal investment models are based on

deterministic interest rates, however, the corresponding equilibrium interest

rate cannot be deterministic in these affine settings. Unlike the power in-

vestor, stochastic interest rates complicate the exponential investor’s optimal

investment problem tremendously. As we shall see, the income processes (3.1)

produce an equilibrium stochastic interest rate for which the individual ex-

ponential investor’s optimal investment problem remains partially tractable.

The investor chooses a trading strategy θ as well as a cumulative con-

sumption process C (in excess of income) and (as we shall see) we will only

need to consider right-continuous processes of the form

Ct :=

∫ t

0

cuΓ(du), t ∈ [0, T ],

for some Γ-rate process c. Xθ,c
t denotes the time t value of the investor’s

financial wealth, i.e., Xθ,c
t := θtSt + θ

(0)
t S

(0)
t where θ denotes the number of

units held of the risky security S and θ(0) denotes the number of units of the

money market account S(0) held. The corresponding self-financing wealth

dynamics read

dXθ,c
t = rtX

θ,c
t dt+ θt

(

µS(t)vtdt+
√
vtdWt

)

− dCt, Xθ,c
0 := 0.

In the market (S(0), S) all European claims written on the stock, i.e.,
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claims paying out g(ST ) at time T for some payoff function g, are replicable.

However, the individual investor’s endowment process Yi cannot be fully

hedged due to the presence of Zi in the dynamics of Yi. Therefore, (S
(0), S)

is an incomplete market.

In order to ensure that the wealth dynamics are well-defined, we require

that the processes (c, θ) are progressively measurable and satisfy the integra-

bility requirements

∫ T

0

|cu|Γ(du) < ∞,

∫ T

0

θ2t vtdt < ∞, P-almost surely.(3.2)

We deem measurable and adapted processes (θ, c) admissible if in addition

to (3.2) the budget constraint (recall that the initial wealths are zero)

E

[
∫ T

0

ξmin
u ciuΓ(du)

]

≤ 0,(3.3)

is satisfied in which case we write (c, θ) ∈ A = A(ξmin). This condition also

ensures that there are no arbitrage opportunities in the set A.

Investor i’s preferences are modeled by the negative exponential utility

function

Ui(x) := −e−aix, x ∈ R, i = 1, ..., I,

where ai > 0 denotes the investor’s absolute risk aversion coefficient.

The investor maximizes time-additive expected utility stemming from

running consumption in addition to the investor’s income, i.e., the investor

seeks (ĉi, θ̂i) ∈ A such that

sup
(c,θ)∈A

E

[
∫ T

0

Ui(cu + Yiu)Γ(du)

]

= E

[
∫ T

0

Ui(ĉiu + Yiu)Γ(du)

]

.(3.4)

To simplify the presentation we have assumed that all (finitely many) in-

vestors receive income at the same time points. Because the individual con-
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sumption c is allowed to be negative it is mathematically tractable to allow

for consumption at time points where aggregate income is zero. The above

problem formulation explicitly restricts the individual investors to only con-

sume at time points when aggregate income is available.

3.2 Partial solution

We next partially solve (3.4). Because the interest rate r is stochastic the

PDE produced by the HJB-approach does not have the usual exponential

affine solution that [Hen05] and [CLM10] rely on. Inspired by [CH94], we

instead convert the problem into an equivalent problem with spanned income

but heterogeneous beliefs. We define the P-equivalent probability measure

Pi, i = 1, ..., I, via the Radon-Nikodym derivative dPi

dP
:= πiT > 0 on FT

where

πit := exp

(

−aiβYi

∫ t

0

√
vudZiu −

1

2
a2iβ

2
Yi

∫ t

0

vudu

)

, t ∈ [0, T ].

By Novikov’s condition and Girsanov’s theorem we know that W remains a

Brownian motion under each Pi, i = 1, ..., I. Therefore, S and Xc,θ also have

the same dynamics under Pi as under P. Problem (3.4) then becomes

sup
(c,θ)∈A

EPi

[
∫ T

0

Ui

(

cu + Ỹiu

)

Γ(du)

]

,(3.5)

which can be seen as a standard complete optimization problem with the

spanned income Γ-rate process

Ỹit := Yi0 + σYi

∫ t

0

√
vudWu −

1

2
aiβ

2
Yi

∫ t

0

vudu, t ∈ [0, T ].(3.6)

Theorem 3.1. Let r ∈ L1 be adapted to F v
t := σ(vu)u∈[0,t] and let µS ∈ Λ.
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1. Discrete case ΓN : Define recursively the consumption strategy

ĉi0 := − 1

ai
log

(

αiξ0
ai

)

− Yi0,(3.7)

ĉitn := ĉitn−1
+

∫ tn

tn−1

1

ai

{

ru +
1

2

(

µS(u)
2 + a2iβ

2
Yi

)

vu

}

du(3.8)

+

∫ tn

tn−1

( 1

ai
µS(u)− σYi

)√
vudWu,

where the constant αi > 0 is determined by the budget constraint

0 = E

[
∫ T

0

ξmin
u ĉiuΓ(du)

]

.(3.9)

Then there exists an investment strategy θ̂i such that the pair (ĉi, θ̂i) ∈
A is optimal for investor i, i = 1, ..., I.

2. Continuous case Γ∞: Let ĉi0 be defined by (3.7) and define the dynamics

dĉit :=
1

ai

{

rt +
1

2

(

µS(t)
2 +

1

2
a2iβ

2
Yi

)

vt

}

dt+
(µS(t)

ai
− σYi

)√
vtdWt,

(3.10)

where αi is determined by (3.9). Then there exists an investment strat-

egy θ̂i such that the pair (ĉi, θ̂i) ∈ A is optimal for investor i, i = 1, ..., I.

Because problem (3.5) corresponds to a complete market with spanned

income processes (Ỹi)
I
i=1 the result follows immediately from the standard

martingale method. Therefore, the optimal investment strategy θ̂i is pro-

duced by the martingale representation theorem via the relation

X θ̂i,ĉi
t = E

Qmin

t

[
∫ T

t

exp

(

−
∫ u

t

rsds

)

ĉiuΓ(du)

]

, t ∈ [0, T ].(3.11)

However, a tractable expression for the optimal investment strategy θ̂i is not
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available because the interest rate r is stochastic. Fortunately, we will have

no need of such an expression in what follows.

From (3.11) we see that in the continuous case (Γ∞) we have X ĉi,θ̂i
T = 0,

P-a.s., meaning that the investors optimally leave no wealth behind after

maturity. On the other hand, (3.11) shows that in the discrete case (ΓN)

we have X ĉi,θ̂i
T = ĉiT∆, P-a.s., which means that at maturity each investor

consumes whatever remaining wealth there is.

4 Equilibrium

The money market account is assumed to be in zero net supply and we fol-

low the part of the literature which assumes a zero net stock supply too,

see, e.g., the framework used in Chapter 4 in [KS98]. This means that an

investor holding one unit of the risky security at time T receives ST units

of the consumption good after the market closes at time T . The alterna-

tive assumption of a positive net stock supply allows an additional inflow

of exogenous dividends into the economy. Such a model is in contrast to

our setting where the dividends paid by the stock at time T are determined

endogenously. In our model, the stock only serves as a device for investors

to trade their non-idiosyncratic risk parts between themselves. However, as

we explain in Section 5.2 incorporating exogenous dividends into our setting

is straightforward and will not add any additional insight.

Definition 4.1. An equilibrium is a minimal state-price deflator ξmin, see

(2.4), characterized by (ξmin
0 , r, µS) such that all markets clear, i.e.,

I
∑

i=1

ĉit = 0, P⊗ Γ-a.e.,

I
∑

i=1

θ̂
(0)
it = 0,

I
∑

i=1

θ̂it = 0, P⊗ Leb-a.e.,

and such that given (ξmin
0 , r, µS) the processes (ĉi, θ̂i) ∈ A are optimal for

investor i, i = 1, 2..., I. ♦
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It is important to note that clearing in the good’s market, i.e.,
∑I

i=1 ĉit =

0, P⊗Γ-a.e., ensures clearing in both the stock market as well as in the money

market. To see this we sum over i = 1, ..., I in (3.11) to get
∑I

i=1X
θ̂i,ĉi
t = 0,

P⊗Leb-a.e., and in particular we have P⊗Leb-a.e. that
∑I

i=1 e
−

∫
t

0
ruduX θ̂i,ĉi

t =

0. Computing the dynamics gives us

0 =

I
∑

i=1

d
(

e−
∫
t

0
ruduX θ̂i,ĉi

t

)

=

I
∑

i=1

θ̂ite
−

∫
t

0
rudu

√
vtdW

min
t ,

which combined with the uniqueness of Itô-dynamics produces clearing in

the stock market. To obtain clearing in the money market, the numéraire

invariance property of self-financing strategies produces the money market

investment strategy

θ
(0)
it :=

∫ t

0

e−
∫
s

0
rudu
(

θ̂is
√
vtdW

min
s − ĉisΓ(ds)

)

− e−
∫
t

0
ruduθ̂itSt,(4.1)

since initial wealths are assumed to be zero. By summing over i = 1, ..., I we

obtain the money market clearing requirement.

In the next sections we will use the positive constants

τΣ :=

I
∑

i=1

1

ai
, σE :=

I
∑

i=1

σYi
, σβ :=

I
∑

i=1

aiβ
2
Yi
.

4.1 Main existence result

We start by defining the functions λn(t) for t ∈ [tn−1, tn] via the Riccati

equations

λ′
n(t) :=

1

2
σv

(

λn(t)
2 +

1

τΣ
σβ

)

, λn(tn) :=
σE

τΣ
,(4.2)

where ∆ := T/N and tn := ∆n, n = 0, 1, ..., N , for some N ∈ N. We will

assume that for n = 1, ..., N there exists a (unique) solution λn of (4.2). If
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σv < 0, this is trivially ensured and, otherwise, ∆ > 0 being sufficiently small

produces this feature. For a complete description of this issue, we refer to the

appendix in [KO96]. Furthermore, we define the two sequences of constants

r0n :=
µv

σv

(

1

∆

∫ tn

tn−1

λn(u)du− λn(tn)

)

, n = 1, ..., N,(4.3)

rvn :=
1

σv∆

(

λn(tn−1)− λ(tn)
)

, n = 1, ..., N.(4.4)

Our main existence result is the next theorem.

Theorem 4.2. Assume (4.2) have solutions in Λ for n ∈ {1, ..., N}, N ∈ N.

1. Discrete case ΓN : Assume that ∆ := T/N > 0 is such that λn defined

by (4.2) is well-defined for n = 1, ..., N . Then r ∈ L1 and µS ∈ Λ

defined by

rt := r0n + rvnvtn−1
, µS(t) := λn(t), for t ∈ (tn−1, tn],

constitute an equilibrium interest rate and market price of risk.

2. Continuous case Γ∞: An equilibrium interest rate r ∈ L1 and market

price of risk µS

√
vt, µS ∈ Λ, are given by

µS(t) :=
σE

τΣ
, rt := − 1

2τΣ

(

σβ +
σ2
E

τΣ

)

vt.

The constants defined by (4.3) and (4.4) satisfy

lim
tn↓tn−1

(

r0n + rvnvtn−1

)

= − 1

σv

λ′
n(tn−1)vtn−1

= −1

2

1

τΣ

(σ2
E

τΣ
+ σβ

)

vtn−1
,

which indeed agrees with the second part of the above theorem. From the

proof (see Section 6) we see that the equilibrium interest rate defined by (4.3)

and (4.4) is not unique in the discrete case ΓN .
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Finally we mention that this result is robust to various model variations,

see Section 5, some of which are needed to obtain more realistic equilibrium

predictions. E.g., having drift in the individual income processes would pro-

duce aggregate consumption growth leading to a positive interest rate rt.

Such extensions are straightforward and will not add any additional insights.

4.2 Risk-free rate and equity premium puzzles

In this section we illustrate how the incomplete equilibrium established in

Theorem 4.2 can be used to simultaneously explain the risk-free interest rate

puzzle and the equity premium puzzle. We first consider discrete income

and, subsequently, the continuous analogue is presented.

4.2.1 Discrete income

For simplicity, we consider the case of income/consumption at t = 0 and

t = T (the general discrete case is similar). The standard representative

agent is modeled by the utility function

Urep(x; γ) := sup
∑

I

i=1 xi=x

I
∑

i=1

γiUi(xi), γ ∈ RI
+, x ∈ R,

where γ is a weight vector. Given that each investor is modeled by a neg-

ative exponential utility function, the representative agent’s utility function

becomes (see, e.g., Section 5.26 in [HL88])

Urep(x; γ) = −e
− 1

τΣ
x

I
∏

i=1

(γiai)
1

aiτΣ , x ∈ R.

This expression shows that the weight γ does not matter for the representa-

tive agent’s equilibrium (Gorman aggregation).
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We define the aggregate endowment process Et :=
∑I

i=1 Yit with dynamics

dEt =
√
vt

(

σEdWt +

I
∑

i=1

βYi
dZit

)

, t ∈ [0, T ].

If the equilibrium is given by the representative agent, the martingale method

produces the proportionality relation

e
− 1

τΣ
Et ∝ ξrept , t ∈ {0, T},(4.5)

where ξrep denotes the unique state-price deflator prevailing in the represen-

tative agent’s economy.

Lemma 4.3. For ∆ := T > 0 sufficiently small3 the Riccati equation

λ′
rep(t) =

1

2
σv

(

λrep(t)
2 +

1

τ 2Σ

I
∑

i=1

β2
Yi

)

, λrep(T ) =
σE

τΣ
,(4.6)

has a well-defined solution. The representative agent’s market price of risk

process is given by λrep(t)
√
vt whereas the corresponding risk-free rate reads

rrep =
µv

σv

(

1

T

∫ T

0

λrep(u)du− λrep(T )

)

+
v0
σv

1

T

(

λrep(0)− λrep(T )
)

.(4.7)

Provided that the ODEs for λrep and λ have well-defined solutions, see

(4.2) and (4.6), we see that the equilibrium market price of risk process λ
√
vt

coincides with the representative agent’s market price of risk process λrep
√
vt

if, and only if, we have

I
∑

i=1

aiβ
2
Yi
=

1

τΣ

I
∑

i=1

β2
Yi
.(4.8)

3Specifically, T > 0 needs to be so small that the Ricatti-ODE for Brep in the below
Lemma 6.1 has a (unique) solution.
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In this case we also have r = rrep. This indeed holds true in the complete

market’s case in which βYi
:= 0 for i = 1, ..., I. For nonzero (βYi

)Ii=1 the

left-hand-side dominates the right-hand-side of (4.8) since τΣ ≥ 1/ai for all

i = 1, ..., I. So for σv < 0 comparing (4.2) and (4.6) shows that λrep < λ and,

consequently, by the first part of Theorem 4.2 and (4.7) we also have that

rrep > r. We note that σv := 0 produces a deterministic volatility, and the

model becomes similar to the model presented in [CLM10] which does not

produce any incompleteness effects on the equity risk premium.

To put the above discussion into a different perspective, let us conclude

this section by re-considering the heterogenous formulation (3.5). It follows

from Bayes’ rule that since W remains a Brownian motion under each Pi and

since the adjusted income processes (Ỹi)
I
i=1 defined by (3.6) as well as the

wealth dynamics dXθ,c
t are driven solely by W we have

EPi

[
∫ T

0

Ui

(

cu + Ỹiu

)

Γ(du)

]

= EP1

[
∫ T

0

Ui

(

cu + Ỹiu

)

Γ(du)

]

,

for i = 1, 2..., I and (θ, c) ∈ A. Consequently, if we define Ẽt :=
∑I

i=1 Ỹit

with the dynamics

dẼt =
√
vtσEdWt −

1

2
σβvtdt,

as the economy’s “aggregate endowment” we can reduce the search for an

equilibrium to a complete market equilibrium with a modified aggregate en-

dowment. In other words, by replacing (4.5) with the following adjusted

first-order condition in the representative agent’s problem

e
− 1

τΣ
Ẽt ∝ ξrept , t ∈ {0, T},(4.9)

the proof of Lemma 4.3 can be used to recover the actual incomplete equi-

librium derived in Theorem 4.2 (provided that T := ∆ > 0 is small enough).
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4.2.2 Continuous income

In the case of continuous income processes (Γ∞), the resulting equilibrium

risk-free rate is affected by the income incompleteness. The first order con-

dition (4.5) for t ∈ [0, T ] produces the representative agent’s interest rate

rrept := − 1

2τ 2Σ

(

I
∑

i=1

β2
Yi
+ σ2

E

)

vt, t ∈ [0, T ].

This combined with the second part of Theorem 4.2 produces the interest

rate reduction

rrept − rt =
1

2

1

τΣ

(

I
∑

i=1

aiβ
2
Yi
− 1

τΣ

I
∑

i=1

β2
Yi

)

vt > 0,(4.10)

which is an analogue of the result presented in [CLM10]. On the other hand,

the equity premium based on the representative agent agrees with µS =

σE/τΣ. Our next result shows that any family of continuous income processes

necessarily produces an (instantaneous) equilibrium equity premium identical

to that of the representative agent.

Let the money market account S(0) given by (2.2) and let

dSt :=
(

rtSt + λ′
tσSt

)

dt+ σStdBt, t ∈ [0, T ], S0 > 0,(4.11)

constitute an equilibrium for some r ∈ L1, (σS, λ
′) ∈ L2, σS 6= 0, and some

Brownian motion B. In this setting a pair (c, θ) is admissible if we have

∫ T

0

(

|cu|+ θ2uσ
2
Su

)

du < ∞, P-a.s., and E

[
∫ T

0

ξucudu

]

≤ 0,

for all state-price densities ξ (recall that ξ is a state-price density if ξtS
(0)
t

and ξtSt are local martingales).
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Theorem 4.4. For i = 1, ..., I we let the income process Y ′
i be an arbitrary

Itô-process with dynamics

dY ′
it = µ′

Yit
dt + σ′

Yit
dBt + β ′

Yit
dB⊥

it , t ∈ [0, T ], Y ′
i0 ≥ 0.

Here B⊥
i denotes a Brownian motion independent of B, µYi

∈ L1, and

(σ′
Yi
, β ′

Yi
) ∈ L2. Assume that (2.2) and (4.11) constitute an equilibrium.

Then the equilibrium market price of risk process λ′ satisfies λ′
t =

1
τΣ

∑I

i=1 σ
′
Yit
.

In the setting of this theorem, we let E ′
t :=

∑I

i=1 Y
′
it denote aggregate

endowment. By computing the dynamics of the representative agent’s state-

price density (proportional to e
− 1

τΣ
E ′

t), we see that the market price of risk

process based on the representative agent agrees with λ′ stated in the above

theorem.

Finally, we note there is no loss of generality in assuming the above form

for (Y ′
i )

I
i=1 and S. Indeed, by assuming that an equilibrium stock price S

exists, we can use Lévy’s characterization for Brownian motion as well as

the martingale representation theorem for Ft := σ(Wu, Zu1, ..., ZuI)u∈[0,t] to

write the martingale component of dS as σStdBt for some Brownian motion

B. Subsequently, we can decompose the martingale part of Y ′
i into its pro-

jection onto B and some residual orthogonal martingale component (possibly

depending on i) which produces the above form for dY ′
i , i = 1, ..., I.

4.2.3 Risk premia over finite time-intervals

The preceding analysis has established that unspanned income risk affects the

equilibrium risk-free rate, but also (in a model-free manner) that the equilib-

rium instantaneous equity premium is affected only if income/consumption

is discrete. The latter impossibility result may seem to imply that the equity

premium puzzle cannot be explained by unspanned income risk using a model

based on exponential investors with continuous income streams, however, as

we now explain this is not exactly true. The risk-free rate and equity premium
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puzzles are results of empirical studies of asset pricing properties relying on

risk premia measured over finite time-intervals (given by the sampling fre-

quency). In this section, we derive the relation between instantaneous equity

premia and the equity premia measured over finite time-intervals. We show

that unspanned income risk with stochastic volatility can raise equity pre-

mia over finite time-intervals even with continuous income streams and, thus,

simultaneously explain the risk-free rate and equity premium puzzles.

The relation between instantaneous equity premia and equity premia mea-

sured over finite time-intervals is given by the relation between the minimal

spot martingale measure Qmin and the associated minimal forward measure

for the finite time-interval over which returns are measured. For simplicity

we only consider the time-interval [0, T ]; the general case being completely

similar. If there is only income/consumption at t ∈ {0, T} we have seen that

the equilibrium interest rate is deterministic, hence, there is no difference

between spot and forward measures. On the other hand, in the setting with

continuous income/consumption the equilibrium interest rates are stochastic

and, consequently, the minimal spot and forward measures differ. In what

follows we consider the continuous case Γ∞ where µrep
S (t) = µS(t) = σE/τΣ.

In order to calculate the zero-coupon bond prices, we need the dynamics

of v under the minimal martingale measure Qmin

dvt =
(

µv − µS(t)σvvt

)

dt+ σv

√
vtdW

min
t .

We can then compute the CIR-type zero-coupon bond prices to be

B(t, T ) := EQmin

[

exp

(

−
∫ T

t

rudu

)]

= exp
(

a(T − t) + b(T − t)vt

)

.

In this expression a and b are deterministic functions characterized by the

18



following coupled set of ODEs for s ∈ [0, T ]

a′(s) = b(s)µv, a(0) = 0,

b′(s) = −b(s)µS(t)σv +
1

2
b(s)2σ2

v +
1

2τΣ

(

I
∑

i=1

aiβ
2
Yi
+

σ2
E

τΣ

)

, b(0) = 0,

which have a (unique) solution provided that T > 0 is small enough. The cor-

responding minimal forward measure QT is defined by the Radon-Nikodym

derivative on FT as

dQT

dQmin
:=

exp
(

−
∫ T

0
rudu

)

B(0, T )
.

Novikov’s condition and Girsanov’s theorem ensure that

dWQT

t := dWmin
t − b(T − t)σv

√
vtdt = dWt +

(

µS(t)− b(T − t)σv

)√
vtdt,

is a QT -Brownian motion.

We can perform exactly the same calculation for minimal forward measure

QT
rep corresponding to the representative agent’s equilibrium and we find

dW
QT

rep

t := dWmin
t −brep(T − t)σv

√
vtdt = dWt+

(

µS(t)−brep(T − t)σv

)√
vtdt.

In this expression brep is given by (again, provided that T > 0 is small enough)

b′rep(s) = −brep(s)µS(t)σv +
1

2
brep(s)

2σ2
v +

1

2τ 2Σ

(

I
∑

i=1

β2
Yi
+ σ2

E

)

, brep(0) = 0,

where we are using that µrep
S (t) = µS(t). By comparing the coefficients for

the two Riccati equations for b and brep show that b dominates brep, see

the discussion following Lemma 4.3. In conclusion, the equilibrium equity

premium measured over finite time-intervals is raised relative to the Pareto

efficient analogue provided as before that σv < 0.
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5 Model variations

The model used for the income processes (3.1) is chosen for its mathematical

simplicity and in this section we will briefly mention some variations. First

of all, it is straightforward to allow v defined by (2.1) to contain a mean-

reversion component and also to allow Yi’s drift to be an arbitrary affine

function of v, see (3.1). Furthermore, these constants can be replaced by

suitable deterministic functions of time. Such components are naturally re-

quired for model calibration, however, the analysis is completely similar but

produces more cumbersome expressions for the equilibrium quantities (r, µS).

5.1 Gaussian models

We can modify our setting to produce an equilibrium in which the absolute

volatility process follows a Gaussian process. This is inspired by Stein and

Stein’s stochastic volatility model [SS91] where the relative volatility process

is the Gaussian process

dvt := (µv + κvvt)dt+ σvdWt, t ∈ [0, T ], v0 > 0,

for (µv, κv, σv) ∈ R. Instead of the income dynamics (3.1), we consider

dYit := µYi
dt+ vt

(

σYi
dWt + βYi

dZit

)

, t ∈ [0, T ], Yi0 ≥ 0.

In this setting we can find deterministic functions (µS, µ
0
S) ∈ Λ such that the

equilibrium stock price dynamics are given by

dSt =
(

µS(t)vt + µ0
S(t)

)

dt+ dWt, t ∈ [0, T ].

In other words, the market price of risk process is the Gaussian process

µ0
S(t) + µS(t)vt which can be seen as a generalization of the Gaussian model

developed in [KO96]. Gaussian based market price of risk models have been
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widely used in the finance literature, see e.g., [Wac02], [MS04] and [BK05].

5.2 Dividends

One can interpret S as a derivative security written on an underlying non-

traded dividend paying stock. If investor i is endowed with units of this un-

derlying stock, the processes (Yi)
I
i=1 model the investors’ aggregate payments,

i.e., dividend plus income payments. Alternatively, we can incorporate divi-

dend payments made by the risky security S directly into the setting. To do

so, we let the risky security S be in unit positive supply, i.e.,
∑I

i=1 θ̂it = 1.

Dt :=
∫ t

0
δuΓ(du) denotes the aggregate dividend payments made by the risky

security S up to time t for the dividend Γ-rate process

dδt := σδ

√
vtdWt, t ∈ [0, T ],

where σD > 0 is some constant. In this case, the equilibrium stock price

dynamics are given by

dSt :=
(

rtSt + µS(t)
√
vtσSt

)

dt− dDt + σStdWt,

for some σS ∈ L2. Since D and σS do not matter for the individual investor’s

problem Theorem 3.1 remains valid. The clearing condition for the good’s

market becomes δt =
∑I

i=1 ĉit almost everywhere with respect to P ⊗ Γ.

Consequently, Theorem 4.2 remains valid with σE := σD +
∑I

i=1 σYi
and

produces (r, µS). Finally, the relation

St = E
Qmin

t

[
∫ T

t

exp

(

−
∫ u

t

rsds

)

δuΓ(du)

]

, t ∈ [0, T ],

produces the volatility process σS ∈ L2 via the martingale representation

theorem.
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6 Proofs

Proof of Theorem 4.2: For the discrete case we start by introducing the

martingale M for t ∈ [tn−1, tn] defined by

Mt :=
1

2
Et

[
∫ tn

tn−1

(

τΣλn(u)
2 + σβ

)

vudu

]

+

∫ t

tn−1

(

τΣλn(u)− σE

)√
vudWu.

Fubini’s Theorem and Leibnitz’s rule produce the dynamics of M to be

dMt =
1

2

∫ tn

t

(

τΣλn(u)
2 + σβ

)

duσv

√
vtdWt +

√
vt

(

τΣλn(t)− σE

)

dWt.

Since λn satisfies (4.2) we have dMt = 0 for all t ∈ [tn−1, tn]. Consequently,

we have

Mtn = Mtn−1 =
1

2

∫ tn

tn−1

(

τΣλn(u)
2 + σβ

)

Etn−1
[vu]du

=
τΣ
σv

∫ tn

tn−1

λ′
n(u)

(

vtn−1
+ µv(u− tn−1)

)

du.

Inserting this expression into (3.8) and using the definition of r produce for

n = 1, ..., N the clearing requirement

I
∑

i=1

(

ĉitn − ĉitn−1
) =

∫ tn

tn−1

{

τΣru +
1

2

(

τΣµS(u)
2 + σβ

)

vu

}

du

+

∫ tn

tn−1

(

τΣµS(u)− σE

)√
vudWu

= ∆τΣ(r
0
n + rvnvtn−1

)

+
τΣ
σv

∫ tn

tn−1

λ′
n(u)

(

vtn−1
+ µv(u− tn−1)

)

du = 0.
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It remains to define ξmin
0 such that

0 =
I
∑

i=1

ĉi0 = −
I
∑

i=1

(

1

ai
log

(

αiξ
min
0

ai

)

+ Yi0

)

.

For the continuous case we use the second part of Theorem 3.1. By

summing up the expressions for ĉit and equating the sum to zero we find the

stated expressions for r and µS.

♦

Lemma 6.1. For T > 0 sufficiently small the coupled system of ODEs

B′
rep(t) =

1

2
B2

rep(t)σ
2
v +

1

2

1

τ 2Σ

(

σ2
E +

I
∑

i=1

β2
iY

)

+Brep(t)
1

τΣ
σEσv, Brep(T ) = 0,

A′
rep(t) = −Brep(t)µv, Arep(T ) = 0,

has well-defined solutions in Λ and we have the following representation

Et

[

e
− 1

τΣ
ET
]

= exp
(

− Arep(t)− Brep(t)vt −
1

τΣ
Et
)

, t ∈ [0, T ].(6.1)

Proof. We define Mt to be the right-hand-side of (6.1). The dynamics of M

follows from Itô’s lemma and are given by

dMt = −Mt

√
vt

{

Brep(t)σvdWt +
1

τΣ

(

σEdWt +
I
∑

i=1

βiY dZit

)}

, t ∈ [0, T ].

Since v is a Feller process, Novikov’s condition ensures thatM is a martingale

and, hence, the terminal conditions for Arep and Brep produce the claim.

♦
Proof of Lemma 4.3: The above lemma allows us to read off the representa-

tive agent based market price of risk process related to W , i.e., the process
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λrep(t)
√
vt, to be

λrep(t) := Brep(t)σv +
σE

τΣ
, t ∈ [0, T ].

By computing the derivative and using the Riccati equation for Brep provided

in the previous lemma we find the ODE that λrep satisfies to be (4.6). To

obtain the interest rate (4.7) we use the relation

errepT
1

τΣ
E[e

− 1
τΣ

ET ] = errepTE[U ′
rep(ET )]

= errepTE[ξrepT ] = ξrep0 = U ′
rep(E0) =

1

τΣ
e
− 1

τΣ
E0 .

The previous lemma then shows

rrep :=
1

T

(

Arep(0) +Brep(0)v0

)

.

Inserting the expressions for Arep and Brep produces (4.7).

♦
Proof of Theorem 4.4: The first-order condition for the individual investor

produces the proportionality requirement

U ′
i(ĉt + Y ′

it) ∝ ξ̂it.(6.2)

The individual investor’s specific optimal state-price density ξ̂i has the form

dξ̂it = −ξ̂it

(

rtdt+ λ′
tdBt + dM⊥

it

)

, i = 1, ..., I,

for some local martingale M⊥
i orthogonal to B, i.e., 〈B,M⊥

i 〉t = 0 for all

t ∈ [0, T ]. This representation of state-price densities can be found [KS98].

Computing the dynamics of both sides of (6.2) gives us the relation

dĉit = ...dt+
(

aiλ
′
t − σY ′

i
t

)

dBt + ...dB⊥
it + ...dM⊥

it .
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It follows by summing over investors and matching the B-components that

the equilibrium market price of risk process satisfies

λ′
t =

1

τΣ

I
∑

i=1

σY ′

i
t, t ∈ [0, T ].

♦
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