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We demonstrate the use of dynamic decoupling techniques to extend the coherence time of a single
memory qubit by nearly two orders of magnitude. By extending the Hahn spin-echo technique to
correct for unknown, arbitrary polynomial variations in the qubit precession frequency, we show
analytically that the required sequence of π-pulses is identical to the Uhrig dynamic decoupling
(UDD) sequence. We compare UDD and CPMG sequences applied to a single 43Ca+ trapped-ion
qubit and find that they afford comparable protection in our ambient noise environment.

Dynamic decoupling is a general technique for main-
taining the phase coherence of a quantum state, with par-
ticular importance for protecting the quantum informa-
tion stored in the memory qubits of a quantum computer.
The simplest example is the Hahn spin-echo [1], a single
π-pulse which protects against an arbitrary and unknown
constant offset in the qubit’s precession frequency [2, 3].
When the state is subject to a time-varying offset due
to, for example, magnetic field noise, it can be protected
by a sequence of many π-pulses. One of these, the Carr-
Purcell-Meiboom-Gill (CPMG) sequence, is well known

FIG. 1: Illustration of the effect of dynamic decoupling se-
quences on the acquired phase, as calculated by equation (2).
a): Frequency offset δ varies linearly with time, and the phase
shift can be completely corrected by a sequence with two π-
pulses (for n = 2, CPMG and UDD are identical). b): δ
varies as a (arbitrary, unknown) quartic polynomial, and is
perfectly corrected by n = 5 pulse UDD.

in the field of nuclear magnetic resonance [4]. More re-
cently, other sequences have been investigated specifically
for their dynamic decoupling properties [5].
In this Letter, we derive a dynamic decoupling se-

quence in a particularly intuitive manner, as an exten-
sion to the spin-echo [1]. We prove that with n pulses,
the sequence can cancel out all the dephasing that would
be caused by the frequency varying as an (n − 1)th or-
der polynomial function of time, without knowledge of
the polynomial coefficients. This sequence is identical to
the Uhrig Dynamic Decoupling (UDD) sequence [6, 7],
which was originally derived by considering the interac-
tion of a spin qubit with a bosonic bath. We implement
the sequence on a single 43Ca+ ion, demonstrating that
the coherence time of this qubit is significantly increased,
and compare it with the CPMG sequence.
Suppose an arbitrary qubit state is prepared at time 0,

and we want to recover it at time τ . The pulse sequence
is a series of (assumed ideal and instantaneous) π-pulses
at times α1τ, α2τ, . . . , αnτ, where the αi are to be found.
We have remarked that a single Hahn spin-echo will cor-
rect for a constant frequency offset. If the offset varies
linearly with time, we can correct the phase error with
two π-pulses at t = 1

4 and 3
4 , where t = time

τ
(Figure

1a). To generalise further, postulate that n pulses suf-
fice to correct for a frequency variation δ(t) that is an
(n− 1)th-order polynomial in time (Figure 1b):

δ(t) = p0 + p1t+ p2t
2 + · · ·+ pn−1t

n−1. (1)

The phase error φerr is given by integrating δ(t) over time.
But each π-pulse reverses the direction of the qubit’s pre-
cession, so between pulses i and i+1, if i is odd, we mul-
tiply the acquired phase by (−1). The resulting integral
is thus

φerr =

n
∑

i=0

(−1)i
∫ αi+1

αi

δ(t) dt

=

n
∑

i=0

(−1)i
∫ αi+1

αi

n
∑

j=1

pj−1t
j−1 dt

=

n
∑

i=0

(−1)i





n
∑

j=1

pj−1t
j

j





αi+1

αi

(2)
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where α0 = 0 and αn+1 = 1. Collecting terms for each
polynomial coefficient pj :

φerr =

n
∑

j=1

pj−1

j

[

(−1)n − 2

n
∑

i=1

(−1)iαj
i

]

. (3)

We require φerr to be 0 for any choice of the pj , and so
we obtain a set of n simultaneous equations for the αi

(−1)n − 2

n
∑

i=1

(−1)iαj
i = 0 ∀j = 1, 2, . . . , n (4)

These are solved by

αi = sin2
(

π

2

i

n+ 1

)

(5)

which can be proved directly by substituting (5) into (4)
and applying a series of trigonometric identities [8].

The sequence is independent of τ ; however in prac-
tice the frequency offset δ(t) is only approximated by a
polynomial, and as τ increases we need more polynomial
terms (and hence more π-pulses) for the approximation
to be valid.

This sequence was previously and independently dis-
covered by Uhrig [6, 7], by considering the spectral prop-
erties of a qubit coupled to a bath of bosons that cause
decoherence. The echo sequence was treated as a fil-
ter in frequency space. Uhrig demanded that the first n
derivatives of the filter function vanish at zero frequency,
because this gives the strongest suppression of the noise
at low frequencies, and this condition leads to the simul-
taneous equations (4) and hence the sequence (5). Lee,
Witzel and Das Sarma have shown [9] that this sequence
is optimal for any dephasing Hamiltonian, where “opti-
mal” means that it is the sequence that maximises the
qubit fidelity in the small τ limit, for a given number of
pulses [20].

The first experimental tests of UDD were by Biercuk et

al., who applied a variety of dynamic decoupling schemes
to ensembles of ∼ 1000 9Be+ ions in a Penning trap [10].
Recently, Du et al. have demonstrated dynamic decou-
pling in a solid (using ensembles of unpaired carbon va-
lence electrons in irradiated malonic acid crystals) using
electron paramagnetic resonance [11].

We have applied dynamic decoupling to a single 43Ca+

trapped-ion qubit, held in a radio-frequency Paul trap
[12]. The qubit is stored in two hyperfine states in
the ground level, |↓〉 4S4,+4

1/2
and |↑〉 4S3,+3

1/2
(where the su-

perscripts indicate the quantum numbers F,MF ); these
states are separated by a 3.2GHz M1 transition. The
transition’s sensitivity to the external magnetic field is
2.45MHzG−1 at low field; we apply a field of 2.2G to
define a quantization axis and to increase the ion’s flu-
orescence rate (by destabilising dark states [13]). Rabi

oscillations are driven on the qubit transition at Rabi fre-
quency 2π× 18 kHz, using microwaves. These are gener-
ated using a versatile synthesizer, amplified with a solid-
state amplifier (to ≈ 750mW) and broadcast inside the
vacuum chamber using a trap electrode as the antenna.
To improve the fidelity of the dynamic decoupling π-
pulses we apply a small 50Hz signal, synchronized with
the AC line, to a magnetic field coil which cancels the
dominant component of the magnetic field fluctuations
experienced by the ion; the remaining noise has ampli-
tude up to ±3 kHz. Each experimental sequence is also
line-triggered.

Each experiment (Figure 2a) starts with the ion op-
tically pumped into state |↓〉 A decoupling sequence is
tested by sandwiching it between two π

2 -pulses. The sec-
ond pulse has a phase offset φ relative to the first; scan-
ning this phase leads to Ramsey fringes. Any loss of
phase coherence in the Ramsey gap leads to fringes of
reduced contrast, so generally the contrast falls as the
gap is made longer. We aim to show that this fall be-
comes slower when dynamic decoupling is used. Finally
the qubit state is measured by electron shelving and flu-
orescence detection, with accuracy up to 99.8% [14].

The sequence is repeated 200 times for each value of
φ, which is typically scanned from −450◦ to +450◦ in 20
steps resulting in the measured state varying sinusoidally
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FIG. 2: a) Experimental sequence: the qubit coherence after
time τ is measured by a Ramsey experiment in which the
phase φ of the second π

2
-pulse is scanned relative to that of the

first. An n = 4 pulse UDD dynamic decoupling sequence is
shown in the example (the π

2
-pulse and π-pulse durations are

exaggerated for clarity). b) Data (with shot noise error bars)
and fitted Ramsey fringes for n = 3 and n = 6 pulse UDD
sequences, both at τ = 7 ms. The dramatic improvement in
the qubit coherence given by the 6-pulse sequence is clear.
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FIG. 3: Comparing UDD sequences with from 0 to 20 π-
pulses. The error bars indicate the uncertainty in each fringe
contrast fit (estimated by a bootstrap algorithm). The curves
show the theoretically predicted contrast for each sequence,
using equation (7) and the fitted S(ω). Multiple data points
with the same τ have been combined for clarity.

with φ. A sine curve is fitted to the data to measure
the contrast; example data is shown in figure 2b. Typ-
ically 10–20 such runs are taken for a given decoupling
sequence, with τ chosen to be different for each, and with
the decoupling pulse timings being scaled accordingly.

Figure 3 shows the results for different numbers of
π-pulses. With no dynamic decoupling π-pulses, the
fringe contrast drops to 1/e of its initial value in a time
τc = 0.51(5)ms; with a 20-pulse UDD sequence, this time
is extended to τc = 33(1)ms. We also compared UDD
and CPMG (equally spaced π-pulses) sequences, with re-
sults shown in figure 4. It can be seen that, in our noise
environment, UDD performs no better than CPMG; in-
deed, CPMG is slightly better, extending the coherence
time to τc = 37(1)ms for a 20-pulse sequence, an increase
over the unprotected qubit by a factor ≈ 73, or 1.9 or-
ders of magnitude. The similar performance of UDD and
CPMG is expected if the noise spectrum extends to high
frequencies; UDD would be superior if the noise spectrum
had a sharp high-frequency cutoff [10, 15]. We also per-
formed experiments both with and without a 90◦ phase
shift on the UDD π-pulses, which is equivalent to testing
the dynamic decoupling for two different qubit states on
the equator of the Bloch sphere; there was no significant
difference between the results.

To fit the data in figures 3 and 4, we perform a simu-
lation based on the filter function formalism of Cywiński
et al. [16]. Suppose that the noise power spectrum is
given by S(ω). We multiply the noise spectrum by the
pulse-sequence’s filter function F (ωt) (F also depends on
the number and finite duration of the π-pulses [10]), and

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Ramsey Gap Length τ / ms

R
a
m

se
y
 F

ri
n

g
e
 C

o
n

tr
a
st

 

 

  20 [CPMG]

  6 [CPMG]

  20 [UDD]

  6 [UDD]

No. of π pulses

FIG. 4: Comparing UDD and CPMG sequences for six and
twenty π-pulses. Solid symbols (error bars omitted for clarity)
and dotted lines are the results and fits from UDD sequences
as shown in Figure 3. Hollow symbols represent CPMG se-
quences, with solid lines the theoretical prediction using the
same fitted noise spectrum S(ω) as for the UDD sequences.
Data points with the same τ have been combined for clarity.

calculate the integral over angular frequency ω:

χ(t) =

∫ ∞

0

S(ω)F (ωt)

πω2
dω (6)

The qubit coherence C(t) is then given by [16]

C(t) = Ne−χ(t) (7)

where N is a normalization constant that accounts for
effects such as imperfections in the π-pulses themselves.
In our experiment, C(t) is the contrast of the Ramsey
fringes.
The noise spectrum of the magnetic field measured out-

side the ion trap vacuum system did not give a good fit
to the data when used to calculate C(t), presumably be-
cause it differs too greatly from the noise at the position
of the ion. Instead we model the noise spectrum S(ω) by
a piecewise cubic spline in log-log space, use it to calcu-
late C(t), and find the spectrum which gives the best fit
to the experimental data; the fit attempts to match all
our UDD and CPMG data with the same S(ω) (though
each data set is allowed its own fitted normalization con-
stant N). The calculated contrast C(t) is not very sen-
sitive to the detailed shape of S(ω), but the procedure
does yield a noise spectrum which is close to a power
law for 100Hz<

∼ (ω/2π)<∼ 100 kHz, with S(ω) ∝ ω−5±1.
This is consistent with the S(ω) ∝ ω−4 spectrum mea-
sured by Biercuk et al. inside a superconducting solenoid
[17]. The curves in figures 3 and 4 show the calculated
C(t) using this noise spectrum, and fit the experimental
data reasonably well. The fitted 1/e coherence times are
shown in figure 5.
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FIG. 5: The 1/e coherence time, as measured by (7), is plotted
against the number of π-pulses for UDD and CPMG data. A
straight line fit to all the data is shown. When the Ramsey
delay τ is equal to the coherence time, the finite-length π-
pulses occupy a total duration < 0.02τ in all cases.

It is clear from figure 3 that although the UDD se-
quence significantly extends the coherence time of the
qubit, the coherence at short time is actually degraded
due to imperfections in the π-pulses which are more sig-
nificant the larger the number of pulses used. We esti-
mate the typical π-pulse fidelity (based on the fits ex-
trapolated to τ = 0) to be 98.7%. This fidelity could be
improved significantly by increasing the Rabi frequency
so that it is well above the amplitude δ(t) of the dominant
noise sources, for example by driving the qubit transition
with near-field microwaves from electrodes much closer to
the ion, as proposed in [18].

In conclusion, we have shown that extending the Hahn
spin-echo to correct for frequency offsets which vary poly-
nomially in time yields the Uhrig dynamic decoupling se-
quence, and that applying this sequence (or the CPMG
sequence) to a single physical qubit stored in a trapped
43Ca+ ion increases the coherence time by nearly two or-
ders of magnitude, to τc ≈ 35ms. In order to demon-
strate the increase in coherence time, we chose qubit
states in the S1/2 manifold which had the greatest sensi-
tivity to magnetic field fluctuations. For a qubit stored
in the magnetic field-insensitive “clock” states (4S3,0

1/2
and

4S4,0

1/2) we have previously measured a coherence time
T2 = 1.2(2) s [3]; since this was also limited by magnetic
field noise, it should be possible to extend the coherence
time of such a qubit to several minutes using dynamic
decoupling techniques, at which point it becomes practi-
cally difficult to measure using a single qubit. The mem-
ory qubit coherence time would then exceed the typical
timescale for trapped-ion quantum logic gates (∼ 20µs
[19]) by many orders of magnitude, an essential pre-
requisite for implementing fault-tolerant quantum com-
putation.
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