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Abstract

The growth-optimal portfolio optimization strategy pioneered by Kelly is based
on constant portfolio rebalancing which makes it sensitive to transaction fees. We
examine the effect of fees on an example of a risky asset with a binary return dis-
tribution and show that the fees may give rise to an optimal period of portfolio
rebalancing. The optimal period is found analytically in the case of lognormal re-
turns. This result is consequently generalized and numerically studied for broad
return distributions and returns generated by a GARCH process.

Keywords: growth-optimal portfolio, Kelly game, transaction fees, lognormal distri-
bution.

1 Introduction

Portfolio optimization is one of the main topics in quantitative finance. The aim is to
maximize investment return while simultaneously minimizing its risk (see [1, 2] for a review
of the modern portfolio theory). Pioneering works on this problem were mainly focused
on the Mean-Variance approach [3] where the portfolio variance is minimized under the
constraint of a fixed expected return value. A different approach has been put forward by
Kelly [4] who proposed to maximize the long-term growth rate of the investor’s capital.
This so-called growth-optimal or Kelly portfolio has been shown to be optimal according
to various criteria [5] and generalized in different ways. For example, the question of
diversification and constant rebalancing among a certain number of uncorrelated stocks
was investigated in [6]. In [7], the authors showed that there is a close connection between
the Mean-Variance approach and the Kelly portfolio and that in many cases, the Kelly-
optimal portfolio includes only a small fraction of the available profitable assets. When
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investing in games without specified levels of risk and reward, the Kelly criterion can be
merged with Bayesian statistical learning as in, for example, [8, 9], yielding generalized
results for the optimal investment fractions.

Application of Kelly’s optimization process to real stock prices was studied in [10] with
the conclusion that non-trivial investment (i.e., investing only a part of one’s wealth) oc-
curs rarely. This is related to the general notion that Kelly’s portfolio is very aggressive
and investment outcomes are sensitive to errors in estimates of assets’ properties. Modi-
fications such as fractional Kelly strategies [11] and controlled downturns [12] have been
consequently proposed to make the resulting portfolios more secure (these modifications
can be of particular importance for risky assets [13]). Optimization in the long-term can
even explain the emergence of cooperation in environments where outcomes of the partic-
ipants are of multiplicative nature [14]. An interested reader is referred to [13, 15] for a
comprehensive introduction to the Kelly portfolio.

Kelly’s optimization scheme is based on the long-term prospects of the investor and
requires continual rebalancing of the portfolio which ensures that the investment fraction
is kept constant. This rebalancing represents the key advantage of the Kelly portfolio over
the simple buy-and-hold strategy. On the other hand, when non-zero transaction costs are
imposed, resulting investment performance may deteriorate considerably (for an example
of how the transaction costs influence real traders and their decisions see [16]). In this
paper we intend to study the effect of non-zero transaction costs on the Kelly portfolio. In
particular, we are interested in the optimal rebalancing period that minimizes the negative
effects of transaction fees while maintaining the positive effects of frequent rebalancing.

Another reason for intermittent rebalancing is that the distribution of returns may
differ from one turn to another. We approach this problem by postulating a risky asset
which evolves on two different time scales and its return distribution hence regularly varies
in time. This setting allows us to study the interplay between the time scales and portfolio
rebalancing. Finally, consideration of a risky asset with a lognormal return distribution
allows us to obtain an analytical form for the optimal rebalancing period. This result is
further generalized to other stationary return distributions with finite variance and used to
explain some observations made for binary return distributions. Our numeric simulations
show that similar behavior can be observed even for returns generated by the standard
GARCH(1, 1) process where consecutive returns are not independent.

2 Basic Model

Consider a situation where an investor with an initial wealth W0 is allowed to repeatedly
invest a fraction f of the current wealth to a risky asset while keeping the rest in cash. We
assume that the asset price x(t) undergoes a multiplicative stochastic process

x(t + 1) =
{ x(t)(1 + r1) with probability 1

2
+ P1,

x(t)(1− r1) with probability 1
2
− P1

(1)
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at discrete time steps t (t = 1, 2, 3, . . . ) and x(1) = 1. Here r1 is a positive parameter
(0 < r1 ≤ 1) representing the rate of gain or loss of the investment, 1

2
+P1 is the “winning”

probability and P1 ∈ (0, 1
2
] (when P1 < 0, the asset is not profitable and it is advisable

to refrain from investment); it is assumed that they are both constant and known to the
investor.1 This “symmetric” setting can be easily generalized by assuming distinct rates
of gain/loss (e.g., r1 and r′1) as well as their probabilities (e.g., P1 and P ′

1). To keep the
notation simple and to limit the number of parameters to minimum, we treat only the
symmetric case here. By setting r1 = 1, one recovers the original Kelly game studied in [4].

Since asset’s properties do not change with time and investor’s wealth follows a multi-
plicative process, the investment fraction set by a rational investor has to be the same in
all time steps. Investor’s wealth after N investment turns is therefore

WN = W0(1 + fr1)
w(1− fr1)

N−w (2)

where w and N −w is the number of “winning” and “loosing” turns, respectively. Now we
can introduce a so-called exponential growth rate of investor’s wealth, G, which is defined
by the relation WN = W0 exp[GN ]. Its limit value has the form

G := lim
N→∞

1

N
ln

WN

W0

. (3)

One can easily show that for the given model parameters this converges to the unique value

G(f) = (1
2
+ P1) ln(1 + fr1) + (1

2
− P1) ln(1− fr1). (4)

In the case of a general risky asset with return distribution ̺(r), this formula generalizes
to the form

G(f) =
〈

ln(1 + fr)
〉

̺
(5)

where the average is over the return distribution ̺(r). The long-term profitability of
the risky asset can be measured by the average return per time step, R. By definition,
WN = W0(1 +RN)

N and R = limN→∞RN . Using Eq. (3), R can be expressed in terms of
G simply as

R = exp(G)− 1. (6)

Both G and R are functions of the asset parameters r1, P1 and of the investment fraction
f .

According to the Kelly portfolio strategy [4], for a long-term investment it is best to
maximize the growth rate G (or, equivalently, the long-term return R)—this strategy is
therefore sometimes referred to as the growth-optimal investment strategy. Starting from
Eq. (4), simple computation yields the optimal investment fraction

f ∗

1 = 2P1/r1. (7)

1Our parametrization based on “excess” winning probability P1 is different from the common one but
it will prove very useful in later calculations where it will allow us to obtain approximate results assuming
that P1 is small.
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Increasing the value of P1 enhances the asset’s profitability and leads to an increased
optimal investment fraction. On the other hand, increasing r1 enhances the asset’s expected
return (when P1 > 0) but it also increases the magnitude of losses; overall it leads to a
decreased value of f ∗. When P1 > r1, we obtain f ∗ > 1 which means that the investor
is advised to borrow additional money and invest them in the risky asset too. When
P1 < 0 (the asset is not profitable), f ∗ < 0 which corresponds to the so-called short selling.
For simplicity we assume that both borrowing and short selling are forbidden and hence
f ∈ [0; 1].

3 Transaction fees and intermittent portfolio rebal-

ancing

The requirement of keeping the investment fraction f constant implies that the investor
needs to constantly rebalance the portfolio: after a “winning” turn, some part of wealth
has to be moved from the asset to cash and after a “loosing” turn, some additional wealth
has to be invested in the asset. This constant portfolio rebalancing may require payment of
substantial transaction fees. The question is, how the fees affect the portfolio optimization
process. In particular, we are interested whether there are situations where the investor
fares better with intermittent rebalancing which is sub-optimal from the point of view of
the Kelly strategy but requires fewer money transfers and hence lowers the transaction
fees.

3.1 Transaction fees

We assume that for any wealth X transferred from or to the risky asset, a transaction
fee α|X| must be paid (α > 0; the absolute value reflects the fact that transaction fees
are paid regardless of the direction of the transfer).2 How to include α in the derivation
of the optimal investment fraction presented above? Given that the portfolio is properly
balanced at a certain moment, the total amount invested in the risky asset is fW . If the
realized return from the risky asset is r, the total wealth changes to W (1 + fr) and the
invested amount changes to fW (1 + r). If r > 0, wealth X > 0 needs to be transferred
from the risky asset to cash to keep the portfolio balanced. The resulting total wealth is
then W (1+fr)−αX and the invested amount is fW (1+r)−X . To achieve the investment
fraction f , it must hold that

f
[

W (1 + fr)− αX
]

= fW (1 + r)−X.

From this formula it follows immediately that the total transferred volume is Xr>0 =
Wrf(1−f)/(1−αf). As expected, no transfer is needed when f = 0 or f = 1; transaction

2Since the investor’s wealth grows without bounds, the relative effect of any sub-linear fee α|X |β is
asymptotically zero in the long term. The directly proportional fee α|X | is hence the only possible choice
for the growth-optimal portfolio.
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fees have no effect on portfolio optimization in these two cases. When r < 0, the transferred
volume can be derived in a similar way and has the formXr<0 = Wrf(1−f)/(1−α(1−f)).
Now we know the wealth lost to transaction fees which allows us to write investor’s wealth
after N time steps

WN = W0

[

1 + fr1 −
αr1f(1− f)

1− αf

]w [

1− fr1 −
αr1f(1− f)

1− α(1− f)

]N−w

. (8)

This is a generalization of Eq. (2) for the case with transaction fees.
It is straightforward to use Eq. (8) to obtain the exponential growth rate G(f) and

maximize it to get the optimal investment fraction. Since the resulting quadratic equation
has complicated coefficients and provides little insights to the behavior of the system,
we introduce an approximate approach which will be of great importance in later more
complicated cases. We expand dG/df in terms of α, P1, r1 and keep only terms up to order
α (this is motivated by the fact that the transaction fee coefficient α is nowadays usually
small in practice). Assuming that P1 and r1 are sufficiently small, we neglect terms that
are of the order higher than P 2

1 , P1r1, or r
2
1. The resulting optimal fraction then has the

simple form

f ∗

1 (α) =
2P1 − α

r1 − 2α
. (9)

Fig. 1 illustrates the dependency of this result on both P1 and α. Naturally, in the limit
α → 0 we recover the fee-free result f ∗

1 = 2P1/r1. Interestingly, transaction fees may
both decrease and increase the optimal investment fraction (in comparison with the value
corresponding to α = 0). On the other hand, the average return is always reduced by
transaction fees.

Using Eq. (9), one can solve the equation f ∗

1 (α) = 0 to obtain a lower bound for P1

at which the asset becomes profitable, P low
1 = α/2. As expected, P low

1 is greater than the
fee-free lower bound which means that transaction fees decrease the asset’s profitability.
Similarly, one can solve the equation f ∗

1 (α) = 1 to obtain an upper bound for P1 at
which the investor is advised to invest all wealth in the asset, P up

2 = (r1 − α)/2 which
is less than the threshold r1/2 valid for α = 0. We can conclude that transaction fees
narrow the region where non-trivial optimal investment fractions (0 < f ∗

1 < 1) realize (this
effect is well visible in Fig. 1a). Another point of view is that transaction fees modify the
optimal investment fraction f ∗ so that the transferred amounts (which are approximately
proportional to (1− f)f) are lowered. Transaction fees are in this sense similar to friction
in mechanics which also both attenuates motion and leads to dissipation of energy (in the
case of transaction fees we face dissipation of wealth).

3.2 Intermittent portfolio rebalancing

While in the original Kelly game the investor should rebalance the portfolio as often as
possible (i.e., after each time step), in the presence of transaction fees it may be profitable
to rebalance the portfolio less often. Our goal is to solve the intermittent portfolio op-
timization problem first without and then with transaction fees. Denoting the investor’s
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Figure 1: The influence of transaction fees on the optimal investment: the dependency on
P1 for r1, α fixed (a,b) and the dependency on α for r1, P1 fixed (c,d) r1 = 10% in all cases.
Analytical and numerical results are shown as lines and symbols, respectively.

rebalancing period as T , the probability of “winning” in w steps out of T is binomial and
reads

B1(w|T ) =
(

T

w

)

(1
2
+ P1)

w(1
2
− P1)

T−w.

Since the asset’s return in T time steps can be written as

rw = (1 + r1)
w(1− r1)

T−w − 1,

we know the return distribution and Eq. (5) gives the exponential growth rate

G(f) =

T
∑

w=0

B1(w|T ) ln
[

1 + frw
]

(10)

where substitution T = 1 recovers G(f) given by Eq. (4). Using Eq. (8), it is easy to
generalize this result to the case with both intermittent rebalancing and transaction fees,
yielding

G(f) =

T
∑

w=0

B1(w|T ) ln
[

1 + frw − αf(1− f)|rw|
1 − αχ(f, rw)

]

(11)

where χ(f, rw) = f if rw > 0 and χ(f, rw) = 1− f otherwise.
Eq. (11) cannot be maximized analytically in general and one has to resort to numerical

techniques. When T = 2, the approach that we developed to derive Eq. (9) yields

f ∗

2 (α) =
8P1 − α(2 + r1)

4r1 − 2α(2 + r1)
. (12)
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Notice that in the limit α → 0, this result is identical with the optimal portfolio fraction
for rebalancing after each turn which is a direct consequence of assuming that P1 and r1
are small.3 Numerical tests show that Eq. (12) is reasonably precise for α, P1 ≪ 1.

Solution of the optimization problem for T = 2 allows us to ask what transaction fee
αx makes rebalancing every other turn as profitable (in terms of the exponential growth
rate G) as rebalancing in every turn. Using Eqs. (7), (10), (12) one can show that when
α = 0, the difference of the optimal growth rates per turn is

G∗

1(0)− 1
2
G∗

2(0) = P 2
1 (r1 − 2P1)

2

where we neglected fifth and higher powers of P1 and r1 in the result. (The factor 1/2 at
G∗

2(0) converts the exponential growth rate in two-turn basis to the growth rate per turn.)
Assuming that P1, r1, α are small, it is also possible to find that the growth rates depend
on α as

G∗

1(α) = G∗

1(0)−
2P1

r1
(r1 − 2P1)α +O(α2),

G∗

2(α) = G∗

2(0)−
P1

r1
(r1 − 2P1)(2 + r1)α+O(α2).

Both growth rates are for P1 = 0 and P1 = r1/2 independent of α. This is not surprising:
in those cases is f ∗ = 0 or f ∗ = 1 and hence no rebalancing is necessary and the optimal
exponential growth rate is unaffected by transaction fees. Combining the obtained results
together, the equality G∗

1(α) = G∗

2(α)/2 can be solved with respect to α, leading to

αx = 2r1P1
r1 − 2P1

2− r1
(13)

which represents the magnitude of α for which rebalancing in every turn and in every
other turn are equally profitable. As shown in Fig. 2, this formula is very accurate even
for moderate values of parameters P1, r1. It is instructive to note that the threshold fee
value αx is small for weakly profitable assets (P1 small) and in particular for assets with
small return in one step (r1 small).

In a very similar way it is possible to study the transaction fee at which rebalancing
every two turns is as profitable as rebalancing every three turns. Interestingly, the result-
ing value αy = 2P1(r1 − 2P1) is for r1 < 1 greater than αx (by the factor of (2 − r1)/r1).
This means that rebalancing every three turns is quite ineffective and hence it is mean-
ingful to ask what αz makes rebalancing every two and four turns equally profitable. The
corresponding value

αz = 16P1r1
r1 − 2P1

2 + r1
(14)

3In a general case, f∗

2
(0) may be considerably different from f∗

1
(0). For our setting, for example, one

can find the approximate result f∗

2 (0) ≈ 2P1

r1

(

1 − 1

2
r21 + 3r1P1 − 4P 2

1

)

which shows that f∗

2 (0) is indeed
different from f∗

1
(0) = 2P1/r1.
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Figure 2: Intermittent rebalancing: numerical and approximate analytical values (shown
as symbols and lines, respectively) of αx and αz for r1 = 10%.

is greater than αx for α < 9/14 and it is smaller than αy for r1 < 2/7. This means that
rebalancing every three turns is sub-optimal in the case of small investment returns: it is
better to rebalance either more (for α > αz) or less (α < αz) often. As shown in Fig. 2,
while precision of αz is lower than that of αx, obtained values agree well with a purely
numerical treatment of the problem.4

When r1, P1, α are given, it is natural to ask what rebalancing period T ∗ maximizes the
exponential growth rate per turn. While this question cannot be answered analytically, it
is straightforward to solve it numerically. Results are shown in Fig. 3 for various choices
of r1, P1. As can be seen, T ∗ decreases with both P1 and r1. This agrees with the growth
of the threshold values αx, αz with P1 (until P1 < r1/4) and r1 (see Eqs. (13), (14)). When
transaction fees are small, T ∗ is proportional to α2/3—a behavior which will be explained
in Sec. 4. When α & 10−2, this scaling breaks down and T ∗ grows even faster than linearly.
Since this mode of behavior occurs only for exceedingly large transaction fees (note that
α = 1 corresponds to confiscating all invested amount), we do not study it further.

3.3 Risky assets with multiple time scales

Assets’ properties are in real life generally non-stationary. To analyze investment in an
asset with time-varying properties, we propose a simple model where the price of the asset
undergoes a stochastic binary process on two distinct time scales. In addition to the basic
time scale 1, we add a longer scale of length T2. We assume that price of the asset undergoes
a multiplicative dynamics given by Eq. (1) at all time steps and when (t mod T2) = 0,
there is an additional return ±r2 with probabilities 1

2
+ P2 and 1

2
− P2, respectively (as

before, asset parameters are constrained to 0 < r2 ≤ 1 and 0 < P2 ≤ 1/2). This framework
is a simple generalization of the original Kelly game to the case with non-stationary game
properties and multiple time scales.

4For the sake of completeness, the optimal investment fractions for rebalancing every three and four
turns are f∗

3
= (2P1 − α/2)/(r1 − 2α) and f∗

4
= [32P1 − 3α(2 + r1)]/[16r1 − 6α(2 + r1)], respectively,

while the optimal exponential growth rates are G∗

3
(α) = G∗

3
(0)− 3(r1 − 2P1)P1/r1 +O(α2) and G∗

4
(α) =

G∗

4(0)− 3

2
P1(r1 − 2P1)(2 + r1)/r1 +O(α2), respectively.
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Figure 3: Optimal rebalancing periods T ∗ vs α for different choices of r1 and P1; the
indicative thick lines have slope 2/3.

The simplest case is when the investor keeps the investment fraction f constant and
rebalances the investment every T steps. Since price dynamics is still binary, we can
parametrize the outcome by the number of “winning” turns on the basic time scale, w1,
and by the number of “winning” turns on the longer time scale, w2. While w1 is simply
constrained to 0, . . . , T , the upper bound for w2 can be either T\10 or 1 + T\10 (% and
\ denote the modulus operator and integer division, respectively). Simple algebra shows
that the odds of the two cases are 1 − (T%10)/10 and (T%10)/10, respectively, hence we
can write the long-term exponential growth rate of the portfolio in the form

G =
(

1− T%10
10

)

T
∑

w1=0

t
∑

w2=0

B1(w1|T )B2(w2|t) ln
[

1 + frt −
αf(1− f)|rt|
1− αχ(f, rt)

]

+

+ T%10
10

T
∑

w1=0

t+1
∑

w2=0

B1(w1|T )B2(w2|t+ 1) ln

[

1 + frt+1 −
αf(1− f)|rt+1|
1− αχ(f, rt+1)

]

(15)

where
rt = (1 + r1)

w1(1− r1)
T−w1(1 + r2)

w2(1− r2)
t−w2 − 1

is the compound return before transaction fees are applied and t := T\10. Albeit princi-
pally simple, the described situation is out of scope of analytical optimization tools and
hence we report only numerical results here. The most interesting behavior is obtained
when the risky asset is profitable only on the longer time scale (that is, P1 < 0 and P2 > 0).
The need to rebalance often (which is a principal property of the Kelly portfolio) then di-
rectly competes with the asset profitability on a longer time scale. An example of the
resulting behavior is shown in Fig. 4 where irregularities corresponding to the longer time
scale are visible on both f ∗(T ) and G∗(T ). On the other hand, when T ≫ 10, the two
time scales merge into average behavior of the risky asset and the irregularities are not
visible anymore. We can conclude that the presence of multiple time scales is important
only if portfolio rebalancing occurs in time intervals comparable to the longest time scale
of asset’s returns.
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4 Risky assets with lognormally distributed returns

Now we shall study portfolio optimization for a very simple asset with lognormally dis-
tributed returns. We assume that the asset’s price pi(t) (i = 1, . . . , N) undergoes an
uncorrelated multiplicative random walk

p(t) = p(t− 1)eη(t)

where random variable η(t) is drawn from the Gaussian distribution with mean m and
variance D. Consequently, returns of the asset have the form

r(t) :=
p(t)

p(t− 1)
− 1 = eη(t) − 1.

Using the same notation as above, the investor’s expected exponential growth rate has the
form G(f) = 〈ln(1+ fr)〉 where the average is over different values of η. Written in detail,
the previous expression reads

G(f) =

∫

∞

−∞

dη̺(η) ln
[

1 + f(eη − 1)
]

where ̺(η) is the Gaussian probabilistic density of returns. With transaction fees, G(f)
generalizes to the form

G(f) =

∫

∞

−∞

dη̺(η) ln
[

1 + f(eη − 1)− αf(1− f)|eη − 1|
1− αχ(f, eη − 1)

]

. (16)

When α = 0, it is known (see [7]) that the optimal investment fraction has the approximate
form

f ∗

0 (m,D) =
1

2
+

m

D
(17)

which is valid when m,D ≪ 1. Here f ∗

0 = 0 for m < −D/2 and f ∗

0 = 1 for m > D/2 (when
f is out of the range [0, 1], the investor has a non-zero probability of going bankrupted
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and hence the long-term growth rate is automatically zero [7]). In our following analysis
we will hence assume that m and D are of the same order of smallness.

When α > 0, we search the optimal fraction in the form f ∗(α) = f ∗(0) + u where the
correction u is small when α is small. Since our goal is to find the highest order correction
to f ∗, we neglect the term αχ(f, eη−1) in Eq. (16). The optimal investment fraction is the
solution of ∂G/∂f = 0. By exchanging the order of derivation and integration we obtain

∂G

∂f
=

∫ 0

−∞

(eη − 1)(1 + α− 2αf)̺(η)dη

1 + f(eη − 1)[1 + α(1− f)]
+

∫

∞

0

(eη − 1)(1− α + 2αf)̺(η)dη

1 + f(eη − 1)[1− α(1− f)]

where it was necessary to write two separate terms because of the absolute value |eη − 1|
present in G(f). We can now substitute f = f ∗

0 +u where f ∗

0 is the solution of ∂G/∂f = 0
for α = 0 (see Eq. (17) above). Assuming that both α and u are small, the integrand of
the first integral can be approximated as

(1 + α− 2αf ∗

0 )x(η)

1 + (u+ αf ∗

0 (1− f ∗

0 )x(η)
≈ x(η)

[

1 + α(1− 2f ∗

0 )−
(

u+ αf ∗

0 (1− f ∗

0 )
)

x(η)
]

where x(η) = (eη−1)/(1+(eη−1)f ∗

0 ). The second integral can be manipulated in a similar
way; by putting the results together we get

∂G

∂f
=

∫

∞

−∞

dη̺(η)
[

x(η) + α(2f ∗

0 − 1)|x(η)| − ux(η)2
]

which is equivalent to three separate integrals. The first one is zero by definition (we
assume that f ∗

0 is the solution for α = 0). For the second and third integral, we use
x(η) ≈ eη − 1 (because m,D ≪ 1 and hence η is small) and ̺(η) ≈ exp[−η2/(2D)]/

√
2πD

(because D ≪ 1 and |m| ≤ D/2 and hence |m| ≪
√
D). While the integration results are

complicated and involve the error function, for D ≪ 1 we can simplify them further to
finally obtain

∂G

∂f
= α(2f ∗

0 − 1)D − u
√

πD3/2.

Thus u that maximizes G (solution of ∂G/∂f = 0) has the form

u = αm

√

8

πD3

with the next contributing term of the order of O(
√
D). In combination with Eq. (17) we

have

f ∗(m,D, α) =
1

2
+

m

D
+ αm

√

8

πD3
,

G∗(m,D, α) = G∗(m,D, 0)− α

(

1

4
− m2

D2

)

√

2D

π
.

(18)

As shown in Fig. 5a, this agrees well with numerical results for f ∗ (numerical results for
G∗ are not shown).
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Figure 5: The dependency of the optimal investment fraction (a) and the optimal rebal-
ancing period (b) on α: numerical and analytical results are shown with symbols and lines,
respectively.

When α = 0, by expanding ln[1 + f(eη − 1)] in Eq. (16) into a series of f(eη − 1) we
get the following approximate expression for the optimal exponential growth rate

G∗(m,D) =
D

2

(

1

2
+

m

D

)2

− D2

4

(

1

4
− m2

D2

)2

+O(D3).

When the rebalancing period is T , the compound return of the asset is again lognormally
distributed, this time with η drawn from the Gaussian distribution with mean Tm and
variance TD (here we take the advantage from the fact that the Gaussian distribution
is stable). Using the above expression for G∗(m,D) we can write the resulting optimal
growth rate per time step as

G∗(m,D, T ) := G∗(Tm, TD)/T ≈ D

2

(

1

2
+

m

D

)2

− TD2

4

(

1

4
− m2

D2

)2

(19)

which is a decreasing function of T as expected. Combining this result with Eq. (18)
produces a general dependency of the optimal growth rate on T and α. This dependency
can be simply maximized with respect to T , yielding

T ∗(m,D, α) =
α2/3

D

√

8

π

(

1

4
− m2

D2

)

−2/3

(20)

which is confirmed by comparison with numerical simulations in Fig. 5b (small irregularities
visible for D = 10−3 are caused by true T ∗ being an integer number). After multiplying
Eq. (20) with D we obtain an expression for DT ∗ := D∗ which can be understood as an
optimal variance of lognormally distributed returns. When α = 0, this optimal variance is
zero, indicating that the investor should rebalance the portfolio continuously.

Results derived for the lognormal distribution of returns are of particular importance
when intermittent rebalancing is considered. If we write the return at time t as r(t) :=
p(t)/p(t− 1)− 1 = e̺(t) − 1 where values ̺(t) are drawn from a probabilistic distribution
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Figure 6: Optimal rebalancing period T ∗ vs α for: (a) Student-based returns and (b)
GARCH-based returns. The indicative dashed lines have slopes 0.70 and 0.66, respectively.

with finite mean and variance, the compound return over a period of T turns is

rT (t) := p(t)/p(t− T )− 1 = exp

[ T−1
∑

u=0

̺(t− u)

]

− 1.

According to the central limit theorem, if variables ̺(t) are independent and T is large,
the sum

∑T−1
u=0 ̺(t−u) is approximately normally distributed and hence compound return

rT (t) follows a lognormal distribution when the rebalancing period T is long. This im-
mediately explains the scaling T ∗ ∼ α2/3 which was found numerically for binary returns
in Sec. 3.2.5 The same reasoning applies to any ̺(t) following a broad distribution with
finite variance. As an example, we use returns r(t) = eσχ(t) − 1 where χ(t) is Student’s
distribution with two degrees of freedom (the tails of χ(t) then decay as χ−3, hence χ(t) has
finite variance). Since Student’s distribution is not stable, the distribution of returns for an
arbitrary rebalancing period T does not have a closed form and one cannot attempt to find
the optimal rebalancing period analytically. We employ numeric simulations in which the
exponential growth rate is maximized with respect to the investment fraction f over 106

time steps for rebalancing periods in the range 1, . . . , 100. The resulting optimal growth
rates G∗(T ) are averaged over 103 independent realizations of returns and finally yield the
optimal rebalancing period which is again roughly proportional to α2/3 (see Fig. 6a).

When aiming at even more realistic return distributions, the question is whether α2/3-
scaling holds for returns with some degree of dependence (memory). Since there are various
central limit theorems for dependent variables [19, 20], one expects that when the depen-
dence of returns is sufficiently weak, previously obtained results continue to hold. This is
confirmed by our simulations with returns generated by a GARCH(1, 1) process [21, 22]
with parameters α0 = 10−5, α1 = 0.2, β = 0.7 (these parameter values are similar to those
inferred from S&P index data in [23]). The optimal rebalancing period—obtained by the
same simulation approach as above for the Student-based returns—is again proportional
to α2/3 (see Fig. 6b). This confirms that our main result is highly robust with respect to

5When the random variable ̺(t) has two possible values ln(1± r1) with probabilities 1/2± P1, respec-
tively, one recovers the binary returns studied in Sec. 3.2.
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the nature of the return distribution. Detailed insights on the degree of dependence at
which this scaling breaks down are however yet to come.

5 Discussion

While transaction fees represent an important factor limiting investor’s profit, in finance
literature they are often considered as uninteresting and neglected in order to keep the
analysis simple and focused. However, money transfers required by active portfolio opti-
mization strategies may be considerable and the effect of transaction fees significant. In
this work we investigated this effect on the growth-optimal/Kelly portfolio in detail. To
this end we studied a toy risky asset with a binary return distribution, an asset with
time-depending return distribution, and more realistic assets with lognormal and fat-tailed
return distributions. Our results show that transaction fees indeed have substantial impact
on investment profitability, in particular when the average return of the risky asset is low.
Their influence is greatest when the investment fraction is 1/2. This is natural because
the wealth volumes transferred in rebalancing are proportional to f(1− f) and hence they
are maximized by f = 1/2.

We showed for various settings that when the transaction fee coefficient α is sufficiently
high, for the investor it may be more profitable to adjust the portfolio less frequently
and an optimal rebalancing period T ∗ arises. In the case of a lognormal distribution of
returns, the optimal optimal rebalancing period was analytically shown to be proportional
to α2/3 for small α. When α is small yet T ∗ is sufficiently long for the central limit
theorem to be an appropriate approximation, the optimal rebalancing period scales with
α2/3 for any independent returns drawn from a distribution with finite mean and variance.
Our numerical simulations confirm this for binary returns, returns based on Student’s
distribution, and even for returns with memory modeled by a GARCH(1, 1) process where
the requirement of independence is violated.

Besides presented results, several research questions remain open. Firstly, while trans-
action fees are maximized by f = 1/2 when investing in one asset, the situation gets more
complicated when investment is distributed among several assets. That situation can be
further generalized by assuming correlated asset returns. Secondly, through the paper we
have assumed that parameters of the return distribution are known to the investor. Invest-
ment optimization hence only consists of choosing the right investment fraction. In real
life, the return distribution itself is unknown and its estimation is part of the optimization
process. Whether the presented results hold also in this case is an open question.
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