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Abstract

The paper review and develop the alternative formulation of quantum mechanics known

as the phase space quantum mechanics or deformation quantization. It is shown that the

quantization naturally arises as an appropriate deformation of the classical Hamiltonian

mechanics. More precisely, the deformation of the point-wise product of observables to

an appropriate noncommutative ⋆-product and the deformation of the Poisson bracket

to an appropriate Lie bracket is the key element in introducing the quantization of

classical Hamiltonian systems.

The formalism of the phase space quantum mechanics is presented in a very sys-

tematic way for the case of Hamiltonian systems without any constrains and for a very

wide class of deformations. The considered class of deformations and the corresponding

⋆-products contains all deformations which can be found in the literature devoted to

the subject of the phase space quantum mechanics.

Fundamental properties of ⋆-products of observables, associated with the considered

deformations are presented as well. Moreover, a space of states containing all admissible

states is introduced, where the admissible states are appropriate pseudo-probability

distributions defined on the phase space. It is proved that the space of states is endowed

with a structure of a Hilbert algebra with respect to the ⋆-multiplication.

The most important result of the paper shows that developed formalism is more

fundamental then the axiomatic ordinary quantum mechanics which appears in the

presented approach as the intrinsic element of the general formalism. In addition,

examples of a free particle and a simple harmonic oscillator illustrating the formalism

of the deformation quantization and its classical limit are given.

Keywords: quantum mechanics, deformation quantization, Hilbert space, quantum

distribution function
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1

Introduction

Since early works of Weyl [1], Wigner [2], Groenewold [3] and Moyal [4] many authors

started to think about an alternative formulation of quantum mechanics, nowadays

referred to as the phase space quantum mechanics or deformation quantization. In the

past years many efforts have been made in order to develop the phase space quantum

mechanics [5]-[18]. At first this formulation were treated as an interesting mathematical

fact but quickly was realized that it have many applications. Nowadays phase space

quantum mechanics have wide range of applications in many fields of research including

quantum optics, field theory [19, 20], theory of dynamical systems and M-theory [21]-

[24]. The deformation quantization formalism can also be adopted in formulation of

noncommutative differential geometry which have applications in some quantum gravity

theories.

The ordinary description of quantum mechanics is given by a set of axioms from

which the connection with classical mechanics is not evident. The natural formulation

of quantum mechanics seems to be a result of a generalization of classical Hamilto-

nian mechanics, in such a way that the new formulation of quantum mechanics should

smoothly reduce to the formulation of classical mechanics as the Planck constant ~ goes

to 0. The phase space quantum mechanics is such a natural formulation of quantum

theory.

The idea behind the phase space quantum mechanics relies on a deformation, with

respect to some parameter ~ (the Planck constant), of a classical algebra of observ-

ables AC to some noncommutative algebra AQ, which plays the role of a quantum

algebra of observables. By the deformation of AC is meant the deformation of the
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point-wise product between observables to some noncommutative product, commonly

denoted by ⋆, and also the deformation of the Poisson bracket { · , · } to a Lie bracket

[| · , · |] = 1
i~

[ · , · ], where [ · , · ] denotes a ⋆-commutator. The noncommutativity of ob-

servables is the source of a quantization of classical Hamiltonian systems. In particular,

noncommutativity of observables results in the Heisenberg uncertainty principle.

In addition to the deformation of the product between observables also the definition

of states have to be changed slightly. The admissible states of the classical Hamiltonian

system are defined as probability distributions on the phase space. In the phase space

quantum mechanics states have to be defined as pseudo-probability distributions on the

phase space (the distributions do not have to have values in the range [0, 1]). This

reflects the quantum character of the states. It is possible to introduce a Hilbert space

H which contains all admissible states. Moreover, the ⋆-product can be extended to a

noncommutative product between functions from H creating from H a Hilbert algebra.

The action of some observable from AQ on some state from H can also be expressed

by the ⋆-product. Furthermore, the expectation values of observables and the time

evolution equation are defined like in the classical case, except the fact that the point-

wise product and the Poisson bracket are replaced by the ⋆-product and the Lie bracket

[| · , · |].
In the paper the case of the deformation quantization of the Hamiltonian system

without any constrains, which ⋆-product is related to the canonical Poisson bracket is

considered. Even in this particular case one can introduce infinitely many ⋆-products

inducing proper deformations of a classical Hamiltonian system. In the majority of

papers only the special case of the ⋆-product is considered, namely the Moyal prod-

uct. In some papers also other particular ⋆-products, gauge equivalent to the Moyal

product, are discussed. Moreover, quite often (especially in quantum optics) the de-

formation quantization in holomorphic coordinates is also considered. In the paper

the very general three parameter family of ⋆-products, gauge equivalent to the Moyal

product, is constructed. This family of ⋆-products contains all examples of particular

⋆-products which can be found in the variety of papers devoted to the phase space

quantum mechanics.

The formulation of quantum mechanics on the phase space is equivalent to the

ordinary formulation of quantum mechanics. In the majority of papers this is proved

with the help of the so called Wigner map and its inverse. Actually, it is a morphism
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between the algebra AQ with noncommutative star multiplication and the algebra of

linear operators in a Hilbert space with the multiplication being simple composition.

Another approach to construction of the phase space quantum mechanics is to ex-

tend ordinary Schrödinger equation to so called “Schrödinger equation in phase space”

with related eigenfunctions being appropriate distributions [25]-[27]. As was shown

recently it is equivalent to an eigenvalue problem of classical Hamiltonian and an ap-

propriate star multiplication [28].

These points of view are however a little bit miss leading since one could thought

that both descriptions of quantum mechanics are completely different and that the

phase space quantum mechanics is just some representation of the “more fundamental”

ordinary quantum mechanics. The paper presents an alternative point of view on the

relation between the phase space quantum mechanics and the ordinary description of

quantum mechanics. It is shown that the ordinary description of quantum mechanics

appears as a natural consequence of the phase space quantum mechanics. Moreover,

from the presented construction it is evident that the phase space quantum mechanics

is the most fundamental formulation of quantum mechanics.

To summarize, the aim of this paper is to present in a systematic way the phase

space quantum mechanics in a canonical regime as a natural deformation of classi-

cal Hamiltonian mechanics for a very general class of gauge equivalent deformations.

Moreover, it is shown that from the phase space quantum mechanics naturally appears,

at least in the canonical regime, the ordinary description of quantum mechanics. In

addition, the physical equivalence of the presented family of deformations is discussed.

The paper is organized as follows. In Section 2 the classical Hamiltonian mechanics

is reviewed. In this section the basic concepts of the Hamiltonian mechanics are given

including the definitions of a phase space, observables and Hamiltonian systems. More-

over, the definitions of pure and mixed states and expectation values of observables

are given together with their basic properties. Also the time evolution of pure and

mixed states and observables is presented. In Section 3 the formulation of the phase

space quantum mechanics is presented. This section starts with the introduction of

some basics of the deformation quantization of general Hamiltonian systems followed

by the full description of the deformation quantization procedure of classical Hamilto-

nian systems without any constrains and in canonical regime. In particular, there are

presented fundamental properties of canonical ⋆-products together with the systematic
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construction of the space of states. Also the definitions of pure and mixed states and

expectation values of observables are given together with their basic properties. More-

over, the time evolution equations of states and observables are presented. In Section 4

the equivalence of the ordinary formulation and the formulation on the phase space of

quantum mechanics is presented. This section contains also proofs of some properties

from former sections. In Section 5 examples of a free particle and a simple harmonic

oscillator are presented illustrating the formalism of the deformation quantization. In

the example of a free particle the time evolution of a free particle initially in some given

state is derived. In the example of a harmonic oscillator stationary states and coherent

states of the harmonic oscillator are derived. Moreover, it is proved that the presented

examples of quantum states converge to appropriate classical states as Planck constant

goes to zero. Section 6 contains final comments and conclusions together with a discus-

sion on the physical equivalence of the presented family of deformations. The notation

and conventions used in the paper as well as longer technical proof of some theorems

from a main text can be found in Appendix A.1-A.8.
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2

Classical Hamiltonian mechanics

2.1 Classical Hamiltonian systems

For further use during the quantization procedure, in what follows, complex tensor fields

and functions on a manifold will be considered. Nevertheless, all below considerations

can be made using only real tensor fields and functions.

In the classical Hamiltonian mechanics pure states are represented by points in a

phase space, which in turn is represented by a Poisson manifold. The Poisson manifold

is a smooth manifold M endowed with a two times contravariant antisymmetric (real)

tensor field P satisfying the below relation

LζfP = 0, (2.1)

(Lζf denotes a Lie derivative in the direction ζf) for every vector fields ζf defined as

ζf := Pdf , f ∈ C∞(M).

The tensor field P is called a Poisson tensor and the vector fields ζf are called Hamil-

tonian fields. The space of all Hamiltonian fields on M will be denoted by Ham(M).

In the rest of the paper it will be assumed that the Poisson tensor P is non-degenerate.

In this case it can be proved that the Poisson manifold M is even-dimensional.

Using the Poisson tensor P a structure of a Lie algebra can be added to the space

C∞(M) of all (complex valued) smooth functions on M , namely a Lie bracket can be

defined as

{f, g}P := P(df , dg ), f, g ∈ C∞(M). (2.2)

9



It is obviously antisymmetric since P is antisymmetric and the Jacobi’s identity follows

from relation (2.1). In fact there holds

{f, g} = −{g, f} (antisymmetry),

{f, gh} = {f, g}h+ g{f, h} (Leibniz’s rule),

0 = {f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} (Jacobi’s identity).

The bracket (2.2) is called a Poisson bracket and the algebra C∞(M) endowed with a

Poisson bracket is called a Poisson algebra.

To describe a physical system besides a phase space also an algebra of observables is

needed. Lets introduce a notation AC = C∞(M). Usually in classical mechanics as the

algebra of observables a real subalgebra OC ⊂ AC of all real valued smooth functions

on M is taken, but for further use during the introduction of the ordinary description

of quantum mechanics it will be better to define the algebra of observables in a different

way. First, lets define an algebra ÂC of all operators defined on the space C∞(M) of

the form Â = A · , where A ∈ AC and · denotes an ordinary point-wise product of

functions from C∞(M). The algebra ÂC have a structure of a Lie algebra with a Lie

bracket defined by the formula

{Â, B̂} := {A,B} · , Â, B̂ ∈ ÂC .

Now, the algebra of observables can be defined as a real subalgebra ÔC of all operators

from ÂC induced by real valued smooth functions on M . One of the admissible ob-

servables from ÔC have a special purpose, namely a Hamiltonian Ĥ. This observable

corresponds to the total energy of the system and it governs the time evolution of the

system. A triple (M,P, Ĥ) is then called a classical Hamiltonian system.

Local coordinates qi, pi (i = 1, . . . , N) in which a Poisson tensor P have (locally) a

form

P =
∂

∂qi
∧ ∂

∂pi
=

∂

∂qi
⊗ ∂

∂pi
− ∂

∂pi
⊗ ∂

∂qi
i.e. P ij =

(

0N IN

−IN 0N

)

are called canonical coordinates. Furthermore, in the canonical coordinates a Hamilto-

nian field ζf and a Poisson bracket take a form

ζf =
∂f

∂pi

∂

∂qi
− ∂f

∂qi
∂

∂pi
, (2.3)

{f, g} =
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi
. (2.4)
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It can be proved that for every Poisson manifold canonical coordinates always exist, at

least locally.

2.2 Pure states, mixed states and expectation val-

ues of observables

In the rest of the section for simplicity it will be assumed that the Hamiltonian system

do not have any constrains, i.e. the phase space M is of the form M = R2N . The further

quantization procedure will focus only on such special case of Hamiltonian systems.

As mentioned earlier pure states of a classical Hamiltonian system are points in a

phase space M . They represent generalized positions and momenta of a phase space

particle. Values of generalized positions and momenta of the particle can be extracted

from a point in M (a pure state) by writing this point in canonical coordinates qi, pi.

Then, qi are the values of generalized positions and pi are the values of generalized

momenta of the particle.

When one does not know the exact positions and momenta of the phase space

particle, but only a probability distribution that the system is in some point of the

phase space then there is a need to extend the concept of a state. It is natural to

generalize the states to probability distribution functions defined on the phase space

M , i.e. to smooth functions ρ on M satisfying

1. 0 ≤ ρ(ξ) ≤ 1,

2.

∫

M

ρ(ξ)dξ = 1.

Such generalized states are called mixed states. The probability distribution functions

ρ on M will be also called a classical distribution functions. Pure states ξ0 ∈M can be

then identified with Dirac delta distributions δ(ξ − ξ0).
An expectation value 〈Â〉ρ of an observable Â ∈ ÂC in a state ρ is defined by

〈Â〉ρ :=

∫

M

(Âρ)(ξ)dξ =

∫

M

A(ξ) · ρ(ξ)dξ . (2.5)

Note that an expectation value of the observable Â in a pure state δ(ξ−ξ0) is just equal

A(ξ0).

11



2.3 Time evolution of classical Hamiltonian systems

For a given Hamiltonian system (M,P, Ĥ) the Hamiltonian Ĥ governs the time evo-

lution of the system. Namely, the Hamiltonian Ĥ generates a Hamiltonian field ζH .

The flow ΦH
t (called the phase flow or the Hamiltonian flow) of this Hamiltonian field

moves the points of M , which is interpreted as the time development of pure states

(ξ(t) = ΦH
t (ξ(0))). A trajectory of a point ξ ∈M (a pure state) can be then calculated

from the equation

ξ̇ = ζH . (2.6)

In canonical coordinates qi, pi, using formula (2.3), equation (2.6) takes a form of the

following system of differential equations called the canonical Hamilton equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (2.7)

The equation of motion of mixed states can be derived from the probability conservation

law. From this law follows that a probability P (E) of finding a system in a given domain

E ⊂M of the phase space M do not change during the time evolution, i.e.

Pt(E(t)) = Pt+∆t(E(t+ ∆t)), (2.8)

where

Pt(E(t)) =

∫

E(t)

ρ(ξ, t)dξ . (2.9)

Points of M evolve according to the Hamilton equations, hence

E(t+ ∆t) = ΦH
∆t(E(t)). (2.10)

From equations (2.8), (2.9) and (2.10) it follows that
∫

E(t)

ρ(ξ, t)dξ =

∫

ΦH
∆t(E(t))

ρ(ξ, t+ ∆t)dξ =

∫

E(t)

(ΦH
∆t)
∗ρ(ξ, t+ ∆t)dξ . (2.11)

Since the domain E(t) is arbitrary, equation (2.11) implies that

ρ(t) = (ΦH
∆t)
∗ρ(t+ ∆t).

From above equation it follows that

L(H, ρ)(t) := lim
∆t→0

(ΦH
∆t)
∗ρ(t+ ∆t)− ρ(t)

∆t
=

d

ds
(ΦH

s )∗ρ(t + s)

∣
∣
∣
∣
s=0

=
∂ρ

∂t
+ LζHρ =

∂ρ

∂t
+ ζHρ = 0,
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which implies that

L(H, ρ) =
∂ρ

∂t
− {H, ρ} = 0. (2.12)

Equation (2.12) is called the Liouville equation and it describes the time development

of an arbitrary state ρ.

Lets check if for a pure state δ(ξ − ξ(t)) the Liouville equation (2.12) is equivalent

to the Hamilton equations (2.7). From (2.12), for the canonical coordinates qi, pi, it

follows that
(

δ̇(q − q(t)) +
∂H

∂pi

∂

∂qi
δ(q − q(t))

)

δ(p− p(t)) +

+

(

δ̇(p− p(t))− ∂H

∂qi
∂

∂pi
δ(p− p(t))

)

δ(q − q(t)) = 0.

Multiplying above equation by xj(t) and integrating over the phase space M one gets

the first part of the Hamilton equations, and multiplying above equation by pj(t) and

integrating over M one gets the second part of the Hamilton equations.

From (2.12) it follows that a time dependent expectation value of an observable

Â ∈ ÂC in a state ρ(t), i.e. 〈Â〉ρ(t), fulfills the following equation of motion

〈Â〉L(H,ρ) = 0 ⇐⇒ d

dt
〈Â〉ρ(t) − 〈{Â, Ĥ}〉ρ(t) = 0. (2.13)

Indeed
∫

M

A(ξ) · ∂ρ
∂t

(ξ, t)dξ =
d

dt

∫

M

A(ξ) · ρ(ξ, t)dξ =
d

dt
〈Â〉ρ(t),

∫

M

A(ξ) · {H, ρ}(ξ)dξ =

∫

M

{H,Aρ}(ξ)dξ −
∫

M

{H,A}(ξ) · ρ(ξ)dξ

= −
∫

M

{H,A}(ξ) · ρ(ξ)dξ = 〈{Â, Ĥ}〉ρ(t).

Until now the states undergo the time development whereas the observables do not.

This is called a Schrödinger-like picture of the time evolution. There is also a dual

point of view (which, in turn, is referred to as a Heisenberg-like picture), in which

states remain still whereas the observables undergo a time development. A pull-back of

the Hamiltonian flow (ΦH
t )∗ = etLζH induces, for every t, an automorphism UH

t of the

algebra ÂC (a one-to-one map preserving the linear structure as well as the dot-product

and the Lie bracket) given by the equation

UH
t Â := (ΦH

t )∗A · , Â ∈ ÂC .
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Its action on an arbitrary observable Â ∈ ÂC is interpreted as the time development of

Â

Â(t) = UH
t Â(0) = etLζHA(0) · = etζHA(0) · . (2.14)

Differentiating equation (2.14) with respect to t one receives

dÂ

dt
(t) = ζHA(t) · .

From above equation the following time evolution equation for an observable Â follows

dÂ

dt
(t)− {Â(t), Ĥ} = 0. (2.15)

Both presented approaches to the time development yield equal predictions concerning

the results of measurements, since

〈Â(0)〉ρ(t) =

∫

M

A(ξ, 0)ρ(ξ, t)dξ =

∫

M

A(ξ, 0)(ΦH
−t)
∗ρ(ξ, 0)dξ

=

∫

M

(ΦH
t )∗A(ξ, 0)ρ(ξ, 0)dξ =

∫

M

A(ξ, t)ρ(ξ, 0)dξ = 〈Â(t)〉ρ(0).
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3

Quantization procedure on a phase

space

3.1 Basics of deformation quantization

Let (M,P) be a 2N -dimensional phase space (i.e. a smooth Poisson manifold) and

AC = C∞(M) be the algebra of all smooth complex valued functions on M with

respect to the standard point-wise product and a Poisson bracket associated to P. The

idea of quantization of the classical algebra of observables ÔC relays on a deformation,

with respect to some parameter ~, of the algebra AC to some noncommutative algebra

AQ. The deformation parameter ~ for physical systems is the ordinary Planck constant.

The deformed noncommutative multiplication on AQ will be denoted by ⋆. The Poisson

bracket { · , · } on AC should be deformed to some Lie bracket [| · , · |]. It is natural to

expect that the Lie bracket [| · , · |] should be expressed by the ⋆-commutator

[f, g] := f ⋆ g − g ⋆ f, f, g ∈ AQ.

In fact, the Lie bracket [| · , · |] is defined by the formula

[|f, g|] :=
1

i~
[f, g], f, g ∈ AQ. (3.1)

In general, to avoid problems with convergence of infinite series, not the whole algebra

AC will be deformed but only some subalgebra. Hence AQ, as a vector space, will be

a subspace of AC . Moreover, a space OQ of all real valued functions from AQ, will be

a subspace of OC . Note that in general OQ do not need to constitute an algebra with
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respect to the ⋆-product. As a space of admissible quantum observables the space OQ

can be taken, but for the same reason as in Section 2 it will be better to define the

space of quantum observables in a similar way as in Section 2. First, lets introduce an

algebra ÂQ of all operators defined on the space C∞(M) of the form Â = A ⋆ , where

A ∈ AQ. The algebra ÂQ have a structure of a Lie algebra with a Lie bracket defined

by the formula

[|Â, B̂|] := [|A,B|] ⋆ =
1

i~
(ÂB̂ − B̂Â), Â, B̂ ∈ ÂQ.

All operators from ÂQ induced by real valued function are defined as the admissible

quantum observables. The space of all admissible quantum observables will be denoted

by ÔQ. Note, that the algebra ÂQ is a deformation of the algebra ÂC .

The deformed noncommutative multiplication on AQ should satisfy such natural

conditions

1. f ⋆ (g ⋆ h) = (f ⋆ g) ⋆ h (associativity),

2. f ⋆ g = fg + o(~),

3. [|f, g|] = {f, g}+ o(~),

4. f ⋆ 1 = 1 ⋆ f = f ,

for f, g, h ∈ AQ. Moreover, it is assumed that the ⋆-product can be expanded in the

following infinite series with respect to the parameter ~

f ⋆ g =
∞∑

k=0

~
kBk(f, g), f, g ∈ AQ, (3.2)

where Bk : AQ × AQ → AQ are bilinear operators. In order to avoid problems with

convergence of the above series it will be assumed that for every pair of functions

f, g ∈ AQ only finite number of Bk(f, g) is nonzero. From the construction of the ⋆-

product it can be immediately seen that in the limit ~ → 0 the quantized algebra ÂQ

reduces to the classical algebra ÂC . From the associativity of the ⋆-product it follows

that the bracket (3.1) is a well-defined Lie bracket. In fact, it satisfies the following

relations

[|f, g|] = −[|g, f |] (antisymmetry),

[|f, g ⋆ h|] = [|f, g|] ⋆ h+ g ⋆ [|f, h|] (Leibniz’s rule),

0 = [|f, [|g, h|]|] + [|h, [|f, g|]|] + [|g, [|h, f |]|] (Jacobi’s identity).

16



From the definition of the ⋆-product it follows that

B0(f, g) = fg

and

B1(f, g)− B1(g, f) = {f, g}.

The associativity of the ⋆-product implies that the bilinear maps Bk satisfy the equa-

tions
k∑

s=0

(Bs(Bk−s(f, g), h)− Bs(f, Bk−s(g, h))) = 0 for k = 1, 2, . . ..

Hence, in particular B1 satisfies the equation

B1(f, g)h− fB1(g, h) +B1(fg, h)− B1(f, gh) = 0.

Let S : AQ → AQ be a vector space automorphism, such that

Sf =

∞∑

k=0

~
kSkf, S0 = 1, (3.3)

where Sk are linear operators. As earlier, assume that for every f ∈ AQ only finite

number of Skf is nonzero. Such an automorphism produces a new ⋆′ in AQ in the

following way

f ⋆′ g := S(S−1f ⋆ S−1g). (3.4)

Indeed, the associativity of the new ⋆′ follows from the associativity of the old ⋆-product,

as

f ⋆′ (g ⋆′ h) = f ⋆′ S(S−1g ⋆ S−1h) = S(S−1f ⋆ (S−1g ⋆ S−1h))

= S((S−1f ⋆ S−1g) ⋆ S−1h) = S(S−1f ⋆ S−1g) ⋆′ h

= (f ⋆′ g) ⋆′ h.

Using formula (3.3) one finds the following expression

B′1(f, g) = B1(f, g)− fS1(g)− S1(f)g + S1(fg).

Then

B′1(f, g)−B′1(g, f) = B1(f, g)− B1(g, f) = {f, g}

17



and

lim
~→0

[|f, g|]′ = lim
~→0

[|f, g|] = {f, g}.

Hence, the new ⋆′ is the second well-defined ⋆-product.

Two ⋆-products: ⋆ and ⋆′ are called gauge equivalent or simply equivalent if there

exists a vector space automorphism S : AQ → AQ of the form (3.3) such that (3.4)

holds. Note that such automorphism S is an isomorphism of the algebra (AQ, ⋆) onto the

algebra (AQ, ⋆
′). It becomes evident that there can be many equivalent quantizations of

a given algebra of observables. Even though, all this quantizations are mathematically

equivalent they do not need to be physically equivalent.

In the rest of the paper as the phase space M the manifold R2N will be chosen, i.e.

in what follows, only the quantization of a Hamiltonian system without any constrains

will be presented. It is well known that in this case an arbitrary Poisson tensor P can

be presented in the following form

P =

N∑

i=1

Xi ∧ Yi =

N∑

i=1

(Xi ⊗ Yi − Yi ⊗Xi),

where Xi, Yi (i = 1, . . . , N) are some pair-wise commuting (real) vector fields on M .

The corresponding Poisson bracket takes the form

{f, g}P = f

(
N∑

i=1

(Xi ⊗ Yi − Yi ⊗Xi)

)

g = f

(
N∑

i=1

(
←−
X i
−→
Y i −

←−
Y i
−→
X i)

)

g

=

N∑

i=1

(Xi(f)Yi(g)− Yi(f)Xi(g)), (3.5)

where

f

(
N∑

i=1

(Xi ⊗ Yi − Yi ⊗Xi)

)

g

is to be understood as

(

m ◦
N∑

i=1

(Xi ⊗ Yi − Yi ⊗Xi)

)

(f ⊗ g),

where m is a multiplication operator defined by m(f ⊗g) = fg and the arrows over the

vector fields Xi, Yi denotes that a given vector field works only on a function standing on

the left or on the right side of the vector field. The simplest natural deformation of the
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algebra AC with the Poisson bracket (3.5) is given by such deformed ⋆-multiplication

f ⋆ g = f exp

(

−i~
N∑

i=1

Yi ⊗Xi

)

g = f exp

(

−i~
N∑

i=1

←−
Y i
−→
X i

)

g

=
∑

k∈NN

1

k!
(−i~)|k|(Y kf)(Xkg). (3.6)

Theorem 3.1. The product (3.6) is associative. Moreover, it is a well-defined ⋆-

product.

Proof. From one side one have

f ⋆ (g ⋆ h) =
∑

k∈NN

1

k!
(−i~)|k|(Y kf)(Xk(g ⋆ h))

=
∑

k∈NN

∑

s∈NN

1

k!s!
(−i~)|k|+|s|(Y kf)(Xk((Y sg)(Xsh)))

=
∑

k∈NN

∑

s∈NN

k∑

r=0

1

k!s!

(
k

r

)

(−i~)|k|+|s|(Y kf)(XrY sg)(Xs+k−rh)

=
∑

n∈NN

n∑

s=0

n−s∑

r=0

1

s!r!(n− s− r)!(−i~)|n|(Y n−sf)(XrY sg)(Xn−rh),

where in the last equality a summation over k, s ∈ NN was replaced by a summation

over n ∈ NN and s ∈ {s ∈ NN : s1 ≤ n1, . . . , sN ≤ nN}, where n = k + s. From the

other side

(f ⋆ g) ⋆ h =
∑

n∈NN

n∑

s=0

n−s∑

r=0

1

s!r!(n− s− r)!(−i~)|n|(Y n−rf)(XsY rg)(Xn−sh)

=
∑

n∈NN

n∑

r=0

n−r∑

s=0

1

s!r!(n− s− r)!(−i~)|n|(Y n−rf)(XsY rg)(Xn−sh),

which shows that f ⋆ (g ⋆ h) = (f ⋆ g) ⋆ h. The rest of the properties of the ⋆-product

is obvious.

Lets define the vector space automorphism (3.3) Sσ,α,β : AQ → AQ by

Sσ,α,β = exp
(
i~σijXiYj + 1

2
~αijXiXj + 1

2
~βijYiYj

)
, (3.7)

where σ, α, β are some real matrices. Without loosing the generality it can be assumed

that matrices α, β are symmetric, because the terms with anti-symmetric parts of matri-

ces α, β will vanish. By relation (3.4) the automorphism Sσ,α,β , acting on the ⋆-product
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(3.6), can be used to define (σ, α, β)-parameter family of well-defined ⋆-products gauge

equivalent to the ⋆-product (3.6)

f ⋆σ,α,β g := Sσ,α,β(S−1σ,α,βf ⋆ S
−1
σ,α,βg). (3.8)

Theorem 3.2. The product ⋆σ,α,β is given by the formulae

f ⋆σ,α,β g = f exp
(

i~σij←−X i
−→
Y j − i~σ̄ij←−Y i

−→
X j + ~αij←−X i

−→
X j + ~βij←−Y i

−→
Y j

)

g (3.9a)

=
∑

n,m,r,s
∈MN (N)

(−1)|m|(i~)|n|+|m|~|r|+|s|
σnσ̄mαrβs

n!m!r!s!
(Xn+rY m+sf)(XmT+rTY nT+sT g)

(3.9b)

=
∑

k,r,s
∈MN (N)

(i~)|k|~|r|+|s|
αrβs

k!r!s!

∑

m∈MN (k)

(
k

m

)

σk−m(−σ̄)m(Xk−m+rY m+sf)

· (XmT+rTY kT−mT+sT g), (3.9c)

where σ̄ij = δij − σij and MN(k) = {n ∈MN (N) : nij ≤ kij, i, j = 1, . . . , N}.

The proof is given in A.2.

Note that the automorphism (3.7) induces an algebra isomorphism between algebras

(AQ, ⋆σ,α,β) and (AQ, ⋆σ′,α′,β′)

Sσ′−σ,α′−α,β′−β : (AQ, ⋆σ,α,β)→ (AQ, ⋆σ′,α′,β′),

hence, all algebras (AQ, ⋆σ,α,β) are gauge equivalent.

3.2 Weyl operator calculus

In quantization procedure it is often needed to assign to a function of commuting

variables respective operators, i.e. admissible functions of noncommuting variables.

In this section there will be reviewed and discussed a way of assigning operators to

functions, often referred to as the Weyl operator calculus [31]-[33].

There is a natural way of assigning an operator to a function in the case when

the function is a polynomial. Lets consider some Hilbert space H and distinguish on

it operators of the position and momentum, i.e. hermitian operators q̂, p̂ for which

[q̂, p̂] = i~. Assume for example that the function on the phase space R2 is of the form
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A(x, p) = x2 + p2. The following operator could be assigned to it: A(q̂, p̂) = q̂2 + p̂2.

Arises here a problem of the ordering of the operators. Assume that the function A

is of the form A(x, p) = xp. The operator A(q̂, p̂) = q̂p̂ could be assigned to it, but

equally good are operators A(q̂, p̂) = p̂q̂ or A(q̂, p̂) = 1
2
q̂p̂ + 1

2
p̂q̂ since A(x, p) = xp =

px = 1
2
xp+ 1

2
px. This simple example shows that there are many ways of assigning an

operator to a function depending on the chosen ordering.

Now a question arises how to assign an operator to a general function. For the

most functions, which are interesting from the physical point of view, there hold the

following identity

A(x, p) =
1

2π~

∫∫

FA(ξ, η)e
i
~
(ξx−ηp)dξ dη ,

which is just the inverse Fourier transform from the Fourier transform from the function

A. Now according to the scheme shown earlier replacing x and p with the operators

q̂ and p̂ would create an operator from the function A. But as was seen earlier there

are many ways of replacing x and p with the operators q̂ and p̂ depending on the

chosen ordering (e
i
~
ξxe−

i
~
ηp = e

i
~
(ξx−ηp) but e

i
~
ξq̂e−

i
~
ηp̂ 6= e

i
~
(ξq̂−ηp̂)). It is desired to

parametrize different orderings with three numbers σ, α, β ∈ R in such a way that for

an arbitrary monomial xnpm the operator assigned to it, for the case σ = α = β = 0,

will be standard ordered [34], i.e. operator should have all position operators on the

left and all momentum operators on the right. For the case σ = 1, α = β = 0 the

operator assigned to the monomial should be anti-standard ordered, i.e. it should have

all position operators on the right and all momentum operators on the left. For the

case σ = 1
2
, α = β = 0 the operator assigned to the monomial should be symmetrically

ordered (Weyl ordered) [2], i.e. operator should be arithmetic average of all possible

permutations of position and momentum operators. There are also known another

orderings like normal ordering : σ = 1
2
, α = −1

2
ω−1, β = −1

2
ω [35], [36] and anti-normal

ordering : σ = 1
2
, α = 1

2
ω−1, β = 1

2
ω [37], related to observables written in holomorphic

coordinates. Actually, from definition, an operator function assigned to the function A

is given by the equation

Aσ,α,β(q̂, p̂) :=
1

2π~

∫∫

FA(ξ, η)e
i
~
(ξq̂−ηp̂)e

i
~
( 1
2
−σ)ξη+ 1

~
( 1
2
αξ2+ 1

2
βη2)dξ dη ,

where σ, α, β ∈ R are parameters describing different orderings.

Above definition of the operator function can be generalized to the case when the

phase space is 2N dimensional. Now, there are needed N position operators q̂1, . . . , q̂N
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and N momentum operators p̂1, . . . , p̂N satisfying the following commutation relations

[q̂i, p̂j] = i~δij, [q̂i, q̂j] = [p̂i, p̂j] = 0, i, j = 1, . . . , N.

The definition of the operator function now reads as follows

Aσ,α,β(q̂, p̂) :=
1

(2π~)N

∫∫

FA(ξ, η)e
i
~
(ξi q̂

i−ηip̂i)e
i
~
( 1
2
δij−σi

j)ξiη
j+ 1

~
( 1
2
αijξiξj+

1
2
βijη

iηj )dξ dη ,

(3.10)

where now σ, α, β are real matrices. Above equation, using the Baker-Campbell-

Hausdorff formula (see Appendix A.4), can be rewritten in a form

Aσ,α,β(q̂, p̂) :=
1

(2π~)N

∫∫

FA(ξ, η)e
i
~
ξiq̂ie−

i
~
ηip̂ie−

i
~
σi
jξiη

j+ 1
2~

αijξiξj+
1
2~

βijηiηjdξ dη .

(3.11)

In Section 3.3 it will be shown that quantum observables can be written as operator

functions of appropriate operators q̂1, . . . , q̂N , p̂1, . . . , p̂N .

Equation (3.10) can be written in a different form.

Theorem 3.3. Equation (3.10), defining an operator function, can be written in a

differential form

Aσ,α,β(q̂, p̂) = A(−i~∂ξ, i~∂η)e
i
~
(ξi q̂i−ηip̂i+( 1

2
δij−σi

j)ξiη
j)+ 1

2~
(αijξiξj+βijηiηj )

∣
∣
∣
∣
ξ=η=0

. (3.12)

Proof. The proof of the theorem reduces to the proof of the following equality

f(−i~∂x)g(x)

∣
∣
∣
∣
x=0

=
1√
2π~

∫

Ff(x)g(x)dx ,

for some complex functions f and g defined on R. For f(x) =
∑∞

n=0
1
n!
f (n)(0)xn there

holds Ff(y) =
∑∞

n=0
1
n!
f (n)(0)F(x→ xn)(y) =

√
2π~

∑∞
n=0

1
n!

(i~)nf (n)(0)δ(n)(y). Now,

from one side there is

f(−i~∂x)g(x)

∣
∣
∣
∣
x=0

=

∞∑

n=0

1

n!
(−i~)nf (n)(0)g(n)(0),

and from the other

1√
2π~

∫

Ff(y)g(y)dy =
∞∑

n=0

1

n!
(i~)nf (n)(0)

∫

δ(n)(y)g(y)dy

=

∞∑

n=0

1

n!
(−i~)nf (n)(0)g(n)(0).
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Lets consider some examples of operator functions for the case of two dimensional

phase space. Using (3.12) it can be easily calculated that for the function A(x, p) =

x2 + p2 the operator function is equal

Aσ,α,β(q̂, p̂) = (q̂2 + p̂2)σ,α,β = q̂2 + p̂2 − ~α− ~β = q̂2 + p̂2 + iα[q̂, p̂] + iβ[q̂, p̂]

= q̂2 + p̂2 + i(α + β)q̂p̂− i(α + β)p̂q̂,

which is σ-independent. Analogically, for A(x, p) = xp the operator function is equal

Aσ,α,β(q̂, p̂) = (q̂p̂)σ,α,β = q̂p̂− i~σ = q̂p̂− σ[q̂, p̂] = σ̄q̂p̂ + σp̂q̂,

which is (α, β)-independent. In particular, the case when σ = 0, 1
2
, 1 gives standard,

Weyl and anti-standard orderings, respectively. Finally, for A(x, p) = xp2 the operator

function is equal

Aσ,α,β(q̂, p̂) = (q̂p̂2)σ,α,β = q̂p̂2 − 2i~σp̂− ~βq̂

= q̂p̂2 − 2σλ[q̂, p̂]p̂− 2σ(1− λ)p̂[q̂, p̂] + iβ(1− γ)[q̂, p̂]q̂ + iβγq̂[q̂, p̂]

= (1− 2σλ)q̂p̂2 + 2σ(2λ− 1)p̂q̂p̂+ 2σ(1− λ)p̂2q̂

+ iβγq̂2p̂− iβ(2γ − 1)q̂p̂q̂ − iβ(1− γ)p̂q̂2.

In this case the (λ, γ)-family of (σ, α, β)-orderings was received for λ, γ ∈ R. The case

when σ = 1
2

and β = 0 gives

(q̂p̂2)σ= 1
2
,α,β=0 = (1− λ)q̂p̂2 + (2λ− 1)p̂q̂p̂+ (1− λ)p̂2q̂.

In particular

(q̂p̂2)σ= 1
2
,α,β=0 =

1

3
q̂p̂2 +

1

3
p̂q̂p̂+

1

3
p̂2q̂ =

1

2
q̂p̂2 +

1

2
p̂2q̂ = p̂q̂p̂,

for λ = 2
3
, 1
2
, 1.

Using equation (3.12) the formula for the operator function of a general monomial

can be derived.

Theorem 3.4. For diagonal matrices σ, α, β, i.e. when σj
i = σiδ

j
i , α

ij = αiδij, βij =

βiδij, the operator function of a general monomial xnpm = (x1)n1 . . . (xN )nNpm1
1 . . . pmN

N

reads

(q̂np̂m)σ,α,β =
N∏

j=1

nj∑

kj=0

[nj−kj/2]∑

rj=0

[mj−kj/2]∑

sj=0

(−i~σj)kj(−~αj)rj(−~βj)sjkj!(2rj − 1)!!(2sj − 1)!!

·
(
nj

kj

)(
mj

kj

)(
nj − kj

2rj

)(
mj − kj

2sj

)

(q̂j)nj−kj−2rj p̂
mj−kj−2sj
j ,
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where [a] denotes an integral part of a ∈ R.

The formal proof is given in A.3.

There is a useful property of operator functions. Namely, there holds

A†σ,α,β(q̂, p̂) = A∗σ̄,α,β(q̂, p̂) (3.13)

Indeed

A†σ,α,β(q̂, p̂) =
1

(2π~)N

∫∫

FA∗(−ξ,−η)e−
i
~
(ξiq̂i−ηip̂i+( 1

2
δij−σi

j)ξiη
j)+ 1

2~
(αijξiξj+βijηiηj)dξ dη

and above equation after the change of coordinates: ξ → −ξ, η → −η can be written

in a form

A†σ,α,β(q̂, p̂) =
1

(2π~)N

∫∫

FA∗(ξ, η)e
i
~
(ξiq̂

i−ηip̂i+( 1
2
δij−σ̄i

j)ξiη
j)+ 1

2~
(αijξiξj+βijη

iηj)dξ dη

= A∗σ̄,α,β(q̂, p̂).

For further use it will be useful to introduce an operator function from hermitian

operators q̂1, . . . , q̂N , p̂
1
, . . . , p̂

N
satisfying the following commutation relations

[q̂i, p̂
j
] = −i~δij , [q̂i, q̂j] = [p̂

i
, p̂

j
] = 0, i, j = 1, . . . , N.

This will be needed in Section 3.3 where it will be shown that operators of the form

⋆A (A ∈ AQ) can be written as operator functions of appropriate operators q̂1, . . . , q̂N ,

p̂
1
, . . . , p̂

N
. For this purpose the same defining equation (equation (3.10)) can be used as

in the previous definition of operator functions. Using the Baker-Campbell-Hausdorff

formula equation (3.10) can be now rewritten in the form

Aσ,α,β(q̂, p̂) :=
1

(2π~)N

∫∫

FA(ξ, η)e
i
~
ξiq̂

i

e−
i
~
ηip̂

ie
i
~
σ̄i
jξiη

j+ 1
2~

αijξiξj+
1
2~

βijη
iηjdξ dη . (3.14)

From above equation it can be seen that in this case the roles of σ and σ̄ are reversed.

For example an operator function is standard ordered for σ = 1 and anti-standard

ordered for σ = 0. All properties and equations derived for the previous case can be

rederived in a similar way for this case.
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3.3 Space of states and properties of canonical ⋆σ,α,β-

products

In the rest of the paper the case of ⋆σ,α,β-products related to the canonical Poisson

tensor P = ∂xi ∧ ∂pi on a manifold M = R
2N will be considered. To avoid problems

with convergence of infinite series as the algebra AQ the algebra of all complex valued

smooth functions on the phase space polynomial in momenta coordinates will be taken.

The algebra ÂQ induced by AQ contains all observables of physical interest. From the

equations (3.9) by taking Xi = ∂xi and Yi = ∂pi the ⋆σ,α,β-product takes the form

f ⋆σ,α,β g = f exp
(

i~σi
j

←−
∂ xi

−→
∂ pj − i~σ̄j

i

←−
∂ pi

−→
∂ xj + ~αij←−∂ xi

−→
∂ xj + ~βij

←−
∂ pi

−→
∂ pj

)

g

(3.15a)

=
∑

n,m,r,s
∈MN (N)

(−1)|m|(i~)|n|+|m|~|r|+|s|
σnσ̄mαrβs

n!m!r!s!
(∂n+r

x ∂m+s
p f)(∂m

T+rT

x ∂n
T+sT

p g)

(3.15b)

=
∑

k,r,s
∈MN (N)

(i~)|k|~|r|+|s|
αrβs

k!r!s!

∑

m∈MN (k)

(
k

m

)

σk−m(−σ̄)m(∂k−m+r
x ∂m+s

p f)

· (∂mT+rT

x ∂k
T−mT+sT

p g), (3.15c)

where MN (k) = {n ∈ MN(N) : nij ≤ kij, i, j = 1, . . . , N}, σ is a real matrix, α, β are

real symmetric matrices and σ̄j
i = δji − σj

i . For simplicity it will be assumed that α, β

are matrices which induced quadratic forms are positive define.

The well-known particular cases of the product (3.15) are

1. for σ = α = β = 0, the multidimensional Kupershmidt-Manin product

f ⋆ g = f exp
(

−i~←−∂ pi

−→
∂ xi

)

g = f exp (−i~∂pi ⊗ ∂xi) g

=
∑

k∈NN

1

k!
(−i~)|k|(∂kpf)(∂kxg),
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2. for σij = 1
2
δij , α = β = 0, the multidimensional Moyal (or Groenewold) product

f ⋆ 1
2
g = f exp

(
1

2
i~(
←−
∂ xi

−→
∂ pi −

←−
∂ pi

−→
∂ xi)

)

g = f exp

(
1

2
i~∂xi ∧ ∂pi

)

g

=
∑

k∈MN (N)

1

k!

(
i~

2

)|k| ∑

m∈MN (k)

(−1)|m|
(
k

m

)

(∂k−mx ∂mp f)(∂m
T

x ∂k
T−mT

p g),

3. for N = 1, σ = 1
2
, α = 2λ−1

2ω
, β = ω2α where ω, λ ∈ R and ω > 0

f ⋆λ g = f exp
(

~λ
←−
∂ a

−→
∂ ā − ~λ̄

←−
∂ ā

−→
∂ a

)

g,

where the new coordinates a(x, p) = (ωx + ip)/
√

2ω, ā(x, p) = (ωx − ip)/
√

2ω

called holomorphic coordinates were used.

Useful in some applications can be an integral form of the ⋆σ,α,β-product. There

holds

Theorem 3.5. For appropriate f, g ∈ AQ the following integral form of the ⋆σ,α,β-

product is valid

(f ⋆σ,α,β g)(x, p) =
1

(2π~)2N

∫∫∫∫

Ff(ξ′, η′)Fg(ξ′′, η′′)e
i
~

∑
i ξ

′′

i (x
i−σ̄i

jη
′j+iαijξ′j)

· e− i
~

∑
i η

′′i(pi−σj
i ξ

′

j−iβijη′j )e
i
~
(ξ′ix

i−η′ipi)dξ′ dη′ dξ′′ dη′′

≡ 1

(2π~)N

∫∫

Ff(ξ, η)g(x− σ̄η + iαξ, p− σξ − iβη)e
i
~
(ξix

i−ηipi)dξ dη

≡ 1

(2π~)N

∫∫

f(x+ ση + iαξ, p+ σ̄ξ − iβη)Fg(ξ, η)e
i
~
(ξix

i−ηipi)dξ dη .

(3.16)

For some special cases it can be written differently. For α = β = 0 and det σ 6=
0, det σ̄ 6= 0 one have

(f ⋆σ,α,β g)(x, p) =
1

(2π~)2N | det(σσ̄)|

∫∫∫∫

f(x′, p′)g(x′′, p′′)e
i
~

∑
i,j(σ

−1)ji (x
i−x′i)(pj−p′′j )

· e− i
~

∑
i,j(σ̄

−1)ij(pi−p′i)(xj−x′′j)dx′ dp′ dx′′ dp′′ .

For N = 1 and αβ 6= σσ̄ one have

(f ⋆σ,α,β g)(x, p) =
1

(2π~)2|αβ − σσ̄|

∫∫∫∫

f(x′, p′)g(x′′, p′′) exp

( −i
~(αβ − σσ̄)

·
(

(σ̄(p′′ − p)− iβ(x′′ − x))(x′ − x)− (σ(x′′ − x)

+ iα(p′′ − p))(p′ − p)
))

dx′ dp′ dx′′ dp′′ .
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The formal proof is given in A.5.

Using equations (3.15b) and (3.15c) a useful property of the ⋆σ,α,β-product can be

derived. Namely, there holds

Theorem 3.6. Let f, g ∈ AQ be such that f⋆σ,α,βg and g⋆σ,α,βf are integrable functions.

Then there holds
∫∫

(f ⋆σ,α,β g)(x, p)dx dp =

∫∫

(g ⋆σ,α,β f)(x, p)dx dp .

Moreover, for the Moyal ⋆-product (the case of σi
j = 1

2
δij and α = β = 0) there holds

∫∫

(f ⋆ 1
2
g)(x, p)dx dp =

∫∫

f(x, p)g(x, p)dx dp .

The proof is given in A.6.

Note that from the proof it follows that in general the ⋆σ,α,β-product do not change

into the point-wise product under the integral sign. Only for σi
j = 1

2
δij and α = β = 0

it happens that all terms in the sum in the definition of the ⋆σ,α,β-product will cancel

out each other except the first term.

From equation (3.15b) immediately follows another two interesting properties of the

⋆σ,α,β-product. Namely, there holds

Theorem 3.7. For f, g ∈ AQ there holds

(f ⋆σ,α,β g)∗ = g∗ ⋆σ̄,α,β f
∗,

∂xi(f ⋆σ,α,β g) = (∂xif) ⋆σ,α,β g + f ⋆σ,α,β (∂xig),

∂pi(f ⋆σ,α,β g) = (∂pif) ⋆σ,α,β g + f ⋆σ,α,β (∂pig).

In particular, for the case of σi
j = 1

2
δij the complex conjugation of functions is an

involution of the algebra AQ.

In what follows the problem of defining a space of states will be discussed. In

analogy with the classical Hamiltonian mechanics one could try to define admissible

states of the quantum Hamiltonian system as probabilistic distributions on the phase

space. After doing this one would quickly realize that it is necessary to extend the space

of admissible states to pseudo-probabilistic distributions, i.e. complex valued functions

on the phase space which are normalized but need not to have the values in the range

[0, 1]. Hence, it is postulated that the space, which contains all admissible states, for

27



the case α = β = 0 is the space L2(M) of all square integrable functions on the phase

space M = R2N with respect to the Lebesgue measure.

It is possible to introduce the ⋆σ-product between functions from L2(M), as to make

from L2(M) an algebra with respect to the ⋆σ-multiplication [38]. First, note that, by

using the integral form (3.16) of the ⋆σ,α,β-product, the ⋆σ-product of two Schwartz

functions can be defined. Moreover, the ⋆σ-product of two Schwartz functions is again

a Schwartz function, hence the Schwartz space S(M) is an algebra with respect to

the ⋆σ-multiplication. Indeed, the Schwartz space S(M) is the space of all smooth

functions f ∈ C∞(M) such that ‖xnpm∂rx∂spf‖∞ = sup
(x,p)∈M

|xnpm∂rx∂spf(x, p)| < ∞ for

every n,m, r, s ∈ NN . For f, g ∈ S(M) from (3.16) it immediately follows that

∂xi(f ⋆σ g) = (∂xif) ⋆σ g + f ⋆σ (∂xig),

∂pi(f ⋆σ g) = (∂pif) ⋆σ g + f ⋆σ (∂pig),

xi(f ⋆σ g) = f ⋆σ (xig) + i~σ̄(∂pif) ⋆σ g = (xif) ⋆σ g − i~σf ⋆σ (∂pig),

pi(f ⋆σ g) = f ⋆σ (pig)− i~σ(∂xif) ⋆σ g = (pif) ⋆σ g + i~σ̄f ⋆σ (∂xig).

By induction on these formulas, f ⋆σ g ∈ C∞(M) and ‖xnpm∂rx∂sp(f ⋆σ g)‖∞ < ∞ for

every n,m, r, s ∈ NN .

The below theorem says about the possibility of extension of the ⋆σ-product to the

whole space L2(M).

Theorem 3.8. For Ψ,Φ ∈ S(M) there holds

‖Ψ ⋆σ Φ‖L2 ≤ 1

(2π~)N/2
‖Ψ‖L2‖Φ‖L2 . (3.17)

There exists an unique extension of the ⋆σ-product from the space S(M) to the whole

space L2(M), such that relation (3.17) holds.

Proof. First, lets prove that the ⋆σ-product on S(M) is separately continuous in the L2-

norm (i.e. the ⋆σ-product as a map S(M)×S(M)→ S(M) is continuous with respect

to the first and second argument separately). Note that from Jensen’s inequality for

f, g ∈ S(M) there holds (see Appendix A.7)

∣
∣
∣
∣

∫∫

f(x, p)g(x, p)dx dp

∣
∣
∣
∣

2

≤
∫∫

|g(x, p)|dx dp

∫∫

|f(x, p)|2|g(x, p)|dx dp .
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For Ψ,Φ ∈ S(M) from the above equation and the integral form (3.16) of the ⋆σ-product

there holds

‖Ψ ⋆σ Φ‖2L2 =

∫∫

|Ψ ⋆σ Φ|2dx dp

=
1

(2π~)2N

∫∫ ∣
∣
∣
∣

∫∫

FΨ(ξ, η)Φ(x− σ̄η, p− σξ)e i
~
(ξixi−ηipi)dξ dη

∣
∣
∣
∣

2

dx dp

≤ 1

(2π~)2N

∫∫

‖FΨ‖L1

∫∫

|Φ(x− σ̄η, p− σξ)|2|FΨ(ξ, η)|dξ dη dx dp

=
1

(2π~)2N
‖FΨ‖2L1‖Φ‖2L2.

Hence

‖Ψ ⋆σ Φ‖L2 ≤ 1

(2π~)N
‖FΨ‖L1‖Φ‖L2 .

Analogically, one proves that

‖Ψ ⋆σ Φ‖L2 ≤ 1

(2π~)N
‖FΦ‖L1‖Ψ‖L2.

The above equations show that the ⋆σ-product on S(M) is separately continuous in the

L2-norm.

Now, assume that Ψij ∈ S(M) is an orthonormal basis in L2(M) satisfying

Ψij ⋆σ Ψkl =
1

(2π~)N/2
δilΨkj. (3.18)

Such basis always exists (see Section 4). Every Ψ ∈ L2(M) can be expanded in this

basis

Ψ =

∞∑

i,j=0

cijΨij,

where the convergence is in the L2-norm. First note that for Ψ =
∑

i,j cijΨij ∈ S(M)

and Φ =
∑

k,l bklΨkl ∈ S(M), using (3.18) and the continuity of the ⋆σ-product in the

L2-norm, the ⋆σ-product of two Schwartz functions can be written in a form

Ψ ⋆σ Φ =

( ∞∑

i,j=0

cijΨij

)

⋆σ

( ∞∑

k,l=0

bklΨkl

)

=
1

(2π~)N/2

∞∑

i,j,k=0

cijbkiΨkj. (3.19)

Now, for Ψ =
∑

i,j cijΨij ∈ L2(M) and Φ =
∑

k,l bklΨkl ∈ L2(M) lets define the ⋆σ-

product of functions Ψ and Φ by the formula

Ψ ⋆σ Φ =
1

(2π~)N/2

∞∑

k,j=0

( ∞∑

i=0

cijbki

)

Ψkj.
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From (3.19) above definition of the ⋆σ-product, for Schwartz functions, is consistent

with the previous one.

From Schwartz inequality it follows that

‖Ψ ⋆σ Φ‖2L2 ≤ 1

(2π~)N

∞∑

k,j=0

( ∞∑

i=0

|cij||bki|
)2

≤ 1

(2π~)N

∞∑

i,j=0

|cij|2
∞∑

k,l=0

|bkl|2

=
1

(2π~)N
‖Ψ‖2L2‖Φ‖2L2 .

Hence, the ⋆σ-product in L2(M) satisfies the relation (3.17). The uniqueness of the

presented extension of the ⋆σ-product is evident from the fact that S(M) is dense in

L2(M).

Now, lets introduce the space containing all admissible states for the general (σ, α, β)-

ordering. First, lets derive the integral representation of the isomorphism Sα,β : (AQ, ⋆σ)→
(AQ, ⋆σ,α,β) from equation (3.7). There holds

Theorem 3.9. Let α, β be such matrices, which induced quadratic forms are positive

define and let f ∈ AQ. Then the integral representation of Sα,β reads

Sα,βf(x, p) =
1

(2π~)N
√

det(αβ)

∫∫

f(x′, p′)e−
1
2~

∑
ij(α

−1)ij(xi−x′i)(xj−x′j)

· e− 1
2~

∑
ij(β

−1)ij(pi−p′i)(pj−p′j)dx′ dp′ .

Proof. From the formula for the Fourier transform of a Gaussian function and the

convolution theorem (see Appendix A.1) it follows that

Sα,βf(x, p) = e
1
2
~αij∂

xi
∂
xj e

1
2
~βij∂pi∂pj f(x, p)

= F−1F
(

e
1
2
~αij∂xi∂xj e

1
2
~βij∂pi∂pj f

)

(x, p)

= F−1
(

e−
1
2~

αijξiξje−
1
2~

βijηiηjFf(ξ, η)
)

(x, p)

=
1

(2π~)N
√

det(αβ)
e−

1
2~

(α−1)ijxixj

e−
1
2~

(β−1)ijpipj ∗ f(x, p)

=
1

(2π~)N
√

det(αβ)

∫∫

f(x′, p′)e−
1
2~

∑
ij(α

−1)ij(xi−x′i)(xj−x′j)

· e− 1
2~

∑
ij(β

−1)ij(pi−p′i)(pj−p′j)dx′ dp′ .
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From the integral representation of the isomorphism Sα,β : (AQ, ⋆σ)→ (AQ, ⋆σ,α,β) it

can be immediately seen that the isomorphism Sα,β can also be defined on the Schwartz

space S(M). S(M) with an L2-scalar product is an unitary space. The isomorphism

Sα,β induces a scalar product on the space Sα,β(S(M)) by the formula

〈Ψ|Φ〉 = 〈S−1α,βΨ|S−1α,βΦ〉L2, Ψ,Φ ∈ Sα,β(S(M)),

making from Sα,β(S(M)) an unitary space, which can be completed to a Hilbert space.

The completion of Sα,β(S(M)) will be denoted by H. Thus, Sα,β is an isometry, hence

in particular a continuous map, from S(M) into H. Now, since S(M) is dense in L2(M)

and Sα,β is continuous, Sα,β can be uniquely extended to a Hilbert space isomorphism

defined on the whole space L2(M). Note that H = Sα,β(L2(M)). Thus, as the space,

containing all admissible states, for the general (σ, α, β)-ordering the space H can be

chosen. Note that the scalar product on H satisfies the relation

〈Ψ|Φ〉H = 〈S−1α,βΨ|S−1α,βΦ〉L2, Ψ,Φ ∈ H,

Note also that the isomorphism Sα,β induces the ⋆σ,α,β-product on H from the ⋆σ-

product on L2(M) by the formula

Ψ ⋆σ,α,β Φ = S−1α,βΨ ⋆σ S
−1
α,βΦ, Ψ,Φ ∈ H,

which satisfies the analogue of relation (3.17)

‖Ψ ⋆σ,α,β Φ‖H ≤
1

(2π~)N/2
‖Ψ‖H‖Φ‖H, Ψ,Φ ∈ H. (3.20)

From relation (3.20) it is evident that the ⋆σ,α,β-product is a continuous mapping H×
H → H and that H has a structure of a Hilbert algebra.

Lets see how the scalar product on the Hilbert spaceH looks like. Let Ψσ,α,β ,Φσ,α,β ∈
H, then since Sα,β is an isomorphism of L2(R2N) onto H, there exist Ψσ,Φσ ∈ L2(R2N )

such that Ψσ,α,β = Sα,βΨσ and Φσ,α,β = Sα,βΦσ. Now, from definition 〈Ψσ,α,β|Φσ,α,β〉H =

〈Ψσ|Φσ〉L2 . Lets define such measure on the σ-algebra of Borel subsets of M = R2N

dµ(ξ, η) = exp

(
1

~
αijξiξj

)

exp

(
1

~
βijη

iηj
)

dξ dη .

The scalar product of functions Ψσ,α,β,Φσ,α,β can be written in a form

〈Ψσ,α,β|Φσ,α,β〉H =

∫∫
(
FΨσ,α,β(ξ, η)

)∗FΦσ,α,β(ξ, η)dµ(ξ, η) . (3.21)
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Indeed, the Fourier transforms of functions Ψσ,α,β,Φσ,α,β are equal

FΨσ,α,β(ξ, η) = exp

(

− 1

2~
αijξiξj

)

exp

(

− 1

2~
βijη

iηj
)

FΨσ(ξ, η),

FΦσ,α,β(ξ, η) = exp

(

− 1

2~
αijξiξj

)

exp

(

− 1

2~
βijη

iηj
)

FΦσ(ξ, η).

Using above calculations equation (3.21) can be written in a form

〈Ψσ,α,β|Φσ,α,β〉H =

∫∫

exp

(

− 1

2~
αijξiξj

)

exp

(

− 1

2~
βijη

iηj
)

(FΨσ(ξ, η))∗

· exp

(

− 1

2~
αijξiξj

)

exp

(

− 1

2~
βijη

iηj
)

FΦσ(ξ, η)

· exp

(
1

~
αijξiξj

)

exp

(
1

~
βijη

iηj
)

dξ dη

=

∫∫

(FΨσ(ξ, η))∗FΦσ(ξ, η)dξ dη

= 〈FΨσ|FΦσ〉L2 = 〈Ψσ|Φσ〉L2.

From this it can be seen that the Fourier transform of the Hilbert space H is a space

L2(R2N , µ) of square integrable functions on the phase space with respect to the measure

µ.

Using the integral representation (3.16) of the ⋆σ,α,β-product it is possible to define

a left and right ⋆σ,α,β-product of a function A ∈ AQ with functions from some subspace

of H receiving again a function from H. Note that in general the function A ∈ AQ

cannot be multiplied by every function from H in such a way, as to receive again a

function from H. Above arguments state that operators from the algebra ÂQ, hence in

particular observables, can be treated as operators defined on the Hilbert space H.

It can be shown that a left action of some function A ∈ AQ through the ⋆σ,α,β-

product on some function Ψ ∈ H can be treated as an action of an operator function

Aσ,α,β(q̂σ,α, p̂σ,β) on function Ψ where q̂σ,α, p̂σ,β are some operators defined on the Hilbert

space H. Similarly, a right action of A ∈ AQ through the ⋆σ,α,β-product on Ψ ∈ H can

be treated as an action of an operator function Aσ,α,β(q̂∗σ̄,α, p̂
∗
σ̄,β) on function Ψ. First,

note that by using equation (3.15a) and the identity

ea∂xf(x) = f(x+ a), a ∈ R (3.22)

valid for any smooth function f : R → C, the ⋆σ,α,β-product of functions A ∈ AQ and
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Ψ ∈ H can be formally written in a form

AL ⋆σ,α,β Ψ := A ⋆σ,α,β Ψ = A(x+ i~σ
−→
∂ p + ~α

−→
∂ x, p− i~σ̄

−→
∂ x + ~β

−→
∂ p)Ψ,

AR ⋆σ,α,β Ψ := Ψ ⋆σ,α,β A = A(x− i~σ̄−→∂ p + ~α
−→
∂ x, p+ i~σ

−→
∂ x + ~β

−→
∂ p)Ψ.

Lets define the operators q̂σ,α, p̂σ,β by the equations

(q̂σ,α)i := xi + i~σi
j∂pj + ~αij∂xj = xi ⋆σ,α,β ,

(p̂σ,β)i := pi − i~σ̄j
i ∂xj + ~βij∂pj = pi ⋆σ,α,β .

It can be easily checked that the operators q̂σ,α, p̂σ,β satisfy the following commutation

relations

[(q̂σ,α)i, (p̂σ,β)j] = i~δij ,

[(q̂σ,α)i, (q̂σ,α)j] = 0, [(p̂σ,β)i, (p̂σ,β)j ] = 0.

The operators q̂∗σ̄,α, p̂
∗
σ̄,β take then the form

(q̂∗σ̄,α)i := xi − i~σ̄i
j∂pj + ~αij∂xj ,

(p̂∗σ̄,β)i := pi + i~σj
i ∂xj + ~βij∂pj ,

and they satisfy the following commutation relations

[(q̂∗σ̄,α)i, (p̂∗σ̄,β)j] = −i~δij ,
[(q̂∗σ̄,α)i, (q̂∗σ̄,α)j] = 0, [(p̂∗σ̄,β)i, (p̂

∗
σ̄,β)j] = 0.

There holds

Theorem 3.10. For any function A ∈ AQ there holds

AL ⋆σ,α,β = A(
−→̂
q σ,α,

−→̂
p σ,β) = Aσ,α,β(q̂σ,α, p̂σ,β),

AR ⋆σ,α,β = A(
−→̂
q ∗σ̄,α,

−→̂
p ∗σ̄,β) = Aσ,α,β(q̂∗σ̄,α, p̂

∗
σ̄,β).

Proof. Above theorem can be proved using the integral form (3.16) of the ⋆σ,α,β-product.

First, lets check how the operator e
i
~
ξi(q̂σ,α)ie−

i
~
ηi(p̂σ,β)i acts on some function Ψ ∈ H. Us-

ing the Baker-Campbell-Hausdorff formulae (see Appendix A.4) and the identity (3.22)
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one receives

e
i
~
ξi(q̂σ,α)

i

e−
i
~
ηi(p̂σ,β)iΨ(x, p) = e

i
~

∑
i ξi(x

i+i~σi
j∂pj+~αij∂

xj
)e−

i
~

∑
i η

i(pi−i~σ̄j
i ∂xj+~βij∂pj )Ψ(x, p)

= e
i
~
ξixi

e−σ
i
jξi∂pj eiα

ijξi∂xj e−
1
2~

αijξiξje−
i
~
ηipie−σ̄

j
i η

i∂
xj e−iβijη

i∂pj e−
1
2~

βijηiηjΨ(x, p)

= e
i
~
ξix

i

e−
i
~
ηipie−

1
2~

αijξiξje−
1
2~

βijη
iηje

i
~
σi
jξiη

j

e−σ
i
jξi∂pj eiα

ijξi∂xj e−σ̄
j
i η

i∂
xj e−iβijηi∂pj Ψ(x, p)

= e
i
~
ξixi

e−
i
~
ηipie−

1
2~

αijξiξje−
1
2~

βijηiηje
i
~
σi
jξiη

j

Ψ(x− σ̄η + iαξ, p− σξ − iβη).

Using above equation and equation (3.11) it follows immediately that

Aσ,α,β(q̂σ,α, p̂σ,β)Ψ(x, p) =
1

(2π~)N

∫∫

FA(ξ, η)Ψ(x− σ̄η + iαξ, p− σξ − iβη)

· e i
~
ξixi

e−
i
~
ηipidξ dη ,

which is just the integral form (3.16) of the product A ⋆σ,α,β Ψ.

From Theorem 3.10 it follows that operators from the algebra ÂQ, hence in partic-

ular observables, can be written as operator functions of the operators q̂σ,α, p̂σ,β.

It is possible to introduce adjoint of left and right ⋆σ,α,β-multiplication in a standard

way

〈(AL ⋆σ,α,β )†Ψ1|Ψ2〉H = 〈Ψ1|AL ⋆σ,α,β Ψ2〉H,
〈(AR ⋆σ,α,β )†Ψ1|Ψ2〉H = 〈Ψ1|AR ⋆σ,α,β Ψ2〉H.

From this it then follows that

(AL ⋆σ,α,β )† = A†σ,α,β(q̂σ,α, p̂σ,β) = A∗σ̄,α,β(q̂σ,α, p̂σ,β), (3.23a)

(AR ⋆σ,α,β )† = A†σ,α,β(q̂∗σ̄,α, p̂
∗
σ̄,β) = A∗σ̄,α,β(q̂∗σ̄,α, p̂

∗
σ̄,β). (3.23b)

3.4 Pure states, mixed states and expectation val-

ues of observables

As was presented earlier all admissible states of the quantum Hamiltonian system are

contained in the Hilbert space H. It is necessary to determine which functions from

H can be considered as pure states and mixed states. Pure states will be defined as

functions Ψpure ∈ H which satisfy the following conditions

34



1. Ψpure ⋆σ,α,β = (Ψpure ⋆σ,α,β )† (hermiticity),

2. Ψpure ⋆σ,α,β Ψpure =
1

(2π~)N/2
Ψpure (idempotence),

3. ‖Ψpure‖H = 1 (normalization).

Mixed states Ψmix ∈ H will be defined in a standard way, as linear combinations,

possibly infinite, of some families of pure states Ψ
(λ)
pure

Ψmix :=
∑

λ

pλΨ(λ)
pure,

where 0 ≤ pλ ≤ 1 and
∑

λ pλ = 1. Such definition of mixed states reflects the lack

of knowledge about the state of the system, where pλ is the probability of finding the

system in a state Ψ
(λ)
pure.

In what follows a characterization of mixed states will be given but first, lets intro-

duce a (σ, α, β)-twisted square root of functions Ψ ∈ H. Lets assume that Ψ ∈ H is

hermitian and positive define, i.e.

1. Ψ ⋆σ,α,β = (Ψ ⋆σ,α,β )† (hermiticity),

2. 〈Ψpure|Ψ ⋆σ,α,β Ψpure〉H ≥ 0 for every pure state Ψpure (positive definite).

Then, it can be proved (see Theorem 4.3) that there exists exactly one hermitian and

positive define function Φ ∈ H such that

Φ ⋆σ,α,β Φ =
1

(2π~)N/2
Ψ.

This function Φ will be called a (σ, α, β)-twisted square root of function Ψ ∈ H and it

will be denoted by the same symbol as the ordinary square root, i.e. by
√

Ψ.

Now, it is easy to check that every admissible (pure or mixed) state Ψ ∈ H satisfies

the following conditions

1. Ψ ⋆σ,α,β = (Ψ ⋆σ,α,β )† (hermiticity),

2. 〈Ψpure|Ψ ⋆σ,α,β Ψpure〉H ≥ 0 for every pure state Ψpure (positive definite),

3. ‖
√

Ψ‖H = 1 (normalization).
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Conversely, every function Ψ ∈ H satisfying the above conditions is an admissible (pure

or mixed) state (see Theorem 4.4).

For an admissible quantum state Ψ ∈ H lets define a quantum distribution function

ρ on the phase space by the equation

ρ :=
1

(2π~)N/2
Ψ.

Note that from Theorem 4.5 it follows that the function ρ is a quasi-probabilistic dis-

tribution function, i.e.
∫∫

ρ(x, p)dx dp = 1.

The quantum distribution functions ρ are the analogue of the classical distribution func-

tions representing states of the classical Hamiltonian system. The difference between

classical and quantum distribution functions is that the latter do not have to have val-

ues from the range [0, 1]. Thus, ρ(x, p) cannot be interpreted as a probability density

of finding a particle in a point (x, p) of the phase space. This is a reflection of the

fact that x and p coordinates do not commute with respect to the ⋆σ,α,β-multiplication,

which yield, from the Heisenberg uncertainty principle, that it is impossible to measure

simultaneously the position and momentum of a particle. Hence, the point position of

a particle in the phase space does not make sense anymore. On the other hand, from

Theorem 4.6 it follows that marginal distributions

P (x) :=

∫

ρ(x, p)dp , P (p) :=

∫

ρ(x, p)dx ,

are probabilistic distribution functions and can be interpreted as probability densities

that a particle in the phase space have position x or momentum p. The result is not

surprising as each marginal distribution depends on commuting coordinates only.

The expectation value of an observable Â ∈ ÂQ in an admissible state Ψ ∈ H can

be defined like in its classical analogue (2.5), i.e. as a mean value with respect to a

quantum distribution function ρ = 1
(2π~)N/2 Ψ

〈Â〉Ψ =

∫∫

(Âρ)(x, p)dx dp =

∫∫

(A ⋆σ,α,β ρ)(x, p)dx dp .
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3.5 Time evolution of quantum Hamiltonian sys-

tems

In this section the time evolution of a quantum Hamiltonian system will be presented.

Analogically as in classical mechanics, the time evolution of a quantum Hamiltonian

system is governed by a Hamiltonian Ĥ. It will be assumed that Ĥ ∈ ÔQ and that Ĥ

is self-adjoint in H, i.e. H = H∗ and HL,R ⋆σ,α,β = (HL,R ⋆σ,α,β )†. The time evolution

of a quantum distribution function ρ is defined like in its classical counterpart (2.12)

L(H, ρ) :=
∂ρ

∂t
− [|H, ρ|] = 0

m (3.24)

i~
∂ρ

∂t
− [H, ρ] = 0.

States Ψ ∈ H which do not change during the time development, i.e. such that ∂Ψ
∂t

= 0

are called stationary states. From the time evolution equation (3.24) it follows that

stationary states Ψ satisfy

[H,Ψ] = 0.

If a stationary state Ψ is a pure state then, from Theorem 4.10, it follows that the

above equation is equivalent to a pair of ⋆σ,α,β-genvalue equations

H ⋆σ,α,β Ψ = EΨ, Ψ ⋆σ,α,β H = EΨ,

for some E ∈ R. Note that E in the above equations is the expectation value of the

Hamiltonian Ĥ in a stationary state Ψ, hence it is an energy of the system in the state

Ψ.

The formal solution of (3.24) takes the form

ρ(t) = U(t) ⋆σ,α,β ρ(0) ⋆σ,α,β U(−t),

where

U(t) = e
− i

~
tH

⋆σ,α,β
:=

∞∑

k=0

1

k!

(

− i
~
t

)k

H ⋆σ,α,β . . . ⋆σ,α,β H
︸ ︷︷ ︸

k

(3.25)

is an unitary function in H as Ĥ is self-adjoint. Hence, the time evolution of states

can be alternatively expressed in terms of the one parameter group of unitary functions

U(t).
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From (3.24) it follows that a time dependent expectation value of an observable

Â ∈ ÂQ in a state ρ(t), i.e. 〈Â〉ρ(t), fulfills the following equation of motion

〈Â〉L(H,ρ) = 0 ⇐⇒ d

dt
〈Â〉ρ(t) − 〈[|Â, Ĥ|]〉ρ(t) = 0. (3.26)

Indeed
∫∫

dx dpA ⋆σ,α,β
∂ρ

∂t
(t) =

d

dt

∫∫

dx dpA ⋆σ,α,β ρ(t) =
d

dt
〈Â〉ρ(t),

∫∫

dx dpA ⋆σ,α,β
1

i~
(H ⋆σ,α,β ρ(t)− ρ(t) ⋆σ,α,β H) =

=

∫∫

dx dp
1

i~
(A ⋆σ,α,β H −H ⋆σ,α,β A) ⋆σ,α,β ρ(t)

= 〈[|Â, Ĥ|]〉ρ(t).

Equation (3.26) is the quantum analogue of the classical equation (2.13).

Until now the time evolution in the Schrödinger picture were considered, i.e. only

states undergo a time development. It is also possible to consider a dual approach to

the time evolution, namely the Heisenberg picture. In this picture states remain still

whereas the observables undergo a time development. The time development of an

observable Â ∈ ÂQ is given by the action of the unitary function U(t) from (3.25) on Â

Â(t) = U(−t) ⋆σ,α,β A(0) ⋆σ,α,β U(t) ⋆σ,α,β = Û(−t)Â(0)Û(t). (3.27)

Differentiating equation (3.27) with respect to t results in such evolution equation for

Â
dÂ

dt
(t)− [|Â(t), Ĥ|] = 0. (3.28)

Equation (3.28) is the quantum analogue of the classical equation (2.15).

Both presented approaches to the time development yield equal predictions concern-

ing the results of measurements, since

〈Â(0)〉ρ(t) =

∫∫

dx dpA(0) ⋆σ,α,β ρ(t)

=

∫∫

dx dpA(0) ⋆σ,α,β U(t) ⋆σ,α,β ρ(0) ⋆σ,α,β U(−t)

=

∫∫

dx dp (U(−t) ⋆σ,α,β A(0) ⋆σ,α,β U(t)) ⋆σ,α,β ρ(0)

=

∫∫

dx dpA(t) ⋆σ,α,β ρ(0) = 〈Â(t)〉ρ(0).
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4

Ordinary description of quantum

mechanics

In this section it will be shown that from the phase space quantum mechanics immedi-

ately follows the ordinary description of quantum mechanics developed by Schrödinger,

Dirac and Heisenberg, in which observables and states are defined as operators on the

Hilbert space L2(RN ). In contrary to a waste of papers devoted to quantum mechanics

on a phase space it is shown that the ordinary quantum mechanics naturally follows

from the construction of the presented formalism and it is not needed to introduce a

morphism between the spaces of observables (usually referred to in the literature as the

Wigner map) to show the equivalence between both descriptions of quantum mechanics.

First, it will be shown that H can be considered as a tensor product of Hilbert

spaces L2(RN) and a space dual to it
(
L2(RN )

)∗
. It is well known that the Hilbert

space
(
L2(RN)

)∗
dual to L2(RN) can be identified with L2(RN) where the anti-linear

duality map ∗ : L2(RN) →
(
L2(RN)

)∗
is the complex conjugation of functions. The

tensor product of
(
L2(RN )

)∗
and L2(RN) is defined up to an isomorphism. The most

natural choice for the tensor product of
(
L2(RN)

)∗
and L2(RN) is the Hilbert space

L2(R2N) where the tensor product of ϕ ∈
(
L2(RN )

)∗
and ψ ∈ L2(RN ) is defined as

(ϕ⊗ ψ)(x, y) := ϕ∗(x)ψ(y).

and the scalar product in L2(R2N) satisfies the equation

〈ϕ1 ⊗ ψ1|ϕ2 ⊗ ψ2〉L2 = 〈ϕ2|ϕ1〉L2〈ψ1|ψ2〉L2,

for ϕ1, ϕ2 ∈
(
L2(RN )

)∗
and ψ1, ψ2 ∈ L2(RN).
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Now, an isomorphism of L2(R2N) onto H will be defined, which will make from H
a tensor product of

(
L2(RN)

)∗
and L2(RN ). First, note that the Fourier transform Fy

is an isomorphism of L2(R2N ). For Ψ(x, y) ∈ L2(R2N ), the function

Ψ(x, p) = Fy(Ψ(x, y)) =
1

(2π~)N/2

∫

dy e−
i
~
piyiΨ(x, y)

will be called an (x, p)-representation of Ψ(x, y) and it will be considered as a function

on the phase space M = R2N in the canonical coordinates of position x and momentum

p. Lets introduce another isomorphism of L2(R2N ) by the equation

TσΨ(x, y) := Ψ(x− σ̄y, x+ σy), Ψ ∈ L2(R2N).

As the searched isomorphism of L2(R2N) onto H the map Sα,βFyTσ will be taken. A

tensor product of
(
L2(RN )

)∗
and L2(RN) induced by this isomorphism will be denoted

by
(
L2(RN)

)∗ ⊗σ,α,β L
2(RN) and called a (σ, α, β)-twisted tensor product of

(
L2(RN)

)∗

and L2(RN). Hence

H =
(
L2(RN)

)∗ ⊗σ,α,β L
2(RN) = Sα,βFyTσ

((
L2(RN)

)∗ ⊗ L2(RN)
)

(4.1)

and the scalar product in H satisfies

〈ϕ1 ⊗σ,α,β ψ1|ϕ2 ⊗σ,α,β ψ2〉H = 〈ϕ2|ϕ1〉L2〈ψ1|ψ2〉L2,

for ϕ1, ϕ2 ∈
(
L2(RN)

)∗ ∼= L2(RN) and ψ1, ψ2 ∈ L2(RN). The relevance of the represen-

tation (4.1) will be revealed in the key theorem 4.8.

The generators of H are of the form

Ψσ,α,β(x, p) = (ϕ⊗σ,α,β ψ)(x, p)

=
1

(2π~)N/2
e

1
2
~αij∂

xi
∂
xj e

1
2
~βij∂pi∂pj

∫

dy e−
i
~
piyiϕ∗(x− σ̄y)ψ(x+ σy)

=
1

(2π~)3N/2
√

det(αβ)

∫∫∫

dx′ dp′ dy ϕ∗(x′ − σ̄y)ψ(x′ + σy)

· e− 1
2~

∑
i,j(α

−1)ij(x
i−x′i)(xj−x′j)e−

1
2~

∑
i,j(β

−1)ij(pi−p′i)(pj−p′j)e−
i
~
p′iy

i

, (4.2)

where ϕ, ψ ∈ L2(RN). In a special case of Weyl ordering σi
j = 1

2
δij , α = β = 0 generators

Ψσ,α,β are the well known Wigner functions related to the Moyal ⋆-product. Many

particular examples of the quantum phase-space distribution functions (4.2) considered

in the past are listed and described in the review paper [39].
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Observe, that if {ϕi} is an orthonormal basis in L2(RN), then {Ψij} = {ϕi⊗σ,α,βϕj}
is an orthonormal basis in H and for any Ψ = ϕ ⊗σ,α,β ψ ∈ H where ϕ, ψ ∈ L2(RN),

one have

ϕ =
∑

i

biϕi, ψ =
∑

j

cjϕj , for some bi, ci ∈ C,

Ψ =
∑

i,j

aijΨij , aij = b∗i cj.

The interesting property of the basis functions Ψij is they idempotence. Namely, there

holds [8]

Theorem 4.1.

Ψij ⋆σ,α,β Ψkl =
1

(2π~)N/2
δilΨkj (4.3)

Proof. First lets prove the theorem for the case α = β = 0. Assume Ψσ
ij ∈ L2(R2N ) are

of the form

Ψσ
ij(x, p) = (ϕi ⊗σ ϕj)(x, p) =

1

(2π~)N/2

∫

dy e−
i
~
piy

i

ϕ∗i (x− σ̄y)ϕj(x+ σy).

Using the identity (3.22) and the defining formula (3.15) of the ⋆σ,α,β-product, the

⋆σ-product of functions Ψσ
ij and Ψσ

kl can be written in a form

(Ψσ
ij ⋆σ Ψσ

kl)(x, p) = Ψσ
ij(x, p− i~σ̄

−→
∂ x)Ψσ

kl(x, p + i~σ
←−
∂ x)

=
1

(2π~)N

∫

dy ϕ∗i (x− σ̄y)ϕj(x+ σy)e−
i
~
yi(pi−i~σ̄

−→
∂ x)

·
∫

dy′ ϕ∗k(x− σ̄y′)ϕl(x+ σy′)e−
i
~
y′i(pi+i~σ

←−
∂ x)

=
1

(2π~)N

∫∫

dy dy′ e−
i
~
pi(y

i+y′i)ϕ∗i (x + σy′ − σ̄y)ϕj(x+ σy′ + σy)

· ϕ∗k(x− σ̄y − σ̄y′)ϕl(x− σ̄y + σy′).

After introducing new coordinates: z = y+ y′, z′ = x+σy′− σ̄y the above formula can

be written in a form

(Ψσ
ij ⋆σ Ψσ

kl)(x, p) =
1

(2π~)N

∫

dz e−
i
~
piz

i

ϕ∗k(x− σ̄z)ϕj(x + σz)

∫

dz′ ϕ∗i (z
′)ϕl(z

′)

=
1

(2π~)N/2
δilΨ

σ
kj(x, p). (4.4)

Now, applying the isomorphism Sα,β to both sides of equation (4.4), the general formula

(4.3) follows immediately.
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Hence, if Ψ1 = ϕ1 ⊗σ,α,β ψ1 and Ψ2 = ϕ2 ⊗σ,α,β ψ2 where ϕ1, ψ1, ϕ2, ψ2 ∈ L2(RN),

then

Ψ1 ⋆σ,α,β Ψ2 =
1

(2π~)N/2
〈ϕ1|ψ2〉L2(ϕ2 ⊗σ,α,β ψ1), (4.5a)

Ψ2 ⋆σ,α,β Ψ1 =
1

(2π~)N/2
〈ϕ2|ψ1〉L2(ϕ1 ⊗σ,α,β ψ2). (4.5b)

Using the basis {Ψij} = {ϕi⊗σ,α,β ϕj} some interesting properties of the admissible

states can be proved. Namely, there holds

Theorem 4.2. Every pure state Ψpure ∈ H is of the form

Ψpure = ϕ⊗σ,α,β ϕ, (4.6)

for some normalized function ϕ ∈ L2(RN). Conversely, every function Ψ ∈ H of the

form (4.6) is a pure state.

Proof. From formula (4.3) it follows that every function Ψ ∈ H of the form (4.6) is a

pure state. If now one assumes that Ψpure ∈ H is a pure state then Ψpure can be written

in a form

Ψpure =
∑

i,j

cijΨij,

where {Ψij} = {ϕi ⊗σ,α,β ϕj} is an induced basis in H by the basis {ϕi} in L2(RN).

The assumptions that Ψpure is hermitian, idempotent and normalized can be restated

saying that the matrix č of the coefficients cij is hermitian (č = č†), idempotent (č2 = č)

and normalized (tr č = 1). Since the matrix č is hermitian it can be diagonalized, i.e.

there exist an unitary matrix Ť such that cij =
∑

k,l T
†
ik(akδkl)Tlj =

∑

k T
∗
kiakTkj for

some ak ∈ R. Hence, Ψpure takes the form

Ψpure =
∑

i,j,k

T ∗kiakTkj(ϕi ⊗σ,α,β ϕj) =
∑

k

ak

((
∑

iTkiϕi

)

⊗σ,α,β

(
∑

jTkjϕj

))

=
∑

k

ak(ψk ⊗σ,α,β ψk),

where ψk =
∑

i Tkiϕi. The conditions that č2 = č and tr č = 1 give that a2k = ak and
∑

k ak = 1. Hence ak = δk0k for some k0, from which follows that Ψpure = ψk0 ⊗σ,α,β

ψk0.

Theorem 4.3. Let Ψ ∈ H be hermitian and positive define, i.e.
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1. Ψ ⋆σ,α,β = (Ψ ⋆σ,α,β )† (hermiticity),

2. 〈Ψpure|Ψ ⋆σ,α,β Ψpure〉H ≥ 0 for every pure state Ψpure (positive definite).

Then, there exists exactly one hermitian and positive define function Φ ∈ H such that

Φ ⋆σ,α,β Φ =
1

(2π~)N/2
Ψ.

Proof. Function Ψ can be written in a form

Ψ =
∑

i,j

cijΨij ,

where {Ψij} = {ϕi⊗σ,α,β ϕj} is an induced basis in H by the basis {ϕi} in L2(RN) and

cij are coefficients of a complex matrix č which is hermitian (č = č†) and positive define

(cii ≥ 0). The theorem can be restated saying that there exists exactly one hermitian

and positive define matrix b̌ such that

b̌2 = č,

which is a well known fact from the linear algebra. The searched function Φ is then

equal

Φ =
∑

i,j

bijΨij .

Theorem 4.4. Every function Ψ ∈ H satisfying the below conditions is an admissible

(pure or mixed) state of the quantum Hamiltonian system

1. Ψ ⋆σ,α,β = (Ψ ⋆σ,α,β )† (hermiticity),

2. 〈Ψpure|Ψ ⋆σ,α,β Ψpure〉H ≥ 0 for every pure state Ψpure (positive definite),

3. ‖
√

Ψ‖H = 1 (normalization).

Proof. Function Ψ can be written in a form

Ψ =
∑

i,j

cijΨij ,

where {Ψij} = {ϕi⊗σ,α,β ϕj} is an induced basis in H by the basis {ϕi} in L2(RN). The

assumptions that Ψ is hermitian, positive define and normalized can be restated saying
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that the matrix č of the coefficients cij is hermitian (č = č†), positive define (cii ≥ 0)

and normalized (tr č = 1). Since the matrix č is hermitian it can be diagonalized, i.e.

there exist an unitary matrix Ť such that cij =
∑

k,l T
†
ik(pkδkl)Tlj =

∑

k T
∗
kipkTkj for

some pk ∈ R. Hence, Ψ takes the form

Ψ =
∑

i,j,k

T ∗kipkTkj(ϕi ⊗σ,α,β ϕj) =
∑

k

pk

((
∑

iTkiϕi

)

⊗σ,α,β

(
∑

jTkjϕj

))

=
∑

k

pk(ψk ⊗σ,α,β ψk),

where ψk =
∑

i Tkiϕi. The conditions that cii ≥ 0 and tr č = 1 give that 0 ≤ pk ≤ 1

and
∑

k pk = 1. Hence Ψ is a mixed state.

Theorem 4.5. Every admissible (pure or mixed) state Ψ ∈ H satisfies

1

(2π~)N/2

∫∫

Ψ(x, p)dx dp = 1.

Proof. It is enough to prove the theorem for the case when Ψ is a pure state. In that case

Ψ can be written in a form Ψ = ϕ⊗σ,α,β ϕ for some normalized function ϕ ∈ L2(RN).

Hence, one have that

1

(2π~)N/2

∫∫

Ψ(x, p)dx dp = (2π~)N/2FΨ(0)

= (2π~)N/2F
(

e
1
2
~αij∂xi∂xj e

1
2
~βij∂pi∂pjFyTσ(ϕ⊗ ϕ)

)

(0)

= (2π~)N/2e−
1
2~

αijξiξje−
1
2~

βijηiηj
∣
∣
∣
∣
ξ=η=0

F (FyTσ(ϕ⊗ ϕ)) (0)

=
1

(2π~)N

∫∫∫

dx dp dy e−
i
~
piy

i

ϕ∗(x− σ̄y)ϕ(x+ σy)

=

∫∫

dx dy δ(y)ϕ∗(x− σ̄y)ϕ(x+ σy)

=

∫

dxϕ∗(x)ϕ(x) = 1.

Theorem 4.6. Every admissible (pure or mixed) state Ψ =
∑

λ pλ(ϕ(λ) ⊗σ,α,β ϕ
(λ)) for

some normalized ϕ(λ) ∈ L2(RN) satisfies

1

(2π~)N/2

∫

Ψ(x, p)dp =
∑

λ

pλe
1
2
~αij∂

xi
∂
xj |ϕ(λ)(x)|2, (4.7a)

1

(2π~)N/2

∫

Ψ(x, p)dx =
∑

λ

pλe
1
2
~βij∂pi∂pj |ϕ̃(λ)(p)|2, (4.7b)
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where ϕ̃(λ) denotes the Fourier transform of ϕ(λ).

Proof. It is enough to prove the theorem for a pure state Ψ = ϕ ⊗σ,α,β ϕ. Equation

(4.7a) follows from

1

(2π~)N/2

∫

Ψ(x, p)dp =
1

(2π~)N

∫

dp e
1
2
~αij∂

xi
∂
xj e

1
2
~βij∂pi∂pj

∫

dy e−
i
~
piyi

· ϕ∗(x− σ̄y)ϕ(x+ σy)

= e
1
2
~αij∂xi∂xj

1

(2π~)N

∫∫

dp dy e−
i
~
piyie−

1
2~

βijyiyj

· ϕ∗(x− σ̄y)ϕ(x+ σy)

= e
1
2
~αij∂xi∂xj

∫

dy δ(y)e−
1
2~

βijy
iyjϕ∗(x− σ̄y)ϕ(x+ σy)

= e
1
2
~αij∂

xi
∂
xj |ϕ(x)|2.

Equation (4.7b) follows from

1

(2π~)N/2

∫

Ψ(x, p)dx = (FxΨ(x, p)) (0)

= Fx

(

e
1
2
~αij∂

xi
∂
xj e

1
2
~βij∂pi∂pjFyTσ(ϕ⊗ ϕ)(x, p)

)

(0)

= e−
1
2~

αijξiξj

∣
∣
∣
∣
ξ=0

Fx

(

e
1
2
~βij∂pi∂pjFyTσ(ϕ⊗ ϕ)(x, p)

)

(0)

= e
1
2
~βij∂pi∂pj

1

(2π~)N

∫∫

dx dp e−
i
~
piyiϕ∗(x− σ̄y)ϕ(x+ σy).

Introducing new coordinates x1 = x− σ̄y, x2 = x + σy gives

1

(2π~)N/2

∫

Ψ(x, p)dx = e
1
2
~βij∂pi∂pj

1

(2π~)N

∫∫

dx1 dx2 e
− i

~
pix

i
2e

i
~
pix

i
1ϕ∗(x1)ϕ(x2)

= e
1
2
~βij∂pi∂pj |ϕ̃(p)|2.

From Theorem 4.2 follows that there is a one to one correspondence between pure

states of the phase space quantum mechanics and the normalized functions from the

Hilbert space L2(RN).

Elements of the algebra ÂQ, hence in particular observables, are operators on H of

the form A ⋆σ,α,β . In the canonical case discussed so far, from Theorem 3.10, these
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operators are equal to operator functions Aσ,α,β(q̂σ,α, p̂σ,β). Moreover, states Ψ ∈ H can

also be considered as operators on H given by the formula

Ψ̂ = (2π~)N/2Ψ ⋆σ,α,β . (4.8)

The space of all operators Ψ̂ given by (4.8) will be denoted by Ĥ. Note that Ĥ inherits

fromH a structure of a Hilbert algebra with the scalar product of Ψ̂1 = (2π~)N/2Ψ1⋆σ,α,β

and Ψ̂2 = (2π~)N/2Ψ2 ⋆σ,α,β defined by

〈Ψ̂1|Ψ̂2〉Ĥ := 〈Ψ1|Ψ2〉H.

Note also, that from (3.20) ‖ · ‖Ĥ satisfies the following relation

‖Ψ̂1Ψ̂2‖Ĥ ≤ ‖Ψ̂1‖Ĥ‖Ψ̂2‖Ĥ.

Now, it will be proved that operators from Ĥ can be naturally identified with

Hilbert-Schmidt operators defined on the Hilbert space L2(RN). The space of Hilbert-

Schmidt operators S2(L2(RN)) is a space of all bounded operators Â ∈ B(L2(RN)) for

which ‖Â‖S2 <∞, where ‖ · ‖S2 is a norm induced by a scalar product

〈Â|B̂〉S2 := tr(Â†B̂), Â, B̂ ∈ S2(L2(RN)). (4.9)

The space of Hilbert-Schmidt operators S2(L2(RN )) with the scalar product (4.9) is

a Hilbert algebra. From the well known relation between the S2-norm and the usual

operator norm

‖Â‖ ≤ ‖Â‖S2, Â ∈ S2(L2(RN))

it follows that the inclusion S2(L2(RN)) ⊂ B(L2(RN )) is continuous and hence, every

sequence of Hilbert-Schmidt operators convergent in S2(L2(RN)) is also convergent in

B(L2(RN)).

There holds

Theorem 4.7. For every Ψ̂ ∈ Ĥ

Ψ̂ = 1̂⊗σ,α,β ρ̂, (4.10)

where ρ̂ ∈ S2(L2(RN)) is some Hilbert-Schmidt operator defined on the Hilbert space

L2(RN). Conversely, for every ρ̂ ∈ S2(L2(RN)) the operator 1̂⊗σ,α,β ρ̂ is an element of

Ĥ.
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In particular, for Ψ = ϕ⊗σ,α,β ψ the corresponding operator Ψ̂ takes the form

Ψ̂ = 1̂⊗σ,α,β ρ̂, (4.11)

where ρ̂ = 〈ϕ| · 〉L2ψ.

Moreover, for Ψ̂1 = 1̂⊗σ,α,β ρ̂1 and Ψ̂2 = 1̂⊗σ,α,β ρ̂2

〈Ψ̂1|Ψ̂2〉Ĥ = 〈ρ̂1|ρ̂2〉S2. (4.12)

Proof. From equation (4.5a) for Ψ = ϕ⊗σ,α,βψ and the basis functions Ψij = ϕi⊗σ,α,βϕj

it follows that

Ψ̂Ψij = (2π~)N/2(ϕ⊗σ,α,β ψ) ⋆σ,α,β (ϕi ⊗σ,α,β ϕj) = 〈ϕ|ϕj〉L2(ϕi ⊗σ,α,β ψ)

= ϕi ⊗σ,α,β (ρ̂ϕj) = (1̂⊗σ,α,β ρ̂)Ψij,

where ρ̂ = 〈ϕ| · 〉L2ψ, which proves formula (4.11).

It is sufficient to prove formula (4.12) for basis functions Ψij. From (4.11) it follows

that operators corresponding to the basis functions Ψij can be written in a form

Ψ̂ij = 1̂⊗σ,α,β ρ̂ij ,

where ρ̂ij = 〈ϕi| · 〉L2ϕj. This implies that

〈Ψ̂ij|Ψ̂kl〉Ĥ = δikδjl = 〈ρ̂ij |ρ̂kl〉S2,

which proves formula (4.12). Formula (4.10) is an immediate consequence of formulae

(4.11) and (4.12).

From the above theorem follows that states can be naturally identified with appro-

priate operators on the Hilbert space L2(RN). For instance, if Ψpure = ϕ ⊗σ,α,β ϕ is

a pure state then Ψ̂pure = 1̂ ⊗σ,α,β ρ̂pure where ρ̂pure = 〈ϕ| · 〉L2ϕ. Moreover, from the

defining relations of pure states follows the following characterisation of the pure state

operators ρ̂pure

1. ρ̂pure = ρ̂†pure (hermiticity),

2. ρ̂2pure = ρ̂pure (idempotence),

3. ‖ρ̂pure‖2S2 = tr ρ̂pure = 1 (normalization).
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If Ψmix =
∑

λ pλΨ
(λ)
pure =

∑

λ pλϕ
(λ) ⊗σ,α,β ϕ

(λ) is a mixed state then Ψ̂mix = 1̂⊗σ,α,β

ρ̂mix where

ρ̂mix =
∑

λ

pλρ̂
(λ)
pure =

∑

λ

pλ〈ϕ(λ)| · 〉L2ϕ(λ).

Pure and mixed state operators ρ̂ ∈ S2(L2(RN)) are called density operators.

From the below theorem follows that observables can be naturally identified with

operators defined on the Hilbert space L2(RN). This theorem is also the key theorem

from which formulae for the expectation values of observables and the time evolution

of the observables and states, represented as operators in L2(RN), follows.

Theorem 4.8. Let A ∈ AQ and Ψ ∈ H be such that Ψ = ϕ⊗σ,α,β ψ for ϕ, ψ ∈ L2(RN),

then

AL ⋆σ,α,β Ψ = Aσ,α,β(q̂σ,α, p̂σ,β)Ψ = ϕ⊗σ,α,β Aσ,α,β(q̂, p̂)ψ, if ψ ∈ D(Aσ,α,β(q̂, p̂)),

AR ⋆σ,α,β Ψ = Aσ,α,β(q̂∗σ̄,α, p̂
∗
σ̄,β)Ψ = A†σ,α,β(q̂, p̂)ϕ⊗σ,α,β ψ, if ϕ ∈ D(A†σ,α,β(q̂, p̂)),

where Aσ,α,β(q̂, p̂) is a (σ, α, β)-ordered operator function of canonical operators of po-

sition q̂ = x and momentum p̂ = −i~∂x, acting in the Hilbert space L2(RN), and D(Â)

denotes a domain of an operator Â.

Since the proof of the above theorem is quite long and tedious it was moved to

Appendix A.8.

Corollary 4.1. Every solution of the ⋆σ,α,β-genvalue equation

A ⋆σ,α,β Ψ = aΨ (4.13)

for A ∈ AQ and a ∈ C is of the form

Ψ =
∑

i

ϕi ⊗σ,α,β ψi, (4.14)

where ϕi ∈ L2(RN) are arbitrary and ψi ∈ L2(RN) are the eigenvectors of the operator

Aσ,α,β(q̂, p̂) corresponding to the eigenvalue a spanning the subspace of all eigenvectors

of Aσ,α,β(q̂, p̂) corresponding to the eigenvalue a, i.e. ψi satisfy the eigenvalue equation

Aσ,α,β(q̂, p̂)ψi = aψi.

In particular, when a is nondegenerate, every solution of (4.13) is of the form

Ψ = ϕ⊗σ,α,β ψ,
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where ϕ ∈ L2(RN ) is arbitrary and ψ ∈ L2(RN) satisfy the eigenvalue equation

Aσ,α,β(q̂, p̂)ψ = aψ.

Similarly, every solution of the ⋆σ,α,β-genvalue equation

Ψ ⋆σ,α,β B = bΨ (4.15)

for B ∈ AQ and b ∈ C is of the form

Ψ =
∑

i

ψi ⊗σ,α,β ϕi,

where ϕi ∈ L2(RN ) are arbitrary and ψi ∈ L2(RN) are the eigenvectors of the operator

B†σ,α,β(q̂, p̂) corresponding to the eigenvalue b∗ spanning the subspace of all eigenvectors

of B†σ,α,β(q̂, p̂) corresponding to the eigenvalue b∗, i.e. ψi satisfy the eigenvalue equation

B†σ,α,β(q̂, p̂)ψi = b∗ψi.

In particular, when b∗ is nondegenerate, every solution of (4.15) is of the form

Ψ = ψ ⊗σ,α,β ϕ,

where ϕ ∈ L2(RN ) is arbitrary and ψ ∈ L2(RN) satisfy the eigenvalue equation

B†σ,α,β(q̂, p̂)ψ = b∗ψ.

Proof. Replacing ΦL, in the proof of Theorem 4.8, by aΨ one gets from equation (A.14a)

that the ⋆σ,α,β-genvalue equation (4.13) is equivalent to the following equation

Aσ,α,β(ξ,−i~∂ξ)Ψ̃1(ξ, z) = aΨ̃1(ξ, z),

i.e. Ψ̃1(ξ, z) is an eigenvector of the operator Aσ,α,β(q̂, p̂) for every z. If {ψi ∈ L2(RN)}
is the basis in the subspace of all eigenvectors of the operator Aσ,α,β(q̂, p̂) corresponding

to the eigenvalue a then Ψ̃1(ξ, z), for every z, can be written as a linear combination of

the basis vectors ψi

Ψ̃1(ξ, z) =
∑

i

κi(z)ψi(ξ), (4.16)

where the coefficients κi(z) ∈ C depend on z. Since Ψ ∈ H the functions κi ∈ L2(RN).

Now, from equation (4.16), using the analogous arguments as in the proof of Theorem

4.8 it can be proved that Ψ is of the form (4.14) where ϕ∗i (x− σ̄y) = κi(y− σ̄−1x). The

second part of the corollary can be proved analogically.

49



From Theorem 4.8 it follows that for Ψ1 = ϕ1⊗σ,α,β ψ1 and Ψ2 = ϕ2⊗σ,α,β ψ2 where

ϕ1, ψ1, ϕ2, ψ2 ∈ L2(RN)

〈Ψ1|AL ⋆σ,α,β Ψ2〉H = 〈ϕ2|ϕ1〉L2〈ψ1|Aσ,α,β(q̂, p̂)ψ2〉L2 , (4.17a)

〈Ψ1|AR ⋆σ,α,β Ψ2〉H = 〈A†σ,α,β(q̂, p̂)ϕ2|ϕ1〉L2〈ψ1|ψ2〉L2 ,

= 〈ϕ2|Aσ,α,β(q̂, p̂)ϕ1〉L2〈ψ1|ψ2〉L2 . (4.17b)

From equations (3.23) it follows that

(AL ⋆σ,α,β )†Ψ = A∗σ̄,α,β(q̂σ,α, p̂σ,β)Ψ = ϕ⊗σ,α,β A
†
σ,α,β(q̂, p̂)ψ, (4.18a)

(AR ⋆σ,α,β )†Ψ = A∗σ̄,α,β(q̂∗σ̄,α, p̂
∗
σ̄,β)Ψ = Aσ,α,β(q̂, p̂)ϕ⊗σ,α,β ψ, (4.18b)

for Ψ = ϕ ⊗σ,α,β ψ where ϕ, ψ ∈ L2(RN). Note, that Corollary 4.1 implies that in the

nondegenerate case the solution Ψ to the following pair of ⋆σ,α,β-genvalue equations

A ⋆σ,α,β Ψ = aΨ, Ψ ⋆σ,α,β B = bΨ, (4.19)

is unique up to a multiplication constant and is of the form Ψ = ϕ ⊗σ,α,β ψ, where

ϕ, ψ ∈ L2(RN) satisfy the following eigenvalue equations

Aσ,α,β(q̂, p̂)ψ = aψ, B†σ,α,β(q̂, p̂)ϕ = b∗ϕ. (4.20)

Hence, the pair of ⋆σ,α,β-genvalue equations (4.19) is equivalent to the pair of eigenvalue

equations (4.20). In particular, from formula (4.18b) it follows that a pair of ⋆σ,α,β-

genvalue equations

AL ⋆σ,α,β Ψ = aΨ, (AR ⋆σ,α,β )†Ψ = a∗Ψ

have a solution Ψ in the form of a pure state Ψ = ϕ ⊗σ,α,β ϕ, where ϕ ∈ L2(RN) is a

solution to the eigenvalue equation

Aσ,α,β(q̂, p̂)ϕ = aϕ.

From Theorem 4.8 follows also that operators Â = A ⋆σ,α,β , hence in particular

observables, can be written as

A ⋆σ,α,β = Aσ,α,β(q̂σ,α, p̂σ,β) = 1̂⊗σ,α,β Aσ,α,β(q̂, p̂).
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Hence, operators from ÂQ can be naturally identified with operator functions Aσ,α,β(q̂, p̂)

defined on the Hilbert space L2(RN). Moreover, from Theorems 4.7 and 4.8 it follows

that the action of observables, treated as operator functions Aσ,α,β(q̂σ,α, p̂σ,β), on states,

treated as operators Ψ̂ ∈ Ĥ, is equivalent to the action of observables, treated as op-

erator functions Aσ,α,β(q̂, p̂), on states, treated as operators ρ̂ ∈ S2(L2(RN)). In fact,

there holds

Aσ,α,β(q̂σ,α, p̂σ,β)Ψ̂ = 1̂⊗σ,α,β Aσ,α,β(q̂, p̂)ρ̂,

Ψ̂Aσ,α,β(q̂σ,α, p̂σ,β) = 1̂⊗σ,α,β ρ̂Aσ,α,β(q̂, p̂),

where Ψ̂ = 1̂⊗σ,α,β ρ̂.

Using Theorem 4.8 a formula for the expectation value of observables represented

as operators on the Hilbert space L2(RN) can be derived. Namely, there holds

Theorem 4.9. Let Â ∈ ÂQ be some observable and Aσ,α,β(q̂, p̂) be a corresponding op-

erator in the Hilbert space L2(RN). Moreover, let Ψ =
∑

λ pλΨ
(λ)
pure =

∑

λ pλ(ϕ(λ) ⊗σ,α,β

ϕ(λ)) ∈ H be some mixed state and ρ̂ =
∑

λ pλ〈ϕ(λ)| · 〉L2ϕ(λ) the corresponding density

operator. Then there holds

〈Â〉Ψ =
∑

λ

pλ〈ϕ(λ)|Aσ,α,β(q̂, p̂)ϕ(λ)〉L2 = tr(ρ̂Aσ,α,β(q̂, p̂)). (4.21)

Proof. From Theorem 4.8 it follows

〈Â〉Ψ =
1

(2π~)N/2

∫∫

dx dp (A ⋆σ,α,β Ψ)(x, p)

=
1

(2π~)N/2

∑

λ

pλ

∫∫

dx dp (A ⋆σ,α,β Ψ(λ)
pure)(x, p)

=
1

(2π~)N/2

∑

λ

pλ

∫∫

dx dp (ϕ(λ) ⊗σ,α,β Aσ,α,β(q̂, p̂)ϕ(λ))(x, p)

=
1

(2π~)N

∑

λ

pλ

∫∫

dx dp e
1
2
~αij∂xi∂xj e

1
2
~βij∂pi∂pj

∫

dy e−
i
~
piyiϕ(λ)∗(x− σ̄y)

· Aσ,α,β(q̂, p̂)ϕ(λ)(x+ σy)

=
1

(2π~)N

∑

λ

pλ

∫∫

dx dp e
1
2
~αij∂xi∂xj

∫

dy e−
i
~
piyie−

1
2~

βijyiyjϕ(λ)∗(x− σ̄y)

· Aσ,α,β(q̂, p̂)ϕ(λ)(x+ σy)
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=
∑

λ

pλ

∫∫

dx dy e
1
2
~αij∂

xi
∂
xj δ(y)e−

1
2~

βijyiyjϕ(λ)∗(x− σ̄y)Aσ,α,β(q̂, p̂)ϕ(λ)(x+ σy)

=
∑

λ

pλ

∫

dx e
1
2
~αij∂

xi
∂
xjϕ(λ)∗(x)Aσ,α,β(q̂, p̂)ϕ(λ)(x)

=
∑

λ

pλ

∫

dxϕ(λ)∗(x)Aσ,α,β(q̂, p̂)ϕ(λ)(x)

=
∑

λ

pλ〈ϕ(λ), Aσ,α,β(q̂, p̂)ϕ(λ)〉L2 = tr(ρ̂Aσ,α,β(q̂, p̂)).

Corollary 4.2.

〈Â〉Ψ =
∑

λ

pλ〈Ψ(λ)
pure|AL ⋆σ,α,β Ψ(λ)

pure〉H =
∑

λ

pλ〈Ψ(λ)
pure|AR ⋆σ,α,β Ψ(λ)

pure〉H (4.22)

Proof. Equation (4.22) follows immediately from (4.21) and (4.17) as from one side

〈Â〉Ψ =
∑

λ

pλ〈ϕ(λ)|Aσ,α,β(q̂, p̂)ϕ(λ)〉L2 =
∑

λ

pλ〈ϕ(λ)|ϕ(λ)〉L2〈ϕ(λ)|Aσ,α,β(q̂, p̂)ϕ(λ)〉L2

=
∑

λ

pλ〈Ψ(λ)
pure|AL ⋆σ,α,β Ψ(λ)

pure〉H

and from the other side

〈Â〉Ψ =
∑

λ

pλ〈ϕ(λ)|Aσ,α,β(q̂, p̂)ϕ(λ)〉L2 =
∑

λ

pλ〈A†σ,α,β(q̂, p̂)ϕ(λ)|ϕ(λ)〉L2〈ϕ(λ)|ϕ(λ)〉L2

=
∑

λ

pλ〈Ψ(λ)
pure|AR ⋆σ,α,β Ψ(λ)

pure〉H.

Using the results of this section it is possible to prove a useful property of pure

states used in Section 3.5. Namely

Theorem 4.10. Let A ∈ AQ. A pure state function Ψ = ϕ ⊗σ,α,β ϕ ∈ H satisfies the

equation

[A,Ψ] = 0 (4.23)

if and only if it satisfies the following pair of ⋆σ,α,β-genvalue equations

A ⋆σ,α,β Ψ = aΨ, Ψ ⋆σ,α,β A = aΨ, (4.24)

for some a ∈ C.
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Proof. It is obvious that if Ψ satisfies (4.24) then it also satisfies (4.23). Lets assume

that Ψ satisfies (4.23). Hence, it also satisfies

A ⋆σ,α,β Ψ ⋆σ,α,β Ψ = Ψ ⋆σ,α,β A ⋆σ,α,β Ψ.

From the idempotent property of pure states the above equation implies

1

(2π~)N/2
A ⋆σ,α,β Ψ = Ψ ⋆σ,α,β A ⋆σ,α,β Ψ. (4.25)

From Theorem 4.8 it follows that

A ⋆σ,α,β Ψ = ϕ⊗σ,α,β Aσ,α,β(q̂, p̂)ϕ. (4.26)

Now, equations (4.25) and (4.26) with the help of (4.5) give

A ⋆σ,α,β Ψ = (2π~)N/2Ψ ⋆σ,α,β (A ⋆σ,α,β Ψ) = 〈ϕ|Aσ,α,β(q̂, p̂)ϕ〉L2Ψ = aΨ,

where a = 〈ϕ|Aσ,α,β(q̂, p̂)ϕ〉L2. The second ⋆σ,α,β-genvalue equation can be derived

analogically.

Finally, lets derive the time evolution of the observables and states represented as

operators on the Hilbert space L2(RN). In this case the time evolution is governed

by a Hermitian operator Hσ,α,β(q̂, p̂) corresponding to the Hamiltonian Ĥ. From the

time evolution equation (3.24) one receives the following evolution equation for density

operators ρ̂, called the von Neumann equation

i~
∂ρ̂

∂t
− [Hσ,α,β(q̂, p̂), ρ̂] = 0. (4.27)

For a pure state density operator ρ̂ = 〈ϕ| · 〉L2ϕ equation (4.27) takes the form

i~

〈
∂ϕ

∂t

∣
∣
∣
∣
·
〉

L2

ϕ+ i~〈ϕ| · 〉L2

∂ϕ

∂t
− 〈ϕ| · 〉L2Hσ,α,β(q̂, p̂)ϕ+ 〈Hσ,α,β(q̂, p̂)ϕ| · 〉L2ϕ = 0

m
〈

−i~∂ϕ
∂t

+Hσ,α,β(q̂, p̂)ϕ

∣
∣
∣
∣
·
〉

L2

ϕ+ 〈ϕ| · 〉L2

(

i~
∂ϕ

∂t
−Hσ,α,β(q̂, p̂)ϕ

)

= 0

m

i~
∂ϕ

∂t
= Hσ,α,β(q̂, p̂)ϕ. (4.28)

The above equation is called the time dependent Schrödinger equation.
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The equation for stationary states takes now the form

[Hσ,α,β(q̂, p̂), ρ̂] = 0,

which for pure states ρ̂ = 〈ϕ| · 〉L2ϕ is equivalent to such eigenvalue equation

Hσ,α,β(q̂, p̂)ϕ = Eϕ

called the stationary Schrödinger equation.

The representation in the Hilbert space L2(RN) of the one parameter group of uni-

tary functions U(t) from equation (3.25) is a one parameter group of unitary operators

Uσ,α,β(q̂, p̂, t) = e−
i
~
tHσ,α,β(q̂,p̂).

The time evolution of a density operator ρ̂ can be alternatively expressed by the equa-

tion

ρ̂(t) = Uσ,α,β(q̂, p̂, t)ρ̂(0)Uσ,α,β(q̂, p̂,−t).

It is then easy to check that the above equation is indeed a solution to the von Neumann

equation (4.27). Using the unitary operators Uσ,α,β(q̂, p̂, t) also the time evolution of

observables Aσ,α,β(q̂, p̂) can be expressed, similarly as in equation (3.27)

Aσ,α,β(q̂, p̂, t) = Uσ,α,β(q̂, p̂,−t)Aσ,α,β(q̂, p̂, 0)Uσ,α,β(q̂, p̂, t).

The corresponding time evolution equation for observables Aσ,α,β(q̂, p̂) from equation

(3.28) takes the form

i~
d

dt
Aσ,α,β(q̂, p̂, t)− [Aσ,α,β(q̂, p̂, t), Hσ,α,β(q̂, p̂)] = 0.

The above equation is called the Heisenberg equation.
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5

Examples

In this section some examples of the presented formalism of the phase space quantum

mechanics will be given. First a free particle will be considered and then a simple

harmonic oscillator.

5.1 Free particle

In this section a free particle will be considered. For simplicity a one dimensional

particle (the case of N = 1) will be considered. The free particle is a system, which

time evolution is governed by a Hamiltonian Ĥ induced by the function

H(x, p) =
1

2
p2, (5.1)

where the mass of the particle m = 1. This Hamiltonian describes only the kinetic

energy of the particle. It does not contain any terms describing the potential energy,

i.e. there are no forces acting on the particle (the particle is free).

First, lets find a time evolution of a free particle being initially in an arbitrary pure

state. To do this it is necessary to solve the time evolution equation (3.24)

i~
∂Ψ

∂t
− [H,Ψ] = 0, (5.2)

with H given by (5.1) and with the assumption that the solution Ψ is in a form of a

pure state, i.e. Ψ = ϕ⊗σ,α,β ϕ for some function ϕ ∈ L2(R). From Section 4 it is known

that the function Ψ = ϕ ⊗σ,α,β ϕ is a solution to (5.2) if and only if function ϕ is a

55



solution to the Schrödinger equation (4.28), which for H given by (5.1) takes the form

i~
∂ϕ

∂t
= −~

2

2

∂2ϕ

∂x2
. (5.3)

The simplest solution to equation (5.3) is of the form of a plain wave

ϕp(x, t) = e
i
~
(px−E(p)t),

where p ∈ R and E(p) = 1
2
p2. The general solution to (5.3) is in the form of a linear

combination of the plain wave solutions ϕp, i.e. in the form of a wave packet

ϕ(x, t) =
1√
2π~

∫

f(p)e
i
~
(px−E(p)t)dp =

1√
2π~

∫

g(p, t)e
i
~
pxdp , (5.4)

where f ∈ L2(R) and g(p, t) = f(p)e−
i
~
E(p)t. From (5.4) the solution Ψ of (5.2) reads

Ψ(x, p, t) = (ϕ⊗σ,α,β ϕ)(x, p, t) =
1√
2π~

Sα,β

∫

dy e−
i
~
pyϕ∗(x− σ̄y, t)ϕ(x+ σy, t)

=
1

(2π~)3/2
Sα,β

∫

dy e−
i
~
py

∫

dp′ g∗(p′, t)e−
i
~
p′(x−σ̄y)

∫

dp′′ g(p′′, t)e
i
~
p′′(x+σy)

=
1

(2π~)3/2
Sα,β

∫

dp′
∫

dp′′ g∗(p′, t)g(p′′, t)e
i
~
(p′′−p′)x

∫

dy e−
i
~
pye

i
~
(σp′′+σ̄p′)y

=
1

(2π~)3/2
Sα,β

∫

dp1

∫

dp2 g
∗(p2 − σp1, t)g(p2 + σ̄p1, t)e

i
~
p1x

∫

dy e−
i
~
(p−p2)y

=
1√
2π~

Sα,β

∫

dp1

∫

dp2 g
∗(p2 − σp1, t)g(p2 + σ̄p1, t)e

i
~
p1xδ(p− p2)

=
1√
2π~

Sα,β

∫

dp1 g
∗(p− σp1, t)g(p+ σ̄p1, t)e

i
~
p1x, (5.5)

where new coordinates p1 = p′′ − p′, p2 = σp′′ + σ̄p′ were used.

Lets consider some particular cases of the solution (5.5). Assume that

f(p) =
1

(2π)1/4(∆p)1/2
e
− (p−p0)

2

4(∆p)2

is a Gaussian function. By (5.4) the solution ϕ of the Schrödinger equation (5.3) takes

the form

ϕ(x, t) =
1

(2π)1/4
√

∆x+ i∆pt
exp

(

− p20
4(∆p)2

)

exp

(

−
(x− i∆x

∆p
p0)

2

4(∆x)2 + 4i∆x∆pt

)

,

where ∆x = ~

2∆p
. This solution describes the time evolution of a wave packet initially

in the form of a Gaussian-like function

ϕ(x, 0) =
1

(2π)1/4(∆x)1/2
e
− x2

4(∆x)2 e
i
~
p0x.
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It is now possible to calculate the solution Ψ of the time evolution equation (5.2). For

simplicity only the case α = β = 0 will be considered. The function Ψ takes the form

Ψ(x, p, t) =
1

√

2π ((σ̄2 + σ2)∆x∆p + i(1− 2σ)(∆p)2t)
exp

(

−(p− p0)2
2(∆p)2

)

· exp

(

−
(x− pt + i(1− 2σ)∆x

∆p
(p− p0))2

4(σ̄2 + σ2)(∆x)2 + 4i(1− 2σ)∆x∆pt

)

. (5.6)

This solution describes the time evolution of a free particle initially in the state

Ψ(x, p, 0) =
1

√

2π(σ̄2 + σ2)∆x∆p
exp

(

−(p− p0)2
2(∆p)2

)

· exp

(

−
(x + i(1− 2σ)∆x

∆p
(p− p0))2

4(σ̄2 + σ2)(∆x)2

)

.

The state Ψ from (5.6) greatly simplifies in the case σ = 1
2
. For this special case the

state Ψ reads

Ψ(x, p, t) =
1√

π∆x∆p
exp

(

−(p− p0)2
2(∆p)2

)

exp

(

−(x− pt)2
2(∆x)2

)

.

Lets calculate the expectation values and uncertainties of the position x and mo-

mentum p of a free particle described by the state (5.6). One easily calculates that

〈x〉Ψ(t) =

∫∫

x ⋆σ Ψ(t)dx dp = p0t,

〈x2〉Ψ(t) =

∫∫

x2 ⋆σ Ψ(t)dx dp = (∆x)2 + (∆p)2t2 + p20t
2,

∆x(t) =
√

〈x2〉Ψ(t) − 〈x〉2Ψ(t) =
√

(∆x)2 + (∆p)2t2,

〈p〉Ψ(t) =

∫∫

p ⋆σ Ψ(t)dx dp = p0,

〈p2〉Ψ(t) =

∫∫

p2 ⋆σ Ψ(t)dx dp = (∆p)2 + p20,

∆p(t) =
√

〈p2〉Ψ(t) − 〈p〉2Ψ(t) = ∆p.

Note, that during the time evolution the uncertainty of the momentum ∆p(t) of the free

particle described by the state (5.6) do not change in time and is equal to its initial value

∆p, whereas the uncertainty of the position ∆x(t) initially equal ∆x increases in time.

Note also, that the uncertainties of the position and momentum satisfy the Heisenberg

uncertainty principle, i.e. ∆x(t)∆p(t) ≥ ~

2
. Moreover, initially the free particle is
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in a state which minimizes the Heisenberg uncertainty principle since ∆x(0)∆p(0) =

∆x∆p = ~

2
. Worth noting is also the fact that the expectation value of the momentum

〈p〉Ψ(t) is constant and equal p0, whereas the expectation value of the position 〈x〉Ψ(t) is

equal p0t. Hence, the time evolution of the free particle described by the state (5.6) can

be interpreted as the movement of the particle along a straight line with the constant

momentum equal p0, similarly as in the classical case. The difference between the

classical and quantum case is that in the quantum case there is some uncertainty of

the position and momentum, in contrast to the classical case where the position and

momentum is known precisely.

It is interesting to calculate to which classical state converges the state (5.6) in the

limit ~→ 0+. Assume that ∆x ∝
√
~ and ∆p ∝

√
~, then ∆p

∆x
= c = const. To calculate

to which classical state converges the state Ψ from (5.6) in the limit ~ → 0+ it is

necessary to calculate the limit lim~→0+ ρ, where ρ = 1√
2π~

Ψ is the quantum distribution

function induced by Ψ. One easily calculates that

ρ(x, p, t) =
1√
2π~

Ψ(x, p, t)

=
1

2π∆x∆p
√

2(σ̄2 + σ2) + 2i(1− 2σ)∆p
∆x
t

exp

(

−(p− p0)2
2(∆p)2

)

· exp

(

−
(x− pt + i(1− 2σ)∆x

∆p
(p− p0))2

4(σ̄2 + σ2)(∆x)2 + 4i(1− 2σ)∆x∆pt

)

.

The limit lim~→0+ ρ has to be calculated in the distributional sense, i.e. one have to

calculate the limit lim~→0+〈ρ, φ〉 for every test function φ. One easily calculates that

lim
~→0+
〈ρ, φ〉 = lim

~→0+

∫∫
1

2π∆x∆p
√

2(σ̄2 + σ2) + 2i(1− 2σ)∆p
∆x
t

exp

(

−(p− p0)2
2(∆p)2

)

· exp

(

−
(x− pt+ i(1− 2σ)∆x

∆p
(p− p0))2

4(σ̄2 + σ2)(∆x)2 + 4i(1− 2σ)∆x∆pt

)

φ(x, p)dx dp

= lim
~→0+

1

2π
√

2(σ̄2 + σ2) + 2i(1− 2σ)ct

∫∫

exp

(

−p
′2

2

)

· exp

(

− (x′ − p′ct+ i(1− 2σ)p′)2

4(σ̄2 + σ2) + 4i(1− 2σ)ct

)

φ(x′∆x + p0t, p
′∆p+ p0)dx

′ dp′

58



= φ(p0t, p0)
1

2π
√

2(σ̄2 + σ2) + 2i(1− 2σ)ct

∫∫

exp

(

−p
′2

2

)

· exp

(

− (x′ − p′ct+ i(1− 2σ)p′)2

4(σ̄2 + σ2) + 4i(1− 2σ)ct

)

dx′ dp′

= φ(p0t, p0),

where new coordinates x′ = (x− p0t)/∆x and p′ = (p− p0)/∆p were used. Hence

lim
~→0+

ρ(x, p, t) = δ(x− p0t)δ(p− p0).

Above equation implies that the state Ψ from (5.6) describing the free particle converges

in the limit ~→ 0+ to the classical pure state describing the free particle moving along

a straight line with the constant momentum equal p0.

Lets consider now another particular case of the solution (5.5). Assume that

f(p) = δ(p− p0).

By (5.4) the solution ϕ of the Schrödinger equation (5.3) takes the form of a plain wave

ϕ(x, t) =
1√
2π~

e
i
~
(p0x−E(p0)t). (5.7)

From (5.7) the solution Ψ of (5.2), for the case β > 0, reads

Ψ(x, p, t) = (ϕ⊗σ,α,β ϕ)(x, p, t)

=
1√
2π~

e
1
2
~α∂2

xe
1
2
~β∂2

p

∫

dy e−
i
~
pyϕ∗(x− σ̄y, t)ϕ(x+ σy, t)

=
1

(2π~)3/2
e

1
2
~α∂2

x

∫

dy e−
i
~
pye−

1
2~

βy2e−
i
~
(p0(x−σ̄y)−E(p0)t)e

i
~
(p0(x+σy)−E(p0)t)

=
1

(2π~)3/2
e

1
2
~α∂2

x

∫

dy e−
i
~
(p−p0)ye−

1
2~

βy2

=
1

2π~
√
β
e−

1
2~β

(p−p0)2 . (5.8)

In the limit β → 0+ equation (5.8) takes the form

Ψ(x, p, t) =
1√
2π~

δ(p− p0).

Note, that Ψ is not a proper state since it does not belong to the space of states

H. Hence, Ψ does not describe a physical system. It, however, describes an idealized
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situation of a particle with the momentum known precisely and the position not known

at all. Note also, that Ψ does not depend on time t, i.e. Ψ can be thought of as a

stationary state of the system. In fact, Ψ is a formal ⋆σ,α,β-genfunction of p and H , i.e.

Ψ formally satisfies the following ⋆σ,α,β-genvalue equations

p ⋆σ,α,β Ψ = p0Ψ, Ψ ⋆σ,α,β p = p0Ψ,

H ⋆σ,α,β Ψ = E(p0)Ψ, Ψ ⋆σ,α,β H = E(p0)Ψ.

Hence, p0 and E(p0) can be interpreted as the momentum and energy of the particle.

5.2 Simple harmonic oscillator

5.2.1 Stationary states of the harmonic oscillator

Lets consider a Hamiltonian system describing a one dimensional (N = 1) simple

harmonic oscillator. Its Hamiltonian Ĥ is induced by the function

H(x, p) =
1

2

(
p2 + ω2x2

)
,

where ω is the frequency of oscillations. Note that H is a Hermitian function for every

(σ, α, β)-ordering, i.e. H ⋆σ,α,β = (H ⋆σ,α,β )†. Lets try to find stationary pure states of

the harmonic oscillator. From Section 3.5 it is known that the stationary pure states

are precisely the solutions of the following pair of ⋆σ,α,β-genvalue equations

H ⋆σ,α,β Ψ = EΨ, (5.9a)

Ψ ⋆σ,α,β H = EΨ, (5.9b)

for E ∈ R. To solve the above equations it is convenient to introduce new coordinates

called holomorphic coordinates [38]

a(x, p) =
ωx+ ip√

2~ω
, ā(x, p) =

ωx− ip√
2~ω

,

from which follows that

x =

√

~

2ω
(a(x, p) + ā(x, p)) , p = −i

√

~ω

2
(a(x, p)− ā(x, p)) ,

∂

∂a
=

√

~ω

2

(
1

ω

∂

∂x
− i ∂

∂p

)

,
∂

∂ā
=

√

~ω

2

(
1

ω

∂

∂x
+ i

∂

∂p

)

,

∂

∂x
=

√
ω

2~

(
∂

∂a
+

∂

∂ā

)

,
∂

∂p
=

i√
2~ω

(
∂

∂a
− ∂

∂ā

)

.
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Note, that a ⋆σ,α,β = (ā ⋆σ,α,β )† and ā ⋆σ,α,β = (a ⋆σ,α,β )†. In this new coordinates the

function H inducing the Hamiltonian Ĥ takes the form

H(a, ā) = ~ωaā. (5.10)

Note, that for appropriate functions Ψ ∈ H there holds

a ⋆σ,α,β Ψ =
1√
2~ω

(ωx ⋆σ,α,β Ψ + ip ⋆σ,α,β Ψ) =
1√
2~ω

(ωq̂σ,αΨ + ip̂σ,βΨ)

=
1√
2~ω

(

ωxΨ + i~ωσ
∂Ψ

∂p
+ ~ωα

∂Ψ

∂x
+ ipΨ + ~σ̄

∂Ψ

∂x
+ i~β

∂Ψ

∂p

)

= aΨ +
1

2

(
1− 2σ + ωα− ω−1β

) ∂Ψ

∂a
+

1

2

(
1 + ωα+ ω−1β

) ∂Ψ

∂ā
(5.11a)

and similarly

Ψ ⋆σ,α,β a = aΨ +
1

2

(
1− 2σ + ωα− ω−1β

) ∂Ψ

∂a
− 1

2

(
1− ωα− ω−1β

) ∂Ψ

∂ā
, (5.11b)

ā ⋆σ,α,β Ψ = āΨ− 1

2

(
1− 2σ − ωα+ ω−1β

) ∂Ψ

∂ā
− 1

2

(
1− ωα− ω−1β

) ∂Ψ

∂a
, (5.11c)

Ψ ⋆σ,α,β ā = āΨ− 1

2

(
1− 2σ − ωα+ ω−1β

) ∂Ψ

∂ā
+

1

2

(
1 + ωα+ ω−1β

) ∂Ψ

∂a
. (5.11d)

By replacing Ψ by ā in equations (5.11a) and (5.11b) one gets

ā ⋆σ,α,β a = āa− λ̄, (5.12a)

a ⋆σ,α,β ā = aā+ λ, (5.12b)

where λ = 1
2
(1+ωα+ω−1β) and λ̄ := 1−λ = 1

2
(1−ωα−ω−1β). From above equations

it follows, by using (5.10), that the function H takes the form

H(a, ā) = ~ω
(
ā ⋆σ,α,β a+ λ̄

)
= ~ω (a ⋆σ,α,β ā− λ) . (5.13)

From equations (5.12) follows also the commutation relation between functions a and

ā, namely

[a, ā] = a ⋆σ,α,β ā− ā ⋆σ,α,β a = 1. (5.14)

First, lets prove that the ⋆σ,α,β-genvalues E of H are greater than or equal to λ̄~ω

E ≥ λ̄~ω. (5.15)
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Indeed, let Ψ be a normalized solution to (5.9a). Then

〈Ψ|H ⋆σ,α,β Ψ〉H = E〈Ψ|Ψ〉H
m

〈Ψ|~ω(ā ⋆σ,α,β a + λ̄) ⋆σ,α,β Ψ〉H = E

m
~ω〈Ψ|ā ⋆σ,α,β a ⋆σ,α,β Ψ〉H + λ̄~ω〈Ψ|Ψ〉H = E

m
~ω〈(ā ⋆σ,α,β )†Ψ|a ⋆σ,α,β Ψ〉H = E − λ̄~ω

m
~ω〈a ⋆σ,α,β Ψ|a ⋆σ,α,β Ψ〉H = E − λ̄~ω

⇓
E − λ̄~ω ≥ 0.

Now, lets assume that Ψmn ∈ H are normalized solutions to

H ⋆σ,α,β Ψmn = EmΨmn, (5.16a)

Ψmn ⋆σ,α,β H = EnΨmn, (5.16b)

where m,n are numbering the ⋆σ,α,β-genvalues of H . Multiplying (5.16a) from the left

by a and using (5.13) and the commutation relation (5.14) results in

Ema ⋆σ,α,β Ψmn = a ⋆σ,α,β H ⋆σ,α,β Ψmn

= ~ωa ⋆σ,α,β

(

ā ⋆σ,α,β a+
1

2

(
1− ωα− ω−1β

)
)

⋆σ,α,β Ψmn

= ~ω (ā ⋆σ,α,β a+ 1) ⋆σ,α,β a ⋆σ,α,β Ψmn

+
1

2
~ω
(
1− ωα− ω−1β

)
a ⋆σ,α,β Ψmn

= H ⋆σ,α,β a ⋆σ,α,β Ψmn + ~ωa ⋆σ,α,β Ψmn,

from which follows that

H ⋆σ,α,β (a ⋆σ,α,β Ψmn) = (Em − ~ω)(a ⋆σ,α,β Ψmn). (5.17a)
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Similarly one gets that

(Ψmn ⋆σ,α,β a) ⋆σ,α,β H = (En + ~ω)(Ψmn ⋆σ,α,β a), (5.17b)

H ⋆σ,α,β (ā ⋆σ,α,β Ψmn) = (Em + ~ω)(ā ⋆σ,α,β Ψmn), (5.17c)

(Ψmn ⋆σ,α,β ā) ⋆σ,α,β H = (En − ~ω)(Ψmn ⋆σ,α,β ā). (5.17d)

From equations (5.17a) and (5.17c) it follows that a ⋆σ,α,β Ψmn and ā ⋆σ,α,β Ψmn are the

solutions to (5.16a) with energy respectively decreased and increased by ~ω. Similarly,

from equations (5.17b) and (5.17d) it follows that Ψmn ⋆σ,α,β a and Ψmn ⋆σ,α,β ā are

the solutions to (5.16b) with energy respectively increased and decreased by ~ω. First

of all, this shows that the spectrum of energies is discrete with the spacing between

energies equal ~ω. Hence, m,n numbering the ⋆σ,α,β-genvalues of H are some integer

numbers. Secondly, one gets an action of a and ā on Ψmn given by the formulae

Ψmn ⋆σ,α,β a = AnΨm,n+1, ā ⋆σ,α,β Ψmn = BmΨm+1,n, (5.18a)

a ⋆σ,α,β Ψmn = CmΨm−1,n, Ψmn ⋆σ,α,β ā = DnΨm,n−1, (5.18b)

where Am, Bm, Cn, Dn are some normalization constants. The functions a and ā are

called the annihilation and creation functions since they decrease and increase the

number of excitations of the vibrational mode with frequency ω (annihilate and create

the quanta of vibrations).

From equations (5.17a) and (5.17d) follows that the left action of a and the right

action of ā on Ψmn creates a state with energy decreased by ~ω, so one could thought

that it is possible to create a state with arbitrarily small energy. But energy spectrum

is bounded from below according to equation (5.15), hence it is necessary that for some

state Ψm0n0 there holds

a ⋆σ,α,β Ψm0n0 = 0 and Ψm0n0 ⋆σ,α,β ā = 0. (5.19)

It is natural to enumerate the states Ψmn in such a way that m0 = 0 and n0 = 0.

Equations (5.19) take then the form

a ⋆σ,α,β Ψ00 = 0 and Ψ00 ⋆σ,α,β ā = 0. (5.20)

The state Ψ00 satisfying (5.20) has the lowest energy E0. It is called a ground state and

the energy E0 the ground energy. Lets calculate the value of E0. There holds

H ⋆σ,α,β Ψ00 = ~ω(ā ⋆σ,α,β a + λ̄) ⋆σ,α,β Ψ00 = λ̄~ωΨ00,
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hence E0 = λ̄~ω. From this it can be immediately seen that En = (n + λ̄)~ω. Since

H = ~ω(ā ⋆σ,α,β a + λ̄), ⋆σ,α,β-genvalues of the function N := ā ⋆σ,α,β a are the natural

numbers n = 0, 1, 2, . . . and ⋆σ,α,β-genfunctions are the ⋆σ,α,β-genfunctions Ψmn of H ,

i.e.

N ⋆σ,α,β Ψmn = mΨmn, Ψmn ⋆σ,α,β N = nΨmn.

Hence, the function N = ā ⋆σ,α,β a can be interpreted as an observable of the number

of excitations of the vibrational mode with frequency ω.

It is now possible to calculate the normalization constants Am, Bm, Cn, Dn from

equations (5.18). For example one gets that

〈a ⋆σ,α,β Ψmn|a ⋆σ,α,β Ψmn〉H = |Cm|2〈Ψm−1,n|Ψm−1,n〉H,

from which follows that

|Cm|2 = 〈Ψmn|(a ⋆σ,α,β )†a ⋆σ,α,β Ψmn〉H = 〈Ψmn|ā ⋆σ,α,β a ⋆σ,α,β Ψmn〉H
= m〈Ψmn|Ψmn〉H = m.

Hence, Cm can be chosen to be equal Cm =
√
m. Analogically one finds that An =

√
n+ 1, Bm =

√
m + 1 and Dn =

√
n. Equations (5.18) take then the form

Ψmn ⋆σ,α,β a =
√
n+ 1Ψm,n+1, ā ⋆σ,α,β Ψmn =

√
m+ 1Ψm+1,n, (5.21a)

a ⋆σ,α,β Ψmn =
√
mΨm−1,n, Ψmn ⋆σ,α,β ā =

√
nΨm,n−1. (5.21b)

From equations (5.21a) it can be seen that from the ground state Ψ00 all other states

Ψmn can be reconstructed. In fact

Ψmn =
1√
m!n!

ā ⋆σ,α,β . . . ⋆σ,α,β ā
︸ ︷︷ ︸

m

⋆σ,α,βΨ00 ⋆σ,α,β a ⋆σ,α,β . . . ⋆σ,α,β a
︸ ︷︷ ︸

n

, (5.22)

The ground state Ψ00 can be calculated from equations (5.20). These equations, by

using formulae (5.11a) and (5.11d), can be rewritten in the form

aΨ00 +
1

2

(
1− 2σ + ωα− ω−1β

) ∂Ψ00

∂a
+

1

2

(
1 + ωα+ ω−1β

) ∂Ψ00

∂ā
= 0,

āΨ00 −
1

2

(
1− 2σ − ωα+ ω−1β

) ∂Ψ00

∂ā
+

1

2

(
1 + ωα+ ω−1β

) ∂Ψ00

∂a
= 0.
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The normalized solution to this system of partial differential equations reads

Ψ00(a, ā) =
1√
2π~

√

(1− 2σ)2 + (1 + 2ωα)(1 + 2ω−1β)

σ̄2 + σ2 + 2αβ + ωα+ ω−1β

· exp

( −(1 + ωα+ ω−1β)aā

σ̄2 + σ2 + 2αβ + ωα+ ω−1β

)

· exp

(−1
2
(1− 2σ − ωα+ ω−1β)a2 + 1

2
(1− 2σ + ωα− ω−1β)ā2

σ̄2 + σ2 + 2αβ + ωα + ω−1β

)

(5.23a)

or after the change of coordinates

Ψ00(x, p) =
1√
2π~

√

(1− 2σ)2 + (1 + 2ωα)(1 + 2ω−1β)

σ̄2 + σ2 + 2αβ + ωα+ ω−1β

· exp

(−(1 + 2ω−1β)ω2x2 − (1 + 2ωα)p2 − i2(1− 2σ)ωxp

2~ω(σ̄2 + σ2 + 2αβ + ωα+ ω−1β)

)

. (5.23b)

In what follows the ⋆σ,α,β-genfunctions Ψmn will be calculated using equation (5.22).

To simplify calculations the special case of the (σ, α, β)-ordering will be considered,

namely the case with σ = 1
2

and β = ω2α. To simplify the notation the ⋆ 1
2
,α,ω2α-

product will be denoted by ⋆. For this special ordering equations (5.23) for the ground

state take the form

Ψ00(a, ā) =
1√

2π~λ
exp

(

−aā
λ

)

,

Ψ00(x, p) =
1√

2π~λ
exp

(

−p
2 + ω2x2

2λ~ω

)

,

where now λ = 1
2
(1 + 2ωα). Also, equations (5.11) reduce to the form

a ⋆Ψ = aΨ + λ
∂Ψ

∂ā
, ā ⋆Ψ = āΨ− λ̄∂Ψ

∂a
, (5.24a)

Ψ ⋆ a = aΨ− λ̄∂Ψ

∂ā
, Ψ ⋆ ā = āΨ + λ

∂Ψ

∂a
. (5.24b)

From equations (5.24a) or (5.24b) it follows that

a ⋆ . . . ⋆ a
︸ ︷︷ ︸

n

= an, ā ⋆ . . . ⋆ ā
︸ ︷︷ ︸

m

= ām,

thus equation (5.22) reduces to the form

Ψmn =
1√
m!n!

ām ⋆Ψ00 ⋆ a
n. (5.25)
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To calculate two ⋆-products from equation (5.25) below formulae, following easily

from (5.24), will be used

ā ⋆ (gΨ00) =

(
āg

λ
− λ̄∂g

∂a

)

Ψ00, (5.26a)

(gΨ00) ⋆ a =

(
ag

λ
− λ̄∂g

∂ā

)

Ψ00, (5.26b)

where g is some function on the phase space. By taking g(a, ā) = ām in (5.26a) one

gets

ā ⋆ (āmΨ00) =
ām+1

λ
Ψ00,

from which follows that

ām ⋆Ψ00 =
( ā

λ

)m

Ψ00. (5.27)

Now, by taking g(a, ā) = ām in (5.26b) one gets

(āmΨ00) ⋆ a
n+1 = ((āmΨ00) ⋆ a) ⋆ an =

((
aām

λ
− λ̄mām−1

)

Ψ00

)

⋆ an,

from which follows that

(āmΨ00) ⋆ a
n =

n∑

k=0

(−1)kk!

(
m

k

)(
n

k

)

λ̄k
(

1

λ

)n−k
ām−kan−kΨ00. (5.28)

By using (5.27) and (5.28) equation (5.25) takes the form

Ψmn(a, ā) =
1√
m!n!

n∑

k=0

(−1)kk!

(
m

k

)(
n

k

)

λ̄k
(

1

λ

)m+n−k
ām−kan−kΨ00(a, ā). (5.29)

Above equation can be written differently when passing to the polar coordinates (r, θ)

ωx+ ip = reiθ.

In this new coordinates

a(r, θ) =
1√
2~ω

reiθ, ā(r, θ) =
1√
2~ω

re−iθ,

r2 = p2 + ω2x2,

and equation (5.29) takes the form

Ψmn(r, θ) =
1√

2π~λ
(−1)n

√

n!

m!

λ̄n

λm

(
r√
2~ω

)m−n
Lm−n
n

(
r2

2~ωλλ̄

)

· e−i(m−n)θ exp

(

− r2

2~ωλ

)

, (5.30)
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where

Ls
n(x) =

x−sex

n!

d n

dxn
(
e−xxn+s

)
=

n∑

k=0

(−1)k
(n+ s)!

(n− k)!(s+ k)!k!
xk

are the Laguerre’s polynomials. This result for λ = 1
2

was derived in [3], [40] and [5].

The stationary pure states of the harmonic oscillator are the functions

Ψnn(r, θ) =
1√

2π~λ
(−1)n

(
λ̄

λ

)n

Ln

(
r2

2~ωλλ̄

)

exp

(

− r2

2~ωλ

)

, (5.31)

where Ln(x) = L0
n(x). Equation (5.31) can be also written in the following form,

independent on a coordinate system

Ψnn =
1√

2π~λ
(−1)n

(
λ̄

λ

)n

Ln

(
H

~ωλλ̄

)

exp

(

− H

~ωλ

)

.

Equations (5.30) and (5.31) are valid for λ 6= 0, 1 but it can be easily calculated how

this equations look like in the limits λ→ 0 and λ→ 1. For the case λ→ 1 one gets

Ψmn(r, θ) =
1√

2π~m!n!

(
r√
2~ω

)m+n

e−i(m−n)θ exp

(

− r2

2~ω

)

,

Ψnn(r, θ) =
1√

2π~n!

(
r2

2~ω

)n

exp

(

− r2

2~ω

)

.

Moreover, for the case λ→ 0 one gets

Ψmn(a, ā) =
1

2~
√
m!n!

(−1)m+n
n∑

k=0

k!

(
m

k

)(
n

k

)
∂m−k

∂am−k
∂n−k

∂ān−k
δ(2)(a),

Ψnn(a, ā) =
1

2~

n∑

k=0

1

k!

(
n

k

)
∂2k

∂ak∂āk
δ(2)(a).

It is worth noting that the stationary states Ψnn, for the case λ = 0, are some distribu-

tions which cannot be identified with actual functions. This shows that the space H is

in general, for certain orderings (for (σ, α, β)-orderings for which α, β induce quadratic

forms which are not positive define), the space of distributions.

It is interesting to check to which classical states converge quantum states Ψnn in

the limit ~→ 0+. A quantum distribution function ρn = 1√
2π~

Ψnn reads

ρn(x, p) =
1

2π~λ
(−1)n

(
λ̄

λ

)n

Ln

(
p2 + ω2x2

2~ωλλ̄

)

exp

(

−p
2 + ω2x2

2~ωλ

)

.
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The limit ~ → 0+ has to be calculated in a distributional sense, hence the limit

lim~→0+〈ρn, φ〉 has to be calculated for every test function φ. One have that

lim
~→0+
〈ρn, φ〉 = lim

~→0+

∫∫

ρn(x, p)φ(x, p)dx dp

= lim
~→0+

∫∫
1

2π~λ
(−1)n

(
λ̄

λ

)n

Ln

(
p2 + ω2x2

2~ωλλ̄

)

exp

(

−p
2 + ω2x2

2~ωλ

)

· φ(x, p)dx dp .

After the change of the coordinates from (x, p) to (ωx/
√

2~ωλ, p/
√

2~ωλ)

lim
~→0+
〈ρn, φ〉 = lim

~→0+

∫∫
1

2π~λ
(−1)n

(
λ̄

λ

)n

2~λLn

(
x2 + p2

λ̄

)

e−(x
2+p2)

· φ
(√

2~λ

ω
x,
√

2~ωλp

)

dx dp

=

∫∫
1

π
(−1)n

(
λ̄

λ

)n

Ln

(
x2 + p2

λ̄

)

e−(x
2+p2)

· lim
~→0+

φ

(√

2~λ

ω
x,
√

2~ωλp

)

dx dp

= φ(0, 0)

∫∫
1

π
(−1)n

(
λ̄

λ

)n

Ln

(
x2 + p2

λ̄

)

e−(x
2+p2)dx dp

= φ(0, 0) = 〈δ(0,0), φ〉 (5.32)

since
∫∫

1

π
(−1)n

(
λ̄

λ

)n

Ln

(
x2 + p2

λ̄

)

e−(x
2+p2)dx dp =

=
1

π
(−1)n

(
λ̄

λ

)n ∫ ∞

0

∫ 2π

0

Ln

(
r2

λ̄

)

e−r
2

rdr dθ

= (−1)n
(
λ̄

λ

)n ∫ ∞

0

Ln

(z

λ̄

)

e−zdz

= (−1)n
(
λ̄

λ

)n ∫ ∞

0

1

n!
e

z
λ̄

d n

d(z/λ̄)n

(

e−
z
λ̄

(z

λ̄

)n)

e−zdz

= (−1)n
(
λ̄

λ

)n
1

n!

∫ ∞

0

e
λ
λ̄
z d n

dzn
(
e−

z
λ̄zn
)

dz

=

(
λ̄

λ

)n
1

n!

∫ ∞

0

d n

dzn

(

e
λ
λ̄
z
)

e−
z
λ̄ zndz

=
1

n!

∫ ∞

0

e
λ
λ̄
ze−

z
λ̄ zndz =

1

n!

∫ ∞

0

e−zzndz = 1,
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where first, the change to polar coordinates (r, θ) were applied, and then to z = r2.

Equation (5.32) implies that

lim
~→0+

ρn = δ(0,0),

i.e. the quantum stationary pure states ρn of the harmonic oscillator converge, in the

limit ~→ 0+, to the classical state (x = 0, p = 0) describing a particle with the position

and momentum equal 0. This result is not surprising as the state (x = 0, p = 0) is the

only classical stationary pure state of the harmonic oscillator.

5.2.2 Coherent states of the harmonic oscillator

Coherent states of the harmonic oscillator are functions Ψz1,z2 ∈ H which satisfy the

following ⋆σ,α,β-genvalue equations

aL ⋆σ,α,β Ψz1,z2 = z1Ψz1,z2, (5.33a)

āR ⋆σ,α,β Ψz1,z2 = z∗2Ψz1,z2, (5.33b)

where z1, z2 ∈ C. Functions Ψz := Ψz,z are then the admissible pure states. It will

be shown later that coherent states are states which resemble the classical pure states

the most. In fact, their time evolution is close to the time evolution of the classical

pure states. Moreover, it can be shown that coherent states minimize the Heisenberg

uncertainty principle, i.e. ∆x∆p = ~/2. This once again shows that coherent states are

the best realization of the classical pure states. Indeed, the classical pure states are those

states for which the position and momentum is known precisely. However, in quantum

mechanics we cannot know the precise position and momentum of a particle due to the

Heisenberg uncertainty principle ∆x∆p ≥ ~/2, hence the states which minimize the

uncertainty principle are the best realizations of the classical pure states.

Since

aL ⋆σ,α,β Ψz1,z2 = aσ,α,β(q̂σ,α, p̂σ,β)Ψz1,z2 =
ωq̂σ,α + ip̂σ,β√

2~ω
Ψz1,z2

=
ωx+ i~ωσ∂p + ~ωα∂x + ip + ~σ̄∂x + i~β∂p√

2~ω
Ψz1,z2

=
(ωx+ ip)Ψz1,z2 + ~((σ̄ + ωα)∂x + i(σω + β)∂p)Ψz1,z2√

2~ω
,
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āR ⋆σ,α,β Ψz1,z2 = āσ,α,β(q̂∗σ̄,α, p̂
∗
σ̄,β)Ψz1,z2 =

ωq̂∗σ̄,α − ip̂∗σ̄,β√
2~ω

Ψz1,z2

=
ωx− i~ωσ̄∂p + ~ωα∂x − ip+ ~σ∂x − i~β∂p√

2~ω
Ψz1,z2

=
(ωx− ip)Ψz1,z2 + ~((σ + ωα)∂x − i(σ̄ω + β)∂p)Ψz1,z2√

2~ω
,

equations (5.33), for z1 = (ωx1 + ip1)/
√

2~ω and z2 = (ωx2 + ip2)/
√

2~ω, are equivalent

to a system of the following two differential equations:

(ω(x− x1) + i(p− p1))Ψz1,z2 + ~((σ̄ + ωα)∂x + i(σω + β)∂p)Ψz1,z2 = 0, (5.34a)

(ω(x− x2)− i(p− p2))Ψz1,z2 + ~((σ + ωα)∂x − i(σ̄ω + β)∂p)Ψz1,z2 = 0. (5.34b)

To not receive to complicated equations only the case of α = β = 0 will be con-

sidered. So, the solution to the system of differential equations (5.34) for α = β = 0

reads

Ψz1,z2(x, p) =
1

√

π~ω(σ̄2 + σ2)
exp

(
i(p1 − p2)x

~

)

exp

(

−ω (x− x1)2 + (x− x2)2
2~

)

· exp

(
(σ(ω(x− x1) + i(p− p1))− σ̄(ω(x− x2)− i(p− p2)))2

2~ω(σ̄2 + σ2)

)

. (5.35)

Functions Ψz1,z2 which correspond to actual states are those for which z1 = z2 = z̄ =

(ωx̄+ ip̄)/
√

2~ω. The equation (5.35) can be written then in the form

Ψz̄(x, p) =
1

√

π~ω(σ̄2 + σ2)
exp

(

− ω2(x− x̄)2

2~ω(σ̄2 + σ2)

)

exp

(

− (p− p̄)2
2~ω(σ̄2 + σ2)

)

· exp

(

i
2(2σ − 1)ω(x− x̄)(p− p̄)

2~ω(σ̄2 + σ2)

)

.

A quantum distribution function induced by Ψz̄ is then given by

ρ(x, p) =
1√
2π~

Ψz̄(x, p)

=
1

π~
√

2ω(σ̄2 + σ2)
exp

(

− ω2(x− x̄)2

2~ω(σ̄2 + σ2)

)

exp

(

− (p− p̄)2
2~ω(σ̄2 + σ2)

)

· exp

(

i
2(2σ − 1)ω(x− x̄)(p− p̄)

2~ω(σ̄2 + σ2)

)

. (5.36)

Note that the expectation value of the position and momentum in a coherent state Ψz̄

is equal respectively x̄ and p̄.

70



Lets consider now the time evolution of the quantum distribution functions ρ from

equation (5.36). To find out how the functions ρ develop in time it is necessary to solve

the time evolution equation (3.24)

i~
∂ρ

∂t
− [H, ρ] = 0, (5.37)

where H(x, p) = 1
2
(ω2x2 + p2). From the definition of the ⋆σ-product it easily follows

that

H ⋆σ ρ = Hρ− i~σ̄p∂ρ
∂x
− 1

2
~
2σ̄2 ∂

2ρ

∂x2
+ i~σω2x

∂ρ

∂p
− 1

2
~
2σ2ω2∂

2ρ

∂p2
,

ρ ⋆σ H = Hρ− i~σ̄ω2x
∂ρ

∂p
− 1

2
~
2σ̄2ω2∂

2ρ

∂p2
+ i~σp

∂ρ

∂x
− 1

2
~
2σ2 ∂

2ρ

∂x2
.

From this follows that

[H, ρ] = i~ω2x
∂ρ

∂p
− i~p∂ρ

∂x
− ~ω21

2
(2σ − 1)

∂2ρ

∂p2
+ ~

1

2
(2σ − 1)

∂2ρ

∂x2
,

and the time evolution equation (5.37) takes the form

∂ρ

∂t
− ω2x

∂ρ

∂p
+ p

∂ρ

∂x
− i~ω21

2
(2σ − 1)

∂2ρ

∂p2
+ i~

1

2
(2σ − 1)

∂2ρ

∂x2
= 0.

The solution of the above equation with the initial condition equal

ρ(x, p, 0) =
1

π~
√

2ω(σ̄2 + σ2)
exp

(

− ω2(x− x0)2
2~ω(σ̄2 + σ2)

)

exp

(

− (p− p0)2
2~ω(σ̄2 + σ2)

)

· exp

(

i
2(2σ − 1)ω(x− x0)(p− p0)

2~ω(σ̄2 + σ2)

)

,

reads

ρ(x, p, t) =
1

π~
√

2ω(σ̄2 + σ2)
exp

(

−ω
2(x− x̄(t))2

2~ω(σ̄2 + σ2)

)

exp

(

− (p− p̄(t))2
2~ω(σ̄2 + σ2)

)

· exp

(

i
2(2σ − 1)ω(x− x̄(t))(p− p̄(t))

2~ω(σ̄2 + σ2)

)

,

where

x̄(t) = x0 cosωt+
p0
ω

sinωt,

p̄(t) = −ωx0 sinωt+ p0 cosωt.

71



Hence, it can be seen that the expectation values x̄(t) and p̄(t) of the position and

momentum evolve in time like classical pure states of the harmonic oscillator. But, it

has to be remembered that the coherent states have some uncertainty ∆x and ∆p of the

position and momentum in contrary to the classical pure states. Hence, even though

the coherent states resemble the classical pure states they differ from them.

In what follows it will be shown that the coherent states ρ from equation (5.36)

converge, in the limit ~ → 0+, to the classical pure states (x̄, p̄) describing a particle

with the position and momentum equal x̄ and p̄. To prove this it is necessary to prove

that

lim
~→0+
〈ρ, φ〉 = 〈δ(x̄,p̄), φ〉 = φ(x̄, p̄)

for every test function φ. One have that

lim
~→0+
〈ρ, φ〉 = lim

~→0+

∫ ∞

−∞

∫ ∞

−∞

1

π~
√

2ω(σ̄2 + σ2)
exp

(

− ω2(x− x̄)2

2~ω(σ̄2 + σ2)

)

· exp

(

− (p− p̄)2
2~ω(σ̄2 + σ2)

)

exp

(

i
2(2σ − 1)ω(x− x̄)(p− p̄)

2~ω(σ̄2 + σ2)

)

φ(x, p)dx dp .

Changing the variables x and p to x′ = (x− x̄)/
√
~ and p′ = (p− p̄)/

√
~ one receives

lim
~→0+
〈ρ, φ〉 = lim

~→0+

∫ ∞

−∞

∫ ∞

−∞

1

π
√

2ω(σ̄2 + σ2)
exp

(

− ω2x′2

2ω(σ̄2 + σ2)

)

· exp

(

− p′2

2ω(σ̄2 + σ2)

)

exp

(

i
2(2σ − 1)ωx′p′

2ω(σ̄2 + σ2)

)

· φ(
√
~x′ + x̄,

√
~p′ + p̄)dx′ dp′ .

The only term under the integral which depends on ~ is φ(
√
~x′+x̄,

√
~p′+p̄) so lim~→0+

works only on this term giving from continuity of φ

lim
~→0+

φ(
√
~x′ + x̄,

√
~p′ + p̄) = φ(x̄, p̄).

Hence, this term can be put in front of the integral sign. The only thing left to calculate

is the integral

∫ ∞

−∞

∫ ∞

−∞

1

π
√

2ω(σ̄2 + σ2)
exp

(

− ω2x′2

2ω(σ̄2 + σ2)

)

exp

(

− p′2

2ω(σ̄2 + σ2)

)

· exp

(

i
2(2σ − 1)ωx′p′

2ω(σ̄2 + σ2)

)

dx′ dp′ ,

72



which happens to be equal 1 as shows a simple calculation. From this one receives that

lim
~→0+
〈ρ, φ〉 = φ(x̄, p̄),

which ends the proof.
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6

Conclusions

In the paper the quantization procedure of a classical Hamiltonian system was pre-

sented. In full details the quantization was performed in the canonical coordinates

for the case of the Hamiltonian system without any constrains, i.e. the case when

a phase space was a Poisson manifold equal R2N . In addition to this, it was shown

that in the canonical regime, from the presented quantization scheme, immediately fol-

lows the ordinary description of quantum mechanics developed by Schrödinger, Dirac

and Heisenberg. Finally, there were given some examples of the presented formalism,

namely the free particle and the simple harmonic oscillator.

In the presented quantization procedure (σ, α, β)-parameter family of ⋆-products

were considered. It was shown that all these ⋆-products, and thus all quantizations

induced by them, are mathematically equivalent (gauge equivalent). Arises now the

question whether or not all received quantizations give the same physical results. It is

clear that different ⋆σ,α,β-products give different spectra and hence different expectation

values of observables. In fact, for the case σ 6= 1
2

the received spectra and expectation

values will be in general complex. This distinguish the family of ⋆-products for which

σ = 1
2
. In this case, according to (3.13), all observables A ⋆ 1

2
,α,β = A 1

2
,α,β(q̂ 1

2
,α, p̂ 1

2
,β) ∈

ÔQ are Hermitian and hence have real spectra. But, it still does not prove that only

⋆-products with σ = 1
2

are admissible, since one could always assume that the physical

meaning have only real parts of the spectra of observables. In this case two ⋆-products

could induce physically equivalent quantizations if the real parts of spectra of a given

Hamiltonian Ĥ were shifted by a constant value.

Introducing the time evolution of a quantum Hamiltonian system the assumption

75



that a Hamiltonian Ĥ is self-adjoint, i.e. (HL,R ⋆σ,α,β )† = HL,R ⋆σ,α,β , was used. This

assumption guaranties that, during the time evolution, functions Ψ ∈ H which were

initially admissible (pure or mixed) states remain admissible states. In other words,

the one parameter group of functions U(t) = e
− i

~
tH

⋆σ,α,β , which induce the time evolution,

is unitary. It seems that it is not possible to describe the time evolution using non-

hermitian Hamiltonians. This distinguishes the family of ⋆-products for which σ = 1
2
.

From the above considerations it follows that the admissible ⋆-products are those

for which σ = 1
2
. The question is whether or not this family of ⋆-products is physically

equivalent. It seems that different ⋆-products from this family give different physical

results since spectra, and hence expectation values, of a given observable are not, in

general, shifted by a constant value. For example, it can be easily calculated that all

polynomials, except the ones linear and quadratic in x and p variables, give spectra

which are not shifted by a constant value. This ambiguity of physically nonequivalent

⋆-products rises a problem of selecting one of them, which would yield equal predictions

concerning the results of measurements. It would need to be checked if the family of

the ⋆-products, for which σ = 1
2
, is indeed physically nonequivalent and, if yes, if the

⋆-product reproducing the results of measurements is distinguished in some way from

other products in this family.

As an example consider a Hamiltonian system with a natural Hamiltonian

H(x, p) =
1

2
p2 + V (x).

This Hamiltonian is Hermitian for every σ, α, β, hence for the class of natural Hamilto-

nians all ⋆σ,α,β-products are admissible. Note also that the spectrum of this Hamiltonian

is σ-independent, hence for a fixed α, β all ⋆σ,α,β-products are physically equivalent.

In conclusion, the paper presents the natural quantization scheme of classical Hamil-

tonian systems without any constrains and in canonical regime. It is natural to develop

the presented formalism to general Hamiltonian system with constrains. It is also

natural to check how this formalism would look like after the change of coordinates.

Especially interesting would be non-canonical formulation of quantum mechanics. The

further development of the presented formalism would be an incorporation of the spin

degree of freedom. Some attempts to generalize the presented quantization scheme were

already made [41, 12, 42], but they still need to be systematize and refined.
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A

Appendix

A.1 Notation and used conventions

In the paper by the symbols MN (N) and MN(R) the sets of all N × N matrices with

natural and real coefficients are denoted. Moreover, for σ ∈ MN(R) the symbol σ̄

denotes the matrix σ̄ij = δij − σij and for n ∈ MN (N) the symbol nT denotes the

transposition of the matrix n.

In the paper the Einstein summation convention is used, i.e. the summation symbol

is skipped in terms where the summation index is written in the subscript and su-

perscript, e.g. aib
i ≡ ∑i aib

i. Moreover, for (x, p) = (x1, . . . , xN , p1, . . . , pN) ∈ R2N

and some smooth vector fields X1, . . . , XN on R2N , in particular ∂x1 , . . . , ∂xN and

∂p1 , . . . , ∂pN , the following notation is used

X = (X1, . . . , XN),

∂x = (∂x1 , . . . , ∂xN ), ∂p = (∂p1, . . . , ∂pN ).

Furthermore, for multi-indices n,m ∈ NN and a = (a1, . . . , aN) ∈ RN the following

multi-index notation is used

|n| =
∑

i

ni, n! =
∏

i

ni!,

(
n

m

)

=
∏

i

(
ni

mi

)

,

xn =
∏

i

(xi)ni, pn =
∏

i

(pi)
ni, an =

∏

i

ani
i ,

Xn =
∏

i

Xni
i , ∂nx =

∏

i

∂ni

xi , ∂np =
∏

i

∂ni
pi
.
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The analogous notation is used in the case when multi-indices are N ×N matrices with

natural coefficients, i.e. when n,m ∈ MN(N)

|n| =
∑

i,j

nij , n! =
∏

i,j

nij!,

(
n

m

)

=
∏

i,j

(
nij

mij

)

,

xn =
∏

i,j

(xi)nij , pn =
∏

i,j

(pi)
nij , an =

∏

i,j

a
nij

ij ,

Xn =
∏

i,j

X
nij

i , ∂nx =
∏

i,j

∂
nij

xi , ∂np =
∏

i,j

∂nij
pi
,

where now a ∈ MN(R).

The following notations and conventions for the Fourier transform and convolution

are used in the paper. For f ∈ L2(R2N) the Fourier transform Ff = g and the inverse

Fourier transform F−1g = f are defined by the equations

Ff(ξ, η) :=
1

(2π~)N

∫∫

f(x, p)e−
i
~
(ξix

i−ηipi)dx dp ,

F−1g(x, p) :=
1

(2π~)N

∫∫

g(ξ, η)e
i
~
(ξix

i−ηipi)dξ dη .

Also the partial Fourier transforms F1f = g, F2f = h and they inverses F−11 g = f ,

F−12 h = f are defined by the equations

F1f(p, y) :=
1

(2π~)N/2

∫

f(x, y)e−
i
~
xipidx , F−11 g(x, y) :=

1

(2π~)N/2

∫

g(p, y)e
i
~
xipidp ,

F2f(x, p) :=
1

(2π~)N/2

∫

f(x, y)e−
i
~
yipidy , F−12 h(x, y) :=

1

(2π~)N/2

∫

h(x, p)e
i
~
yipidp .

Note that Ff = F1F−12 f and F−1f = F−11 F2f . The partial Fourier transforms F1,

F−11 , F2, F−12 are also denoted by Fx, F−1p , Fy, F−1p . The Fourier transform have the

following properties

F(∂nx∂
m
p f)(ξ, η) =

(
i

~
ξ

)n(

− i
~
η

)m

Ff(ξ, η),

F−1(∂nξ ∂mη g)(x, p) =

(

− i
~
x

)n(
i

~
p

)m

F−1g(x, p),

F(xnpmf)(ξ, η) = (i~∂ξ)
n (−i~∂η)mFf(ξ, η),

F−1(ξnηmg)(x, p) = (−i~∂x)n (i~∂p)
m F−1g(x, p).
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Moreover, the following convention for Dirac delta distribution is used

δ(x− x0) =
1

(2π~)N

∫

e
i
~

∑
i ξi(x

i−xi
0)dξ ,

δ(p− p0) =
1

(2π~)N

∫

e−
i
~

∑
i η

i(pi−p0i)dη ,

δ(ξ − ξ0) =
1

(2π~)N

∫

e−
i
~

∑
i x

i(ξi−ξ0i)dx ,

δ(η − η0) =
1

(2π~)N

∫

e
i
~

∑
i pi(η

i−ηi0)dp .

A convolution of functions f, g ∈ L2(R2N ) is denoted by f ∗ g and defined by the

equation

(f ∗ g)(x, p) :=

∫∫

f(x′, p′)g(x−x′, p−p′)dx′ dp′ ≡
∫∫

f(x−x′, p−p′)g(x′, p′)dx′ dp′ .

There holds the convolution theorem

F(f · g) =
1

(2π~)N
Ff ∗ Fg, F(f ∗ g) = (2π~)NFf · Fg.

The scalar product in some Hilbert space H is denoted by 〈 · | · 〉H. Moreover, the

symbol 〈 · , · 〉 denotes the bilinear map defined on the Schwartz space S(R2N ) by the

formula

〈f, g〉 :=

∫∫

f(x, p)g(x, p)dx dp ,

for f, g ∈ S(R2N ).

A.2 Proof of Theorem 3.2

Equation (3.9a) follows from the following relation [30]

exp(aXY )(fg) = f exp(a(XY ⊗ 1 +X ⊗ Y + Y ⊗X + 1⊗XY ))g
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valid for commuting vector fields X , Y and a ∈ C. Using the above relation and the

defining equation (3.8) one gets

f ⋆σ,α,β g = f exp
(
i~σij(XiYj ⊗ 1 +Xi ⊗ Yj + Yj ⊗Xi + 1⊗XiYj)

)

· exp
(
1
2
~αij(XiXj ⊗ 1 +Xi ⊗Xj + Xj ⊗Xi + 1⊗XiXj)

)

· exp
(
1
2
~βij(YiYj ⊗ 1 + Yi ⊗ Yj + Yj ⊗ Yi + 1⊗ YiYj)

)

· exp
(
−i~σijXiYj ⊗ 1− 1

2
~αijXiXj ⊗ 1− 1

2
~βijYiYj ⊗ 1

)

· exp
(
−i~δijYi ⊗Xj

)

· exp
(
−i~σij1⊗XiYj − 1

2
~αij1⊗XiXj − 1

2
~βij1⊗ YiYj

)
g

= f exp
(
i~σijXi ⊗ Yj − i~σ̄ijYj ⊗Xi + ~αijXi ⊗Xj + ~βijYi ⊗ Yj

)
g.

Equation (3.9b) follows from (3.9a) as

f ⋆σ,α,β g = f
∏

i,j

exp
(

i~σij←−X i
−→
Y j

)

exp
(

−i~σ̄ij←−Y i
−→
X j

)

exp
(

~αij←−X i
−→
X j

)

· exp
(

~βij←−Y i
−→
Y j

)

g

= f
∏

i,j

∞∑

nij=0

1

nij !
(i~σij)nij

←−
X

nij

i

−→
Y

nij

j

∞∑

mij=0

1

mij !
(−i~σ̄ij)mij

←−
Y

mij

i

−→
X

mij

j

·
∞∑

rij=0

1

rij !
(~αij)rij

←−
X

rij
i

−→
X

rij
j

∞∑

sij=0

1

sij!
(~βij)sij

←−
Y

sij
i

−→
Y

sij
j

= f
∑

n,m,r,s
∈MN (N)

∏

i,j

(−1)mij (i~)nij+mij~
rij+sij

(σij)nij(σ̄ij)mij (αij)rij (βij)sij

nij !mij !rij !sij!

· ←−X nij+rij
i

←−
Y

mij+sij
i

−→
X

mij+rij
j

−→
Y

nij+sij
j g

=
∑

n,m,r,s
∈MN (N)

(−1)|m|(i~)|n|+|m|~|r|+|s|
σnσ̄mαrβs

n!m!r!s!
(Xn+rY m+sf)(XmT+rTY nT+sT g).

Equation (3.9c) follows from the fact that a summation over n,m ∈ MN(N) can be

replaced by a summation over k ∈ MN (N) and m ∈ MN (k) where k = m + n. From

this n = k −m and equation (3.9b) can be rewritten in a form

f ⋆σ,α,β g =
∑

k∈MN (N)

∑

m∈MN (k)

∑

r,s∈MN(N)

(−1)|m|(i~)|k|~|r|+|s|
σk−mσ̄mαrβs

(k −m)!m!r!s!

· (Xk−m+rY m+sf)(XmT+rTY kT−mT+sT g).
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From the identity
1

(k −m)!m!
=

1

k!

(
k

m

)

previous equation takes a form

f ⋆σ,α,β g =
∑

k,r,s
∈MN (N)

(i~)|k|~|r|+|s|
αrβs

k!r!s!

∑

m∈MN (k)

(
k

m

)

σk−m(−σ̄)m(Xk−m+rY m+sf)

· (XmT+rTY kT−mT+sT g).

A.3 Proof of Theorem 3.4

From (3.12) it follows that

(q̂np̂m)σ,α,β = (−1)|n|(i~)|n|+|m|∂n1
ξ1
. . . ∂nN

ξN
∂m1
η1
. . . ∂mN

ηN
e

i
~
ξiq̂ie−

i
~
ηip̂i

· e− i
~

∑
i σiξiη

i+ 1
2~

αiξ2i +
1
2~

βi(η
i)2
∣
∣
∣
∣
ξ=η=0

.

Using Leibniz’s formula the above equation can be written in a form

(q̂np̂m)σ,α,β = (−1)|n|(i~)|n|+|m|
n1∑

k1=0

. . .

nN∑

kN=0

m1∑

l1=0

. . .

mN∑

lN=0

(
n1

k1

)

. . .

(
nN

kN

)(
m1

l1

)

. . .

(
mN

lN

)

·
(

∂k1ξ1 . . . ∂
kN
ξN
∂l1η1 . . . ∂

lN
ηN
e−

i
~

∑
i σiξiη

i
)(

∂n1−k1
ξ1

. . . ∂nN−kN
ξN

e
i
~
ξiq̂

i

e
1
2~

αiξ2i

)

·
(

∂m1−l1
η1

. . . ∂mN−lN
ηN

e−
i
~
ηip̂ie

1
2~

βi(ηi)2
)
∣
∣
∣
∣
ξ=η=0

. (A.1)

The first derivative can be easily calculated giving

∂k1ξ1 . . . ∂
kN
ξN
∂l1η1 . . . ∂

lN
ηN
e−

i
~

∑
i σiξiηi

∣
∣
∣
∣
ξ=η=0

=
N∏

j=1

(

− i
~

)kj

σ
kj
j kj!δkj lj . (A.2)

The second derivative can be rewritten using Leibniz’s formula as

∂n1−k1
ξ1

. . . ∂nN−kN
ξN

e
i
~
ξi q̂ie

1
2~

αiξ2i =
N∏

j=1

nj−kj∑

rj=0

(
nj − kj
rj

)

∂
nj−kj−rj
ξj

e
i
~
ξj q̂j∂

rj
ξj
e

1
2~

αjξ2j . (A.3)

Calculation of the first derivative from (A.3) gives

∂
nj−kj−rj
ξj

e
i
~
ξj q̂j
∣
∣
∣
∣
ξ=0

=

(
i

~
q̂j
)nj−kj−rj

. (A.4)
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The second derivative from (A.3) gives

∂
rj
ξj
e

1
2~

αjξ2j

∣
∣
∣
∣
ξ=0

=

{

(rj − 1)!!
(
1
~
αj
)rj/2 for rj even

0 for rj odd
. (A.5)

Putting equations (A.4) and (A.5) into (A.3) one receives

∂n1−k1
ξ1

. . . ∂nN−kN
ξN

e
i
~
ξiq̂ie

1
2~

αiξ2i =
N∏

j=1

[nj−kj/2]∑

rj=0

(
nj − kj

2rj

)

(2rj − 1)!!

·
(

1

~
αj

)rj ( i

~
q̂j
)nj−kj−2rj

. (A.6)

Analogically, calculation of the third derivative from (A.1) gives

∂m1−l1
η1

. . . ∂mN−lN
ηN

e−
i
~
ηi p̂ie

1
2~

βi(ηi)2 =
N∏

j=1

[mj−lj/2]∑

sj=0

(
mj − lj

2sj

)

(2sj − 1)!!

·
(

1

~
βj

)sj (

− i
~
p̂j

)mj−lj−2sj
. (A.7)

Putting equations (A.2), (A.6) and (A.7) into (A.1) gives the searched equation.

A.4 Baker-Campbell-Hausdorff formulae

For two operators Â and B̂ defined on some Hilbert space, such that [Â, [Â, B̂]] = const

and [B̂, [Â, B̂]] = const, there holds

eÂ+B̂ = eÂeB̂e−
1
2
[Â,B̂]e

1
6
[Â,[Â,B̂]]+ 1

3
[B̂,[Â,B̂]],

eÂeB̂ = eB̂eÂe[Â,B̂]e−
1
2
[Â,[Â,B̂]]− 1

2
[B̂,[Â,B̂]].

Above equations are called the Baker-Campbell-Hausdorff formulae.
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A.5 Proof of Theorem 3.5

Calculating the Fourier transform of (3.15b) gives

F(f ⋆σ,α,β g)(ξ, η) =
1

(2π~)N

∑

n,m,r,s
∈MN (N)

(−1)|m|(i~)|n|+|m|~|r|+|s|
σnσ̄mαrβs

n!m!r!s!

·
(((

i
~
ξ
)n+r (− i

~
η
)m+sFf

)

∗
((

i
~
ξ
)mT+rT (− i

~
η
)nT+sT Fg

))

(ξ, η)

=
1

(2π~)N

∑

n,m,r,s
∈MN (N)

(−1)|m|(i~)|n|+|m|~|r|+|s|
σnσ̄mαrβs

n!m!r!s!

∫∫
(
i
~
ξ′
)n+r (− i

~
η′
)m+s

· Ff(ξ′, η′)
(
i
~
(ξ − ξ′)

)mT+rT (− i
~
(η − η′)

)nT+sT Fg(ξ − ξ′, η − η′)dξ′ dη′

=
1

(2π~)N

∫∫

Ff(ξ′, η′)Fg(ξ − ξ′, η − η′)e i
~

∑
i,j(σ

i
jξ

′

i(η
j−η′j)−σ̄j

i η
′i(ξj−ξ′j))

· e− 1
~

∑
i,j(α

ijξ′i(ξj−ξ′j)+βijη
′i(ηj−η′j))dξ′ dη′ .

Now, calculating the inverse Fourier transform of the above equation gives

(f ⋆σ,α,β g)(x, p) =
1

(2π~)2N

∫∫∫∫

Ff(ξ′, η′)Fg(ξ − ξ′, η − η′)

· e i
~

∑
i,j(σ

i
jξ

′

i(η
j−η′j)−σ̄j

i η
′i(ξj−ξ′j))e−

1
~

∑
i,j(α

ijξ′i(ξj−ξ′j)+βijη′i(ηj−η′j))

· e i
~
(ξix

i−ηipi)dξ dη dξ′ dη′ .

After the change of coordinates: ξ′ = ξ′, η′ = η′ and ξ = ξ′ + ξ′′, η = η′ + η′′ the above

equation can be written in a form

(f ⋆σ,α,β g)(x, p) =
1

(2π~)2N

∫∫∫∫

Ff(ξ′, η′)Fg(ξ′′, η′′)e
i
~

∑
i ξ

′′

i (x
i−σ̄i

jη
′j+iαijξ′j)

· e− i
~

∑
i η

′′i(pi−σj
i ξ

′

j−iβijη
′j)e

i
~
(ξ′ix

i−η′ipi)dξ′ dη′ dξ′′ dη′′

=
1

(2π~)N

∫∫

Ff(ξ′, η′)g(x− σ̄η′ + iαξ′, p− σξ′ − iβη′)

· e i
~
(ξ′ix

i−η′ipi)dξ′ dη′

=
1

(2π~)N

∫∫

f(x+ ση′′ + iαξ′′, p+ σ̄ξ′′ − iβη′′)Fg(ξ′′, η′′)

· e i
~
(ξ′′i x

i−η′′ipi)dξ′′ dη′′ .

Now, assume that α = β = 0 and det σ 6= 0, det σ̄ 6= 0. With these assumptions
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equation (3.16) can be written in a form

(f ⋆σ,α,β g)(x, p) =
1

(2π~)2N

∫∫∫∫

f(x′, p′)g(x− σ̄η′, p− σξ′)

· e− i
~

∑
i(ξ

′

i(x
′i−xi)−η′i(p′i−pi))dx′ dp′ dξ′ dη′ . (A.8)

Lets change the coordinates from ξ′i, η
′i to x′′i = xi − σ̄i

jη
′j , p′′i = pi − σj

i ξ
′
j. From

this follows that ξ′i = (σ−1)ji (pj − p′′j ), η′i = (σ̄−1)ij(x
j − x′′j). The Jacobian of this

transformation is equal

J =

(

0 −σ−1

−σ̄−1 0

)

,

hence | detJ | = | det(σ−1σ̄−1)| = | det(σσ̄)|−1. After such change of the coordinates

(A.8) takes the form

(f ⋆σ,α,β g)(x, p) =
1

(2π~)2N | det(σσ̄)|

∫∫∫∫

f(x′, p′)g(x′′, p′′)e
i
~

∑
i,j(σ

−1)ji (x
i−x′i)(pj−p′′j )

· e− i
~

∑
i,j(σ̄

−1)ij(pi−p′i)(xj−x′′j)dx′ dp′ dx′′ dp′′ .

Now, lets assume that N = 1 and αβ 6= σσ̄. With these assumptions (3.16) can be

written in a form

(f ⋆σ,α,β g)(x, p) =
1

(2π~)2

∫∫∫∫

f(x′, p′)g(x− σ̄η′ + iαξ′, p− σξ′ − iβη′)

· e− i
~
(ξ′(x′−x)−η′(p′−p))dx′ dp′ dξ′ dη′ . (A.9)

Lets change the coordinates from ξ′, η′ to x′′ = x− σ̄η′+ iαξ′, p′′ = p−σξ′− iβη′. From

this follows that ξ′ = 1
αβ−σσ̄ (σ̄(p′′−p)− iβ(x′′−x)), η′ = 1

αβ−σσ̄ (σ(x′′−x) + iα(p′′−p)).
The Jacobian of this transformation is equal

J =
1

αβ − σσ̄

(

−iβ σ̄

σ iα

)

,

hence | detJ | = 1
|αβ−σσ̄| . After such change of the coordinates (A.9) takes the form

(f ⋆σ,α,β g)(x, p) =
1

(2π~)2|αβ − σσ̄|

∫∫∫∫

f(x′, p′)g(x′′, p′′) exp

( −i
~(αβ − σσ̄)

·
(

(σ̄(p′′ − p)− iβ(x′′ − x))(x′ − x)− (σ(x′′ − x)

+ iα(p′′ − p))(p′ − p)
))

dx′ dp′ dx′′ dp′′ .
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A.6 Proof of Theorem 3.6

Integrating (3.15b) and using the fact that derivatives under the integral sign can be

rearranged gives

∫∫

(f ⋆σ,α,β g)(x, p)dx dp =
∑

n,m,r,s
∈MN (N)

(−1)|m|(i~)|n|+|m|~|r|+|s|
σnσ̄mαrβs

n!m!r!s!

·
∫∫

(∂n+r
x ∂m+s

p f)(x, p)(∂m
T+rT

x ∂n
T+sT

p g)(x, p)dx dp

=
∑

n,m,r,s
∈MN (N)

(−1)|m|(i~)|n|+|m|~|r|+|s|
σnσ̄mαrβs

n!m!r!s!

·
∫∫

(∂m
T+rT

x ∂n
T+sT

p f)(x, p)(∂n+r
x ∂m+s

p g)(x, p)dx dp

=

∫∫

(g ⋆σ,α,β f)(x, p)dx dp .

Now, integrating (3.15c) gives

∫∫

(f ⋆σ,α,β g)(x, p)dx dp =
∑

k,r,s
∈MN (N)

(i~)|k|~|r|+|s|
αrβs

k!r!s!

∑

m∈MN (k)

(
k

m

)

σk−m(−σ̄)m

·
∫∫

(∂k−m+r
x ∂m+s

p f)(x, p)(∂m
T+rT

x ∂k
T−mT+sT

p g)(x, p)dx dp .

Lets assume that σ is a diagonal matrix. In this case all terms of the sum in which k

is not a diagonal matrix will vanish. For k diagonal also all m ∈ MN (k) are diagonal
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hence in the previous equation kT and mT can be replaced by k and m giving
∫∫

(f ⋆σ,α,β g)(x, p)dx dp =
∑

k,r,s
∈MN (N)

(i~)|k|~|r|+|s|
αrβs

k!r!s!

∑

m∈MN (k)

(
k

m

)

σk−m(−σ̄)m

·
∫∫

(∂k−m+r
x ∂m+s

p f)(x, p)(∂m+rT

x ∂k−m+sT

p g)(x, p)dx dp

=
∑

k,r,s
∈MN (N)

(i~)|k|~|r|+|s|
αrβs

k!r!s!

∑

m∈MN (k)

(
k

m

)

σk−m(−σ̄)m

·
∫∫

(∂k+r+rT

x f)(x, p)(∂k+s+sT

p g)(x, p)dx dp

=
∑

k,r,s
∈MN (N)

(i~)|k|~|r|+|s|
αrβs

k!r!s!
(σ − σ̄)k

·
∫∫

(∂k+r+rT

x f)(x, p)(∂k+s+sT

p g)(x, p)dx dp .

Now it can be easily seen that for the case when σi
j = 1

2
δij and α = β = 0 all terms of

the sum in the above equation will vanish except the first term for which k = r = s = 0.

Hence in this case one receives
∫∫

(f ⋆σ,α,β g)(x, p)dx dp =

∫∫

f(x, p)g(x, p)dx dp .

A.7 Jensen’s inequality

Let µ be a positive measure on a σ-algebra M in a set Ω, so that µ(Ω) = 1. If f is a

real function in L1(Ω, µ) and if ϕ : R→ R is convex, then [43]

ϕ

(∫

Ω

fdµ

)

≤
∫

Ω

(ϕ ◦ f)dµ .

Above inequality is called the Jensen’s inequality.

From Jensen’s inequality another useful inequality can be derived. Namely, for

f, g ∈ S(R2N ) there holds
∣
∣
∣
∣

∫∫

f(x, p)g(x, p)dx dp

∣
∣
∣
∣

2

≤
∫∫

|g(x, p)|dx dp

∫∫

|f(x, p)|2|g(x, p)|dx dp .

Indeed, by taking Ω = R
2N , M = B(R2N ), ϕ(x) = x2 and

dµ(x, p) =
|g(x, p)|dx dp

∫∫

|g(x, p)|dx dp
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from Jensen’s inequality there holds
∣
∣
∣
∣

∫∫

f(x, p)g(x, p)dx dp

∣
∣
∣
∣

2

≤
(∫∫

|f(x, p)||g(x, p)|dx dp

)2

=

(∫∫

|g(x, p)|dx dp

)2(∫∫

|f(x, p)|dµ(x, p)

)2

≤
(∫∫

|g(x, p)|dx dp

)2 ∫∫

|f(x, p)|2dµ(x, p)

=

∫∫

|g(x, p)|dx dp

∫∫

|f(x, p)|2|g(x, p)|dx dp .

A.8 Proof of Theorem 4.8

For some Ψ ∈ H let

AL ⋆σ,α,β Ψ = Aσ,α,β(q̂σ,α, p̂σ,β)Ψ = ΦL, (A.10a)

AR ⋆σ,α,β Ψ = Aσ,α,β(q̂∗σ̄,α, p̂
∗
σ̄,β)Ψ = ΦR. (A.10b)

For equation (A.10a) let

Ψ(x, p) = e
1
2
(a1)ij∂xi∂xj e

1
2
(b1)ij∂pi∂pj e(c1)

j
ix

ipjΨ1(x, p),

ΦL(x, p) = e
1
2
(a1)ij∂xi∂xj e

1
2
(b1)ij∂pi∂pj e(c1)

j
ix

ipjΦ1(x, p)

and for equation (A.10b) respectively

Ψ(x, p) = e
1
2
(a2)ij∂xi∂xj e

1
2
(b2)ij∂pi∂pj e(c2)

j
ix

ipjΨ2(x, p),

ΦR(x, p) = e
1
2
(a2)ij∂xi∂xj e

1
2
(b2)ij∂pi∂pj e(c2)

j
ix

ipjΦ2(x, p),

where a1, a2, b1, b2, c1, c2 are some complex symmetric matrices. Notice that by using

the Baker-Campbell-Hausdorff formulae (see Appendix A.4) one finds

e
i
~
ξi(q̂σ,α)

i

e−
i
~
ηi(p̂σ,β)ie

1
2
(a1)ij∂xi∂xj e

1
2
(b1)ij∂pi∂pj e(c1)

j
ix

ipj =

= e
1
2
(a1)ij∂xi∂xj e

1
2
(b1)ij∂pi∂pj e(c1)

j
ix

ipje
i
~
ξi(Q̂σ,α)ie−

i
~
ηi(P̂σ,β)i ,

where (Q̂σ,α)i = (q̂σ,α)i − (a1)
ij∂xj + i~σi

j(c1)
j
kx

k + (~αij − (a1)
ij)(c1)

k
jpk, (P̂σ,β)i =

(p̂σ,β)i − (b1)ij∂pj − i~σ̄j
i (c1)

k
jpk + (~βij − (b1)ij)(c1)

j
kx

k, [(Q̂σ,α)i, (P̂σ,β)j] = i~δij and

similarly

e
i
~
ξi(q̂

∗

σ̄,α)
i

e−
i
~
ηi(p̂∗σ̄,β)ie

1
2
(a2)ij∂xi∂xj e

1
2
(b2)ij∂pi∂pj e(c2)

j
ix

ipj =

= e
1
2
(a2)ij∂xi∂xj e

1
2
(b2)ij∂pi∂pj e(c2)

j
ix

ipje
i
~
ξi(Q̂∗

σ̄,α)
i

e−
i
~
ηi(P̂ ∗

σ̄,β)i ,
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where (Q̂∗σ̄,α)i = (q̂∗σ̄,α)i − (a2)
ij∂xj − i~σ̄i

j(c2)
j
kx

k + (~αij − (a2)
ij)(c2)

k
jpk, (P̂ ∗σ̄,β)i =

(p̂∗σ̄,β)i− (b2)ij∂pj + i~σj
i (c2)

k
jpk + (~βij − (b2)ij)(c2)

j
kx

k, [(Q̂∗σ̄,α)i, (P̂ ∗σ̄,β)j] = −i~δij . Now,

using formulae (3.11) and (3.14) one gets from (A.10)

Aσ,α,β(Q̂σ,α, P̂σ,β)Ψ1 = Φ1, (A.11a)

Aσ,α,β(Q̂∗σ̄,α, P̂
∗
σ̄,β)Ψ2 = Φ2, (A.11b)

where

Q̂σ,α = x + i~σc1x + (~α− a1)c1p+ i~σ∂p + (~α− a1)∂x,
P̂σ,β = p− i~σ̄c1p+ (~β − b1)c1x− i~σ̄∂x + (~β − b1)∂p,
Q̂∗σ̄,α = x− i~σ̄c2x+ (~α− a2)c2p− i~σ̄∂p + (~α− a2)∂x,
P̂ ∗σ̄,β = p+ i~σc2p+ (~β − b2)c2x + i~σ∂x + (~β − b2)∂p.

Under the choice a1 = a2 = ~α, b1 = b2 = ~β, c1 = − i
~
σ̄−1 and c2 = i

~
σ−1 formulae

(A.11) take a form

Aσ,α,β(σ̄−1x+ i~σ∂p,−i~σ̄∂x)Ψ1 = Φ1, (A.12a)

Aσ,α,β(σ−1x− i~σ̄∂p, i~σ∂x)Ψ2 = Φ2. (A.12b)

Now, taking the inverse Fourier transform of both equations (A.12) with respect to p

variable one gets

Aσ,α,β(σ̄−1x + σz,−i~σ̄∂x)Ψ̃1(x, z) = Φ̃1(x, z), (A.13a)

Aσ,α,β(σ−1x− σ̄z, i~σ∂x)Ψ̃2(x, z) = Φ̃2(x, z). (A.13b)

Lets introduce new coordinates

ξ = σ̄−1x+ σz, z = z, ∂x = σ̄−1∂ξ,

η = σ−1x− σ̄z, z = z, ∂x = σ−1∂η,

then equations (A.13) can be written as

Aσ,α,β(ξ,−i~∂ξ)Ψ̃1(ξ, z) = Φ̃1(ξ, z), (A.14a)

Aσ,α,β(η, i~∂η)Ψ̃2(η, z) = Φ̃2(η, z). (A.14b)

Now, lets restrict functions Ψ to the class for which Ψ̃1(ξ, z) = ϕ1(ξ)κ1(z) and Ψ̃2(η, z) =

ϕ∗2(η)κ2(z), where ϕ1, ϕ2, κ1, κ2 ∈ L2(RN). Then, obviously Φ̃1(ξ, z) = ψ1(ξ)κ1(z) and
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Φ̃2(η, z) = ψ∗2(η)κ2(z) for some ψ1, ψ2 ∈ L2(RN) and equations (A.14) reduce to the

form

Aσ,α,β(ξ,−i~∂ξ)ϕ1(ξ) = ψ1(ξ),

A†σ,α,β(η,−i~∂η)ϕ2(η) = ψ2(η),

as in L2(RN) (Aσ,α,β(η, i~∂η))
∗ = A†σ,α,β(η,−i~∂η).

Function Ψ can be reconstructed either from Ψ1 or from Ψ2. Indeed, from one side

one have

Ψ(x, p) = e
1
2
~αij∂xi∂xj e

1
2
~βij∂pi∂pj e−

i
~
(σ̄−1)jix

ipj
1

(2π~)N/2

∫

ϕ1(σ̄
−1x+ σz)κ1(z)e

− i
~
piz

i

dz

and hence

F−1p Ψ(x, y) =
1

(2π~)N/2

∫

Ψ(x, p)e
i
~
piyidp

=
1

(2π~)N

∫

e
1
2
~αij∂

xi
∂
xjϕ1(σ̄

−1x+ σz)κ1(z)

·
∫

e
1
2
~βij∂pi∂pj e−

i
~
((σ̄−1)jix

i+zj)pje−
i
~
pizidp dz

=

∫

e
1
2
~αij∂xi∂xjϕ1(σ̄

−1x+ σz)κ1(z)e
− 1

2~
βijy

iyjδ(z − (y − σ̄−1x))dz

= e
1
2
~αij∂

xi
∂
xjϕ1(x + σy)κ1(y − σ̄−1x)e−

1
2~

βijyiyj .

From the other side one have

Ψ(x, p) = e
1
2
~αij∂xi∂xj e

1
2
~βij∂pi∂pj e

i
~
(σ−1)jix

ipj
1

(2π~)N/2

∫

ϕ∗2(σ
−1x− σ̄z)κ2(z)e−

i
~
piz

i

dz

and hence

F−1p Ψ(x, y) =
1

(2π~)N/2

∫

Ψ(x, p)e
i
~
piyidp

=
1

(2π~)N

∫

e
1
2
~αij∂xi∂xjϕ∗2(σ

−1x + σ̄z)κ2(z)

·
∫

e
1
2
~βij∂pi∂pj e−

i
~
(−(σ−1)jix

i+zj)pje−
i
~
pizidp dz

=

∫

e
1
2
~αij∂xi∂xjϕ∗2(σ

−1x + σ̄z)κ2(z)e
− 1

2~
βijy

iyjδ(z − (y + σ−1x))dz

= e
1
2
~αij∂

xi
∂
xjϕ∗2(x− σ̄y)κ2(y + σ−1x)e−

1
2~

βijyiyj .
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Thus,

κ1(y − σ̄−1x) = ϕ∗2(x− σ̄y), κ2(y + σ−1x) = ϕ1(x + σy)

and

Ψ(x, p) = e
1
2
~αij∂xi∂xj

1

(2π~)N/2

∫

e−
1
2~

βijy
iyjϕ1(x+ σy)ϕ∗2(x− σ̄y)e−

i
~
piy

i

dy

= e
1
2
~αij∂xi∂xj e

1
2
~βij∂pi∂pj

1

(2π~)N/2

∫

ϕ1(x+ σy)ϕ∗2(x− σ̄y)e−
i
~
piy

i

dy

= (ϕ2 ⊗σ,α,β ϕ1)(x, p).

Now,

ΦL(x, p) = e
1
2
~αij∂xi∂xj e

1
2
~βij∂pi∂pj e−

i
~
(σ̄−1)jix

ipj
1

(2π~)N/2

∫

ψ1(σ̄
−1x + σz)κ1(z)e

− i
~
piz

i

dz

and

F−1p ΦL(x, y) =
1

(2π~)N/2

∫

ΦL(x, p)e
i
~
piy

i

dp

=
1

(2π~)N

∫

e
1
2
~αij∂xi∂xjψ1(σ̄

−1x+ σz)κ1(z)

·
∫

e
1
2
~βij∂pi∂pj e−

i
~
((σ̄−1)jix

i+zj)pje−
i
~
piz

i

dp dz

=

∫

e
1
2
~αij∂

xi
∂
xjψ1(σ̄

−1x + σz)κ1(z)e
− 1

2~
βijyiyjδ(z − (y − σ̄−1x))dz

= e
1
2
~αij∂xi∂xjψ1(x+ σy)κ1(y − σ̄−1x)e−

1
2~

βijy
iyj

= e
1
2
~αij∂

xi
∂
xjψ1(x+ σy)ϕ∗2(x− σ̄y)e−

1
2~

βijyiyj ,

so,

ΦL(x, p) = e
1
2
~αij∂xi∂xj

1

(2π~)N/2

∫

e−
1
2~

βijyiyjψ1(x + σy)ϕ∗2(x− σ̄y)e−
i
~
piyidy

= e
1
2
~αij∂xi∂xj e

1
2
~βij∂pi∂pj

1

(2π~)N/2

∫

ψ1(x+ σy)ϕ∗2(x− σ̄y)e−
i
~
piyidy

= (ϕ2 ⊗σ,α,β ψ1)(x, p).

In a similar way one can show that

ΦR(x, p) = (ψ2 ⊗σ,α,β ϕ1)(x, p).

Above calculations show that for Ψ = ϕ2 ⊗σ,α,β ϕ1 one have

AL ⋆σ,α,β Ψ = Aσ,α,β(q̂σ,α, p̂σ,β)Ψ = ϕ2 ⊗σ,α,β ψ1 = ϕ2 ⊗σ,α,β Aσ,α,β(q̂, p̂)ϕ1,

AR ⋆σ,α,β Ψ = Aσ,α,β(q̂∗σ̄,α, p̂
∗
σ̄,β)Ψ = ψ2 ⊗σ,α,β ϕ1 = A†σ,α,β(q̂, p̂)ϕ2 ⊗σ,α,β ϕ1.

90



Bibliography

[1] H. Weyl, Quantenmechanik und Gruppentheorie, Z. Phys. 46 (1927) 1

[2] E. P. Wigner, Quantum correction for thermodynamic equilibrium, Phys. Rev. 40

(1932) 749

[3] H. Groenewold, On the principles of elementary quantum mechanics, Physica 12

(1946) 404

[4] J. Moyal, Quantum mechanics as a statistical theory, Proc. Camb. Phil. Soc. 45

(1949) 99

[5] D. Fairlie, The formulation of quantum mechanics in terms of phase space func-

tions, Proc. Camb. Phil. Soc. 60 (1964) 581

[6] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, Deformation

theory and quantization, Ann. Phys. 111 (1978) 61

[7] H. Omori, Y. Maeda and A. Yoshioka, Weyl Manifolds and Deformation Quanti-

zation, Adv. Math. 85 (1991) 225

[8] T. Curthright, D. Fairlie and C. Zachos, Features of time-independent Wigner

functions, Phys. Rev. D 58 (1998) 25002

[9] T. Curthright and C. Zachos, Wigner trajectory characteristics in phase space and

field theory, J. Phys. A 32 (1999) 771

[10] C. Zachos, Deformation quantization: quantum mechanics lives and works in

phase-space, Int. J. Mod. Phys. A 17 (2002) 297

[11] A. C. Hirshfeld and P. D. Henselder, Deformation quantization in the teaching of

quantum mechanics, Amer. J. Phys. 70 (2002) 537

91



[12] A. C. Hirshfeld and P. D. Henselder, Deformation quantization for systems with

fermions, Ann. Physics 302 (2002) 59

[13] M. Bordemann and S. Waldmann, Formal GNS construction and states in defor-

mation quantization, Comm. Math. Phys. 195 (1998) 549

[14] S. Waldmann, States and representation theory in deformation quantization, Rev.

Math. Phys. 17 (2005) 15

[15] N. C. Dias and J. N. Prata, Formal solutions of stargenvalue equations, Ann.

Physics 311 (2004) 120

[16] N. C. Dias and J. N. Prata, Admissible states in quantum phase space, Ann. Physics

313 (2004) 110

[17] C. Zachos, D. Fairlie and T. Curtright, Quantum mechanics in phase space. An

overview with selected papers, World Scientific Publishing Co. (2005)

[18] D. Sternheimer, Deformation quantization: 20 years after, in Particles, Fields, and

Gravitation, AIP Conf. Proc. 453, Amer. Inst. Phys., Woodbury, New York, 1998,

pp. 107

[19] T. Curtright, C. Zachos, Phase-space quantization of field theory, Prog. Theoret.

Phys. Suppl. 135 (1999) 244

[20] F. Antonsen, Quantum theory in curved spacetime using the Wigner function, Phys.

Rev. D 56 (1997) 920

[21] D. B. Fairlie, Moyal brackets in M-theory, Mod. Phys. Lett. A 13 (1998) 263

[22] L. Baker and D. B. Fairlie, Moyal-Nahm equations, J. Math. Phys. 40 (1999) 2539

[23] N. Seiberg and E. Witten, String theory and noncommutative geometry, J. High

Energy Phys. 9909 (1999) 032

[24] A. Pinzul, A. Stern, Absence of the holographic principle in noncommutative

Chern-Simons theory, J. High Energy Phys. 0111 (2001) 023

[25] G. Torres-Vega and J. H. Frederick, Quantum mechanics in phase space: New

approaches to the correspondence principle, J. Chem. Phys. 93 8862 (1990)

92



[26] G. Torres-Vega and J. H. Frederick, A quantum mechanical representation in phase

space, J. Chem. Phys. 98 3103 (1993)

[27] Qian Shu Li, Gong Min Wei and Li Qiang Lu, Relationship between the Wigner

function and the probability density function in quantum phase space representa-

tion, Phys. Rev. A 70 (2004) 22105
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