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Chapter 1

Stochastic quantum dynamics in 1D and lattice systems

J. Ruostekoski
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A. D. Martin
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We show that stochastic phase-space methods within the truncated
Wigner approximation can be used to solve non-equilibrium dynamics of
bosonic atoms in 1d traps. We consider systems both with and without
an optical lattice and address different approximations in stochastic syn-
thesization of quantum statistical correlations of the initial atomic field
operator. We also present a numerically efficient projection method for
analyzing correlation functions of the simulation results. Physical ex-
amples demonstrate non-equilibrium quantum dynamics of solitons and
atom number squeezing in optical lattices in which case we, e.g., numer-
ically track the soliton coordinates and calculate quantum mechanical
expectation values and uncertainties for the position of the soliton.

1.1. Introduction

Atomic systems with enhanced quantum fluctuations can be prepared in

tightly-confined cigar-shaped atom traps, where the strong transverse con-

finement suppresses density fluctuations along the radial direction of the

trap (see, e.g., Ref. [1]). Quantum effects may be further strengthened

by reducing the kinetic energy of the atoms by means of applying an op-

tical lattice potential along the axial direction [2, 3]. In this article we

describe the use of truncated Wigner approximation (TWA) [4–9] in dissi-

pative non-equilibrium quantum dynamics of bosonic atoms in a 1d system

both with and without an optical lattice. The TWA formalism can include

1
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a very large number of degrees of freedom in the stochastic representation

of the atomic field operator and dissipative dynamics emerges from a micro-

scopic treatment of the unitary quantum evolution, due to energy dissipa-

tion within the large phase-space without any additional explicit damping

terms in the Hamiltonian. Quantum and thermal fluctuations of the atoms

may be included in the initial state and the resulting quantum statistical

correlations of the initial state may be accurately synthesized for different

quantum states in the Wigner representation. Some of the approaches pre-

sented in this article have been used in the studies of a fragmentation of a

Bose-Einstein condensate (BEC) by turning-up of an optical lattice [7, 8],

dissipative atom transport [10], dynamically unstable lattice dynamics [11],

and dark solitons [12, 13].

We address different approximations in synthesization of quantum and

thermal noise in the initial state. We start with a simple uniform sys-

tem and phonon excitations within the Bogoliubov approximation. These

are extended to non-uniform systems and situations where the back-action

of the excited-state correlations on the ground-state atoms is included in

self-consistent methods. A particular problem of analyzing non-equilibrium

quantum dynamics in TWA, related to symmetric operator-ordering of the

Wigner distributions is addressed by providing a numerically practical pro-

jection technique.

1.2. Methodology

1.2.1. Initial state generation in TWA

In the approach considered in the present case, 1d dynamics is unitary and

quantum and thermal noise enter only through the stochastic initial state

that generate the fluctuations of TWA dynamics. The dynamical evolution

is governed by the Gross-Pitaevskii equation (GPE), but ΨW (x, t) should

be considered as a stochastic phase-space representation of the full field

operator:

i~
∂

∂t
ΨW =

(

− ~
2

2m

∂2

∂x2
+ V + g1dN |ΨW |2

)

ΨW , (1.1)

where the interaction strength g1d = 2~ω⊥a, the s-wave scattering length

a, the total number of atoms N , and V is the trapping potential. Including

noise only in the initial conditions is by no means necessary, however, since

depending on the physical problem, we could include, e.g., atom losses via

collisions and spontaneous emission that would generate also dynamical
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noise terms for each time step. Since for the unitary evolution all the

noise is incorporated in the initial state, it is especially important that the

quantum mechanical correlation functions for the initial state of the atomic

field operator are synthesized as accurately as practical for each particular

physical problem. Here we follow the basic formalism of Refs. [7, 8] which

has also been reviewed in [11] and further developed in [12, 13].

1.2.1.1. Uniform system

The simplest approach is a weakly interacting bosonic gas in a uniform space

at T = 0 where we use the Bogoliubov approximation to model quantum

fluctuations of the atoms. In the Bogoliubov theory we calculate the lin-

earized fluctuations of the ground state (or a stationary GPE solution) in

which case the back-action of the excited-state atoms on the ground state

is ignored [14]. We write the decomposition

Ψ̂(x) = φ0(x)α̂0 + ψ̂′(x) , (1.2)

where the total number of ground state atoms Nc = 〈α̂†
0α̂0〉. The fluctua-

tion part ψ̂′ for the excited states can be written in terms of quasi-particle

operators α̂q and α̂q
† as

ψ̂′(x) =
1√
L

∑

q 6=0

(uqα̂qe
iqx−iǫqt − v∗q α̂

†
qe

−iqx+iǫ∗
q
t) . (1.3)

The normal mode frequencies ǫq and the quasi-particle amplitudes uq and

vq can be solved straightforwardly and the expectation value of the number

of excited-state atoms in the Bogoliubov theory is

N̄ ′ =
∑

q

(|uq|2 + |vq|2)nBE(ǫq) +
∑

q

|vq|2, (1.4)

with 〈α̂†
qα̂q〉 = nBE(ǫq) = [exp (ǫq/kBT ) − 1]−1 denoting the ideal Bose-

Einstein distribution. At T = 0 we have nBE(ǫq) = 0.

In order to construct the initial state for the atoms in the TWA evolu-

tion we replace the quantum field operators (Ψ̂, Ψ̂†) by the classical fields

(ΨW ,Ψ∗
W ) by using complex stochastic variables (αq, α

∗
q′) in the place of

the quantum operators (α̂q, α̂
†
q′) in Eq. (1.3). In the Bogoliubov theory the

operators (α̂q, α̂
†
q) form a set of ideal harmonic oscillators and at T = 0

(αq, α
∗
q′) are obtained by sampling the corresponding Wigner distribution

function [15]

W (αq, α
∗
q) =

2

π
exp[−2|αq|2] . (1.5)
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In this case each unoccupied excitation mode is uncorrelated with Gaussian-

distributed noise. The expectation value 〈α∗
qαq〉W = 1

2 specifies the width

of the distribution and represents vacuum noise, resulting from the symmet-

ric ordering of the expectation values in the Wigner representation. The

noise is distributed in space according to the plane waves, with a constant

density. In the absence of any correlations between the modes, the vacuum

noise in the uniform space could be replaced by uncorrelated Gaussian noise

on evenly-spaced numerical grid points. However, the simplest modification

to the Bogoliubov expansion is to fix the total atom number in each stochas-

tic realization. This introduces long-wavelength correlations between the

ground-state mode and the excited-state phonon modes, so that already in

this simple example there exist non-trivial spatial noise correlations [12, 13].

For each stochastic realization the number of excited-state atoms satisfies

N ′ =
∑

q

(|uq|2 + |vq|2)(α∗
qαq −

1

2
) +

∑

q

|vq|2. (1.6)

with the ensemble average N̄ ′ =
∑

q |vq|2. In Eq. (1.6) we have transformed

the symmetric ordering of the Wigner representation to quantum expecta-

tion values of normally-ordered operators by subtracting 〈α∗
qαq〉W = 1

2 from

each mode. The ground-state atom number is then obtained from the fixed

total atom number N , so that in each stochastic realization Nc = N −N ′

and we set α0 =
√

Nc + 1/2. The ensemble average of the ground-state

population N̄c = N − N̄ ′.

At T 6= 0 we replace Eq. (1.5) by [15]

W (αq, α
∗
q) =

2

π
tanh (ξq) exp

[

−2|αq|2 tanh (ξq)
]

, (1.7)

where ξq ≡ ǫq/2kBT . The Wigner function is Gaussian-distributed with the

width nBE(ǫq) + 1/2. The formula introduces thermal populations of each

quasi-particle mode and generates more complex spatial noise correlations.

After the noise generation, the initial state for stochastic evolution may be

written as

ΨW (x, 0) = φ0(x)α0 +
1√
L

∑

q 6=0

(uqαqe
iqx − v∗qαq

∗e−iqx) . (1.8)

Here ΨW (x, 0) is a stochastic representation of the full field operator for

the atoms.
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1.2.1.2. Trapped gases

In a harmonic trap, or in a combined harmonic trap and optical lattice, the

atoms experience a non-uniform potential that introduces spatially-varying

initial noise distribution even at T = 0. We write the external potential as

V (x) = mω2x2/2 + sER sin2(πx/d), where ER = ~
2π2/2md2 is the lattice

photon recoil energy and d is the lattice period. The Bogoliubov equations

now become spatially dependent and need to be solved numerically [14]. In

Eq. (1.3) we replace uqe
iqx/

√
L→ uj(x) and vqe

iqx/
√
L→ vj(x) where the

index j refers to the mode number. In the lowest order approximation the

quasi-particle mode functions uj(x) and vj(x) are obtained in the Bogoli-

ubov theory. In several cases of interest where the multi-mode structure

of the excitations become important, the Bogoliubov approximation is in-

sufficient due to large contribution of the quadratic fluctuation terms, and

one consequently needs to use a higher-order theory, such as the gapless

Hartree-Fock-Bogoliubov (HFB) formalism in which case the ground-state

and the excited-state populations are solved self-consistently. The coupled

HFB equations for the ground state and excitations read [16, 17]
(

L̂ − UcN̄c|φ0|2
)

φ0 = 0 (1.9)

L̂uj − UcN̄cφ
2
0vj = ǫjuj ,

L̂vj − UcN̄cφ
∗2
0 uj = −ǫjvj . (1.10)

where uj(x) and vj(x) (j > 0) are restricted to the subspace orthogonal to

φ0. Here

L̂ ≡ − ~
2

2m

∂2

∂x2
+ V (x) + 2UcN̄c|φ0|2 + 2Uen

′(x)− µ (1.11)

and µ is the chemical potential. In Eq. (1.10) the Bogoliubov approxima-

tion is obtained by setting Uc = g1d, Ue = 0. In the gapless HFB theory

(the G1 version in Ref. [17]), Uc = g1d
[

1 +m′(x)/N̄cφ
2
0

]

and Ue = g1d;

here, the depleted density n′(x) = 〈ψ̂′†(x)ψ̂′(x)〉, and the anomalous pair

correlation m′(x) = 〈ψ̂′(x)ψ̂′(x)〉 introduce back-action of the excitations

on the ground-state such that Eqs. (1.9) and (1.10) must be solved itera-

tively until the solutions converge. In the non-uniform case the number of

excited-state atoms is given by

N̄ ′ =

∫

dx
∑

j

[

nBE(ǫj)
(

|uj(x)|2 + |vj(x)|2
)

+ |vj(x)|2
]

, (1.12)

and the total atom number may be fixed in each realization as in the uniform

case [12, 13].
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1.2.1.3. Quasi-condensate description

In tightly-confined 1d traps, the phase fluctuations may be enhanced com-

pared to those obtained using the standard Bogoliubov theory. A more

accurate description can be calculated using quasi-condensate formalism

that can be particularly important, e.g., to phase kinks [12, 13]. In the

quasi-condensate description we write the field operator as [18]

Ψ̂(x, 0) =
√

n0(x) + δn̂(x) exp(iθ̂(x)). (1.13)

The density δn̂(x) and phase θ̂(x) operators may be written in the

Bogoliubov-type expansion, requiring δn̂/n0 and |δl∆θ̂| to be much less

than one, where δl is the spacing on the numerical grid on which we calcu-

late the operators and ∆θ̂ is the gradient of the phase operator across one

gridpoint. Thus (for j > 0)

θ̂(x) = −i

2
√

n0(x)

∑

j

(

θj(x)α̂j − θ∗j (x)α̂
†
j

)

, (1.14)

δn̂(x) =
√

n0(x)
∑

j

(

δnj(x)α̂j + δn∗
j (x)α̂

†
j

)

, (1.15)

where θj(x) = uj(x)+vj(x) and δnj(x) = uj(x)−vj(x) are given in terms of

the solutions to the Bogoliubov equations (see the previous section). This

results in a stochastic Wigner representation (θW (x), δnW (x)) of phase and

density operators. The stochastic initial state for the time evolution then

reads [12, 13]

ΨW (x, 0) =
√

n0,W (x) + δnW (x) exp(iθW (x)), (1.16)

where the ground-state density n0,W (x) = (Nc + 1/2)|φ0(x)|2.

1.2.1.4. Relaxation

We may also consider an ideal, non-interacting BEC as an initial state

for the TWA simulations, but before the actual time evolution, we can

continuously turn up the nonlinear interactions between the atoms. If the

process is slow enough and relaxes to the ground state, we may be able to

produce the stochastic initial state of the interacting system. Although this

may simplify the calculations, in practise the technique in a closed system

does not necessarily converge to the correct interacting state [8]. More

complex models with open systems, kinetic equations and time-dependent

noise can help the relaxation process at finite temperatures [19].
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1.2.2. Wigner representation and symmetric ordering

The Wigner distribution returns symmetrically-ordered expectation values

of any stochastic representations of quantum operators. In particular, the

expectation values of the full multi-mode Wigner fields in the TWA simula-

tions of the time-dynamics are symmetrically ordered with respect to every

mode. In general, this can significantly complicate the analysis of the nu-

merical results when quantum fluctuations are important [8]. A numerically

practical transformation of the symmetrically-ordered expectation values to

the normally-ordered expectation values of physical observables can be done

using projection techniques (as shown Refs. [7, 8]). In the presence of an

optical lattice, a natural approach is to project the stochastic field to the

several lowest mode functions of the individual lattice sites. We define the

amplitude of the ith mode of the site j as

ai,j(t) =

∫

jthwell

dx [ϕ
(i)
j (x, t)]∗ΨW (x, t) , (1.17)

where ΨW is the stochastic field and ϕ
(i)
j is the ith mode function of the well

j. The integration is performed over the jth site and the site population

reads

〈n̂j〉 =
∑

i

〈â†i,j âi,j〉 =
∑

i

[

〈a∗i,jai,j〉W − 1/2
]

(1.18)

where 〈· · · 〉 denotes the normally ordered expectation value of the quan-

tum operators, and 〈· · · 〉W the symmetrically-ordered expectation values

obtained from the TWA simulations. Fluctuations are calculated using

analogous transformations. For the on-site fluctuations of the atom num-

ber in the jth site we obtain

(∆nj)
2 = 〈n̂2

j 〉 − 〈n̂j〉2

=
∑

i,k

[

〈a∗i,jai,ja∗k,jak,j〉W − 〈a∗i,jai,j〉W 〈a∗k,jak,j〉W − δik/4
]

. (1.19)

Similarly, the relative atom number fluctuations between the sites p and q

are obtained from

[∆(n̂p − n̂q)]
2
=

∑

i,k

[

〈
(

a∗i,pai,p − a∗i,qai,q
) (

a∗k,pak,p − a∗k,qak,q
)

〉W

−〈a∗i,pai,p − a∗i,qai,q〉W 〈a∗k,pak,p − a∗k,qak,q〉W − δik/2
]

. (1.20)
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Alternatively, we could have, for instance, written

〈n̂j〉 =

∫

j

dx 〈Ψ̂†(x)Ψ̂(x)〉 =
∫

j

dx 〈Ψ∗(x)Ψ(x)〉W

−1

2

∫

j

dx
∑

i

(

|ui(x)|2 − |vi(x)|2
)

. (1.21)

Calculation of 〈n̂2
j〉 then, however, results in double integrals over the sites

that can be computationally slow when performed over a large number of

realizations.

1.3. Applications

1.3.1. Dark solitons

Dark solitons have been actively studied in BECs and in nonlinear optics.

Although there exist numerous studies of classical solitons, the quantum

properties of dark solitons are much less known. Numerical TWA sim-

ulations are suitable for the studies of the creation and non-equilibrium

quantum dynamics of solitons in 1d traps. We consider the experimen-

tal imprinting method [20, 21], where a soliton is generated by applying

a ‘light-sheet potential’, of value Vφ to half of the atom cloud, for time τ ,

so that in the corresponding classical case the light sheet imprints a phase

jump of φc = Vφτ/~ at x = 0, preparing a dark soliton. Classically the

imprinted soliton oscillates in a harmonic trap at the frequency ω/
√
2 [22]

with the initial velocity v/c = cos(φc/2), depending on φc and the speed

of sound c. The soliton is stationary (dark) for φc = π, with a zero den-

sity at the kink. Other phase jumps produce moving (grey) solitons, with

non-vanishing densities at the phase kink.

In TWA simulations we generate the initial state using the quasi-

condensate formalism and vary the ground-state depletion N̄ ′/N . At T = 0

we keep the nonlinearity Ng1d fixed, but adjust the ratio g1d/N . This is

tantamount to varying the effective interaction strength γint = mg1d/~
2n.

We can also study the effects of thermal depletion by varying T .

In quantum case, soliton trajectories in TWA fluctuate between different

realizations. Individual stochastic realizations of |ΨW |2 in a harmonic trap

represent possible experimental observations of single runs. In TWA we

can ensemble average hundreds of stochastic realizations in order to obtain

quantum statistical correlations of the soliton dynamics. We numerically

track the position of the kink at different times in individual realizations
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and calculate the quantum mechanical expectation values for the soliton

position 〈x̂〉 and its uncertainty δx =
√

〈x̂2〉 − 〈x̂〉2.

(a) (b) (c)

<x>/l,δx/lˆ

Fig. 1.1. Soliton dynamics in a harmonic trap showing (a-b) the Wigner density
|Ψw(x, t)|2 for individual stochastic realizations with the same g1dN = 100~ωl, φc = 2,
and T = 0 for N = 50, 100, in (a) and (b), respectively; (c) The quantum mechanical
expectation value for the soliton position 〈x̂〉 (solid lines) and its uncertainty δx (shaded
regions) for N = 8000, 440, 50 (curves with decreasing amplitudes) with the same non-
linearity g1dN , φc = 2, and T = 0. At N ≃ 8000, δx is negligible. Quantum fluctuations
increase δx and soliton damping, and decrease the speed.

1.3.2. Atom number squeezing

In this section we consider an example of a TWA calculation of atom num-

ber squeezing due to turning up of an optical lattice. Unlike in Refs. [7, 8]

where a BEC fragmentation in TWA was investigated by a lattice with a

large number of small sites, we simulate a six-site system with considerable

multi-mode effects within individual sites. Bose-condensed 87Rb atoms are

confined to a cigar-shaped optical dipole trap where an optical lattice is

applied along the axial direction [23]. The lattice potential is slowly turned

up from s(0) = 48ER to s(τ) = 96ER. The harmonic trap frequency

is ω = 2π × 21Hz, the atom number N ≃ 5000, and the lattice spacing

d ≃ 5.7µm. The system was also realized in the recent atom number fluc-

tuation experiment [24].

Due to large individual lattice sites the multi-mode structure of the fluc-

tuations is important, and the atom number fluctuations are evaluated by

using the projection technique to several modes in each site, as explained

in the previous section. The Bogoliubov approximation is not accurate

due to phonon-phonon interactions and the initial state is calculated using

the HFB method. The spatially non-uniform distribution of quantum and

thermal fluctuations is clearly seen in Fig. 1.2. The lowest HFB modes

dominantly occupy the outer regions of the atom cloud with significantly

enhanced atom number and phase fluctuations in those sites. Such fluctua-
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tions could not be represented, e.g., by a uniform stochastic noise sampling.

-10 100-10 100
x/lx/l

(a) (b)

  s20 40 60 80 100
0

0.2

0.4

(c)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

  ξ
3,4  

u
  

, 
v

1
1

  
u

  
, 

v
2

2

Fig. 1.2. The numerical solution of the lowest two HFB modes in a six-site optical
lattice showing (a) u1(x) (dotted) and v1(x) (solid); (b) u2(x) (dotted) and v2(x) (solid)
at s = 24 and T ≃ 5.5nK; (c) Relative atom number squeezing at different lattice
height between two central nearest-neighbor sites ξpq = [∆(n̂p − n̂q)]

2 (np+nq)/(4npnq).
The different data sets correspond to temperatures (from top to bottom) T ≃ 5.5nK,
T ≃ 4.5nK, T ≃ 4.0nK, and T = 0.

1.4. Comparisons

Generating quantum noise in TWA in 2d and 3d may have problems in

terms of heating the atom cloud during time evolution due to rapid coupling

dynamics between the modes [6] and divergence of physical observables as

a function of the number of modes, but 1d systems have been more robust.

Although clearly insufficient, e.g., in a Mott-insulator regime and at very

low atom numbers, TWA has been successful in describing superfluid dy-

namics in the presence of considerable quantum fluctuations. For instance,

TWA simulations [10] were qualitatively able to produce the experimentally

observed damping rate of center-of-mass oscillations of bosonic atomic cloud

in a very shallow, strongly confined 1D optical lattice, corresponding to the

dissipative atom transport experiments of Ref. [2].

The accuracy of the initial state noise generation can be a crucial lim-

itation, especially in simulations involving very short time dynamics. The

spatial distribution of phonon excitations in trapped systems can result in

very rapid noise variation where, e.g., phase fluctuations are dominated

close to the edges of the atom cloud [8]. For dark soliton dynamics, the

differences in the soliton trajectories between the cases in which the noise

was generated within the quasi-condensate description and in the Bogoli-

ubov theory are notable [12]. Evaluating phonon modes in the linearized

Bogoliubov approximation may also become inaccurate, compared to self-

consistent HFB methods.
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−5 0 5
0

5

10

  x/l

 ω
t

−5 0 5  x/l
0

2

4

6

8

−4 −2 0 2 4

 ω
t

(c)(b)(a)

<x>/l,δx/lˆ

Fig. 1.3. Differences between initial noise generation in TWA. Dark soliton dynamics in
a 1d harmonic trap showing (a-b) the Wigner density |Ψw(x, t)|2 for individual stochastic
realizations of TWA for φc = 2, T = 0, and N = 50 (parameters as explained in 1.3.1).
In (a) the initial state is generated within the Bogoliubov approximation and in (b)
using the quasi-condensate formalism; (c) The quantum mechanical expectation values
for the soliton position 〈x̂〉 (solid lines) and its uncertainty δx (shaded regions). The
lighter curve with larger oscillation amplitude corresponds to the Bogoliubov case and
the darker one the quasi-condensate case.
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