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We study the excitonic dynamics of a driven quantum dot under the influence of a phonon
environment, going beyond the weak exciton-phonon coupling approximation. By combining the
polaron transform and time-local projection operator techniques we develop a master equation
that can be valid over a much larger range of exciton-phonon coupling strengths and temperatures
than the standard weak-coupling approach. For the experimentally relevant parameters considered
here, we find that the weak-coupling and polaron theories give very similar predictions for low
temperatures (below 30 K), while at higher temperatures we begin to see discrepancies between
the two. This is due to the fact that, unlike the polaron approach, the weak-coupling theory is
incapable of capturing multiphonon effects, while it also does not properly account for phonon-
induced renormalisation of the driving frequency. In particular, we find that the weak-coupling
theory often overestimates the damping rate when compared to that predicted by the polaron theory.
Finally, we extend our theory to include non-Markovian effects and find that, for the parameters
considered here, they have little bearing on the excitonic Rabi rotations when plotted as a function
of pulse area.

I. INTRODUCTION

Semiconductor quantum dots (QDs) provide a promis-
ing setting in which to explore the interplay of coherent
control and decoherence in the solid-state. Spatial con-
finement of charge carriers gives rise to an atomic-like
discrete energy level structure within the dot region [1–3],
which allows for the selective probing of particular exci-
tonic (electron-hole pair) transitions [4, 5]. This has lead
to demonstrations of fundamentally quantum mechanical
effects, such as laser-driven excitonic Rabi rotations [6–
16] and two-photon interference in QD emission [17–20].
Moreover, optical preparation, control, and readout of a
single self-assembled QD spin has been achieved [21–26],
while various forms of coupling between closely spaced
dots have been observed and characterised [27–31].

Such experimental progress clearly demonstrates the
feasibility of creating and manipulating both excitonic
and spin quantum coherence in QD samples. However,
despite this, QD charge carriers are often still strongly
influenced by their surrounding solid-state environment.
Though the resulting decoherence processes must gener-
ally be mitigated in order for QDs to be used, for exam-
ple, in quantum information processing devices [32–39],
they also open up intriguing opportunities for exploring
system-environment interactions in the solid-state. The
combination of strong optical-dipole transitions, well de-
veloped control techniques, and relatively pronounced en-
vironmental interactions allows QDs to be used to study
important open system effects that may be more difficult
to observe, for instance, in atomic systems.
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As an example, the damping of excitonic Rabi ro-
tations in single self-assembled semiconductor QDs has
been demonstrated to be driving-dependent [6–12, 15].
Owing to the large variation in QD type, growth strat-
egy, and experimental set-up, a number of possible deco-
herence channels may be responsible for such behaviour.
Two prominent mechanisms are off-resonant excitation
of the wetting layer [15, 40, 41], and coupling to lat-
tice vibrations (phonons) [11, 12, 42–45]. In particu-
lar, recent experiments have provided compelling evi-
dence that interactions with longitudinal acoustic (LA)
phonons via deformation potential coupling dominates
the damping of (ground-state) excitonic Rabi rotations
in optically driven InGaAs/GaAs QDs [11, 12]. Further-
more, while it might be hoped that some potential deco-
herence sources could be suppressed by careful selection
of samples and experimental techniques, ultimately self-
assembled QDs are embedded in a host matrix. Interac-
tions with phonons thus constitute an intrinsic limitation
on the level of coherence seen in their excitonic transi-
tions [42–50]. As such, a range of theoretical approaches
have previously been developed to investigate the effects
of phonon interactions on the coherent manipulation of
excitons in QDs. Examples include perturbative expan-
sions of the QD-phonon coupling, resulting in master
equation descriptions of both Markovian [11, 12, 45, 51]
and non-Markovian [42, 52, 53] nature, correlation ex-
pansions [43, 54, 55], and non-perturbative, numerically
exact techniques which rely on calculation of the path
integral [44].

The aim of the work presented here is to extend the
master equation approach to QD exciton-phonon inter-
actions beyond the weak-coupling regime in which it is
commonly used [56]. The formalism is attractive because
in many regimes analytical expressions are obtainable,
and when they are not, it is not computationally ex-
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pensive. We present theoretical results describing the
phonon-induced damping of a resonantly driven QD us-
ing a polaron transform [46, 57] plus time-local master
equation technique [56, 58]. Our theory exploits a per-
turbative expansion in the polaron transformed represen-
tation, rather than in the system-bath interaction itself.
As we shall show, under certain conditions this allows us
to identify a perturbation term that is small over a much
larger range of parameters than in the weak-coupling ap-
proach [57]. In particular, our master equation is able
to account for “nonperturbative” effects not captured
in a weak-coupling treatment, such as multiphonon pro-
cesses and phonon-induced renormalisation of the driving
pulse. This is particularly important in exploring the ex-
citon dynamics at elevated temperatures (above 30 K for
the parameters we consider), where such effects may be-
come important. Furthermore, we also extend the master
equation to the non-Markovian regime.
We focus particularly on comparing this theory to the

weak-coupling Markovian technique used in Refs. [11, 12]
to provide good fits to both the phonon-induced damp-
ing and energy shifts of the observed Rabi rotations.
We find that for low temperatures (below 30 K) the
weak-coupling and polaron theories predict essentially
the same excitonic dynamics, indicating that multphonon
and renormalisation processes are unimportant. How-
ever, as the temperature is increased, we find surpris-
ingly that the weak-coupling theory can overestimate

the phonon-induced damping rate when compared to the
polaron approach. This is consistent with the weak-
coupling fits to the highest temperature plots in Ref. [12].
We also show that, for the laser pulse durations used in
Refs. [11] and [12], the inclusion of non-Markovian effects
within our formalism has an almost negligible influence
on the Rabi rotations when plotted as a function of pulse
area.
The paper is organised as follows. In Section II we

introduce a model describing the QD system and its in-
teractions with the phonon environment, and also de-
fine the polaron transformation. Section III outlines our
master equation derivation together with a discussion
of the regimes in which we expect it to be valid. In
Sections IVA and IVB we consider resonant Rabi ro-
tations, driven both by a Guassian laser pulse and con-
stant driving, and compare the weak-coupling and po-
laron theory predictions. In Section IVC we investigate
non-Markovian effects, while in Section V we give a brief
discussion and summarise our results.

II. MODEL AND POLARON

TRANSFORMATION

We consider a single QD modelled (as in Refs. [11, 12])
as a two-level system with ground-state |0〉 and single-
exciton state |X〉, separated by an energy ω0. The dot
is driven by a laser of frequency ωl, with Rabi frequency
Ω(t), and is coupled to a phonon bath represented by an

infinite collection of harmonic oscillators with frequencies

ωk and creation (annihilation) operators b†
k
(bk). The

system-plus-bath Hamiltonian takes the form (for ~ = 1)

H = ω0|X〉〈X |+Ω(t) cosωlt(|0〉〈X |+ |X〉〈0|)
+
∑

k

ωkb
†
k
bk + |X〉〈X |

∑

k

(gkb
†
k
+ g∗kbk), (1)

where the exciton-phonon couplings are denoted by gk.
Moving to a frame rotating at the laser frequency ωl, and
performing a rotating-wave approximation on the driving
term, we obtain

HRWA = δ|X〉〈X |+ Ω(t)

2
(|0〉〈X |+ |X〉〈0|)

+
∑

k

ωkb
†
k
bk + |X〉〈X |

∑

k

(gkb
†
k
+ g∗kbk),

(2)

where δ = ω0 − ωl is the detuning of the laser from the
excitonic transition energy. The rotating-wave approxi-
mation can be justified here as both the Rabi frequency
Ω(t) and detuning δ are generally small in comparison to
ωl.
To move into the appropriate basis for the subsequent

perturbation theory, we now apply a unitary polaron
transformation to HRWA [46, 57]. This transformation
displaces the bath oscillators when the QD is in its ex-
cited state; we shall explore in the following section how
this can lead in many situations to a smaller perturba-
tion term than a weak-coupling treatment of the exciton-
phonon interaction in Eq. (2). The transformed Hamil-
tonian is defined by HP = eSHRWAe

−S , where

S = |X〉〈X |
∑

k

(αkb
†
k
− α∗

kbk), (3)

with αk = gk/ωk. Hence, we may write

e±S = |0〉〈0|+ |X〉〈X |
∏

k

D(±αk), (4)

where
∏

k
D(±αk) = e±

∑
k
(αkb

†

k
−α∗

k
bk) is a product of

displacement operators D(±αk). Defining the Pauli ma-
trices in the {|0〉, |X〉} basis as σx = |X〉〈0| + |0〉〈X |,
σy = i(|0〉〈X | − |X〉〈0|), and σz = |X〉〈X | − |0〉〈0|, we
find that our polaron-transformed Hamiltonian reads [57]

HP =
δ′

2
σz +

Ωr(t)

2
σx +

∑

k

ωkb
†
k
bk

+
Ω(t)

2
(σxBx + σyBy) , (5)

where the detuning is now δ′ = ω′
0 − ωl, defined in

terms of the bath-shifted QD transition energy ω′
0 =

ω0−
∑

k
ωk|αk|2, and we have ignored an irrelevant term

proportional to the identity. Bath-induced fluctuations
are now described by the Hermitian combinations

Bx =
1

2
(B+ +B− − 2B), (6)
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and

By =
1

2i
(B− −B+), (7)

where B± =
∏

k
D(±αk), and B = 〈B±〉 is the expecta-

tion value of the bath displacement operators.
Importantly, the driving term in Eq. (5) has now been

renormalised by a factor equal to this expectation value:
Ωr(t) = Ω(t)B. For a phonon bath in thermal equilib-
rium at inverse temperature β = 1/kBT , we find

B ≡ 〈B±〉 = exp
[

− (1/2)
∑

k

|αk|2 coth (βωk/2)
]

. (8)

For models of the type studied here, the system-bath in-
teraction is entirely characterised by the spectral density
J(ω) =

∑

k
|gk|2δ(ω − ωk) [59]. We are specifically in-

terested in the coupling of bulk LA-phonons to our QD
exciton, shown to dominate the dephasing dynamics in
Ref. [11], and therefore take a spectral density in the
continuum limit of the form [11, 12, 48, 51, 60]

J(ω) = αω3e−(ω/ωc)
2

, (9)

giving B = exp[−(1/2)
∫∞

0 dω(J(ω)/ω2) coth (βω/2)].

The coupling constant α (here having units of s2) cap-
tures the strength of the exciton-phonon interaction and
is dependent upon bulk quantities of the QD sample [11].
The exponential cut-off with frequency ωc arises from
the form-factor of the carrier wavefunctions [48, 60]. For
excitons in self-assembled QDs it is proportional to the
inverse of the carrier localisation length, which for sim-
plicity we assume to be the same for both electrons and
holes.
It is important to note that, apart from the rotating-

wave approximation on the driving, we have made no fur-
ther approximations in our manipulations leading from
Eq. (2) to Eq. (5). We have simply put the Hamilto-
nian into a form that clearly separates the effects of the
QD-phonon coupling into renormalisation of QD param-
eters, through Ωr(t) and ω′

0, and bath-induced fluctua-
tions, through the last term in HP.

III. MASTER EQUATION DERIVATION

Utilising our transformed representation of the QD
Hamiltonian, we shall now derive a master equation de-
scribing the driven QD exciton dynamics under the influ-
ence of the acoustic phonon environment. To proceed we
separate the polaron-transformed Hamiltonian such that
HP(t) = H0P(t)+HIP(t). Here, H0P(t) = HSP(t)+HBP,

with bath Hamiltonian HBP =
∑

k
ωkb

†
k
bk, and time-

dependent system part

HSP(t) =
δ′

2
σz +

Ωr(t)

2
σx, (10)

while

HIP(t) =
Ω(t)

2
(σxBx + σyBy) (11)

is the interaction Hamiltonian, to be treated as a per-
turbation. Moving into the interaction picture with re-
spect to H0P(t) yields an interaction Hamiltonian in the
(polaron-transformed) interaction picture of the form

H̃IP(t) = U †
0P(t)HIP(t)U0P(t), (12)

where U0P(t) = USP(t)e
−iHBPt, with

USP(t) = T exp

[

−i

∫ t

0

dvHSP(v)

]

. (13)

Here, the Schrödinger and interaction pictures have been
chosen to coincide at time t = 0, while the time-ordering
operator T is necessary as, in general, HSP(t) does not
commute with itself at two different times. We therefore
write the interaction Hamiltonian as

H̃IP(t) =
Ω(t)

2

(

σ̃x(t)B̃x(t) + σ̃y(t)B̃y(t)
)

, (14)

where σ̃l(t) = U †
SP(t)σlUSP(t) and B̃l(t) =

eiHBPtBle
−iHBPt, for l = x, y.

We now follow the standard projection-operator pro-
cedure, outlined in Ref. [56], to derive a time-local mas-
ter equation for the reduced system density operator,
ρ̃SP(t), in the polaron frame interaction picture. Con-
sidering the QD to be initialised in its ground state, with
the bath initially in thermal equilibrium, ρB(0) = ρB =

e−β
∑

k
ωkb

†

k
bk/trB(e

−β
∑

k
ωkb

†

k
bk), we see that the initial

system-bath density operator χ(0) = |0〉〈0|ρB is unaf-
fected by transformation into the polaron representation,
i.e. χP(0) = eSχ(0)e−S = |0〉〈0|ρB = χ(0). Hence, tak-
ing a thermal equilibrium state of the bath as a reference
state and treating H̃IP(t) to second order, we find a ho-
mogeneous equation [56, 58]

∂ρ̃SP(t)

∂t
= −

∫ t

0

dstrB
(

[H̃IP(t), [H̃IP(s), ρ̃SP(t)ρB ]]
)

,

(15)
describing the dynamics of the excitonic system in the
polaron frame, under the influence of the phonon bath.
Substituting in from Eq. (14), we obtain

∂ρ̃SP(t)

∂t
= −Ω(t)

4

∫ t

0

dsΩ(s)
(

[σ̃x(t), σ̃x(s)ρ̃SP(t)]Λx(τ)

+[σ̃y(t), σ̃y(s)ρ̃SP(t)]Λy(τ) + H.c.
)

, (16)

where H.c. refers to the Hermitian conjugate, and we
have made use of the stationarity of the bath reference
state to write

〈B̃l(t)B̃l(s)〉B = 〈B̃l(t− s)B̃l(0)〉B = Λl(τ), (17)

with τ = t − s. Using J(ω) =
∑

k
|gk|2δ(ω − ωk) al-

lows us to write the relevant correlation functions in the
continuum limit as

Λx(τ) =
B2

2
(eφ(τ) + e−φ(τ) − 2), (18)

Λy(τ) =
B2

2
(eφ(τ) − e−φ(τ)), (19)
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where

φ(τ) =

∫ ∞

0

dω
J(ω)

ω2

(

cosωτ coth(βω/2)− i sinωτ
)

.

(20)

Now, moving back into the Schrödinger picture, and mak-
ing the change of variables s → t− τ , we obtain

ρ̇SP(t) = − i

2
[δ′σz +Ωr(t)σx, ρSP(t)]

− Ω(t)

4

∫ t

0

dτΩ(t− τ)
(

[σx, σx(t− τ, t)ρSP(t)]Λx(τ)

+ [σy , σy(t− τ, t)ρSP(t)]Λy(τ) + H.c.
)

,

(21)

where σl(s, t) = USP(t)U
†
SP(s)σlUSP(s)U

†
SP(t). Eq. (21)

is a non-Markovian master equation describing the QD
exciton dynamics in the polaron frame for a time-
dependent laser-driving pulse envelope Ω(t), and valid
to second order in HIP(t).

A. Markov approximation

While we could directly use Eq. (21) as a basis for nu-
merical simulation of the exciton dynamics (and we shall
in fact do so in Section IVC), a great deal of insight into
the system behaviour can be gained through the simplifi-
cations allowed by the Markov approximation. To make
a Markov approximation in the present case, we let the
upper limit of integration in Eq. (21) go to infinity under
the assumption that the bath correlation functions Λl(τ)
decay on a timescale that is short compared to that of
the system dynamics we would like to capture. Given
this, we may also approximate

USP(t− τ, t) ≈ exp [iHSP(t)τ ], (22)

while replacing Ω(t−τ) by Ω(t) in the integral in Eq. (21).
We may then write

σx(t− τ, t) ≈δ′2 cos ητ +Ωr(t)
2

η2
σx +

δ′ sin ητ

η
σy

+
δ′Ωr(t)(1 − cos ητ )

η2
σz ,

(23)

and

σy(t− τ, t) ≈ −δ′ sin ητ

η
σx + cos ητσy +

Ωr(t) sin ητ

η
σz ,

(24)

where η =
√

δ′2 +Ωr(t)2.

In the following, we shall consider the case of resonant
excitation, δ′ = 0, which simplifies Eqs. (23) and (24)
to σx(t − τ, t) = σx and σy(t − τ, t) ≈ cos(Ωr(t)τ)σy +

sin(Ωr(t)τ)σz , respectively. We then arrive at a Marko-
vian, polaron transformed master equation

ρ̇SP(t) =− i

2
[Ωr(t)σx, ρSP(t)]

− Ω(t)2

4

∫ ∞

0

dτ
(

[σx, σxρSP(t)]Λx(τ)

+ cos(Ωr(t)τ)[σy , σyρSP(t)]Λy(τ)

+ sin(Ωr(t)τ)[σy , σzρSP(t)]Λy(τ) + H.c.
)

,

(25)

which we shall use to explore the dynamics of a reso-
nantly driven QD beyond the weak exciton-phonon cou-
pling regime [61].

B. Regimes of validity

Having derived Eqs. (21) and (25) perturbatively in
the polaron frame, we should expect their validity to be
limited in some manner. Recall that the polaron trans-
formation displaces the bath oscillators in reaction to a
change of state of the QD. Intuitively, we would there-
fore expect the polaron transformed representation to be
applicable when the bath is able to react on a timescale
shorter than or similar to that on which the QD exciton
itself evolves. Since the timescale on which the bath re-
acts is set approximately by the inverse of the cut-off fre-
quency (τB ∼ 1/ωc), we would therefore expect Eq. (21)
to work best in the regime Ω/ωc < 1. Additionally, the
Markov approximation made in deriving Eq. (25) limits
its validity to timescales greater than τB.
To put these considerations on a slightly more quan-

titative footing, we can make a rough estimate of the
regime of validity of our perturbative expansion by con-
sidering the magnitude of the perturbative terms in the
master equation, namely (Ω2/4)Λl(τ) [56, 58], for con-
stant driving Ω(t) = Ω. For example, consider the upper
bound on the magnitude of Λy(τ), given by |Λy(0)| =
(1/2)(1 − B4). Bearing in mind that Λ(τ) tends to
zero on a timescale of order 1/ωc, we see that we want
(Ω2/4)(|Λy(0)|/ωc) = (Ω2/8ωc)(1−B4) to be small in the
sense that terms higher than second order in HIP may
be neglected in the master equation expansion. Since
〈HIP〉 = 0, the next term is of fourth order, and its
magnitude can be estimated in a similar manner by
(Ω2/4)2(|Λy(0)|2/ω3

c ). Thus, ignoring numerical factors,
we find that the fourth order term is small in comparison
to the second order, provided that the condition

(

Ω

ωc

)2

(1 −B4) ≪ 1, (26)

is satisfied [62]. In line with our previous intuition, this
condition tells us that in the scaling limit (Ω/ωc ≪ 1) we
expect our treatment to be valid well beyond a standard
weak system-bath coupling approach, such that we can
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explore both the weak (B ≈ 1, small α and/or low T )
and strong (B ≪ 1, large α and/or high T ) system-bath
coupling regimes, as well as reliably interpolate between
these two extremes [57]. Outside the scaling limit, our
approach should remain valid provided that the system-
bath coupling is small enough, or the temperature low
enough, such that the inequality of Eq. (26) is still sat-
isfied. In fact, we have found that even at Ω ≈ ωc the
polaron perturbation treatment provides a fairly good
approximation to the QD dynamics across a range of
exciton-phonon coupling strengths and temperatures.
To demonstrate how the polaron approach generally

allows a larger regime of parameter space to be explored
than a standard weak-coupling treatment, we can also
apply the above reasoning to assess the regime of valid-
ity of such a weak-coupling master equation. In this case,
we have a weak-coupling correlation function ΛW (τ) =
∫∞

0
dωJ(ω)(cos (ωτ) coth (βω/2)− i sin (ωτ)) [45], which

again falls to zero on a timescale of order 1/ωc. Hence,
in a similar manner to before, we estimate the second or-
der perturbation to be roughly of magnitude |ΛW (0)|/ωc,
while the fourth order is then |ΛW (0)|2/ω3

c . We then find
the condition

|ΛW (0)|
ω2
c

≪ 1, (27)

as an estimate of the range of validity of the weak-
coupling approach.
Considering first the zero temperature limit, we find

ΛW (0) ∼ αω4
c , where we use the QD spectral density

given in Eq. (9). Hence, at zero temperature, our condi-
tion implies that a weak exciton-phonon coupling treat-
ment should be adequate to describe the QD excitonic
dynamics provided that

αω2
c ≪ 1. (28)

However, as temperature is increased, the magnitude
of ΛW (0) does too, and we therefore expect the
weak-coupling treatment to worsen. Approximating
coth (βω/2) ≈ 2/(βω), we find

αωc

β
≪ 1, (29)

or αω2
c/(βωc) ≪ 1, which is clearly a harder criterion

to fulfill than the zero temperature condition. Hence,
for a given system-bath coupling strength α and cutoff
frequency ωc, as the temperature of the bath is increased,
a weak-coupling treatment of the system-bath interaction
becomes a worse approximation.
Though we should be wary of reading too much into

numerical values obtained from these rough validity con-
ditions, for the system studied in Refs. [11, 12] we can
take α = 0.027 ps2 and ωc = 2.2 ps−1 extracted through
fits to the data, which gives αω2

c ≈ 0.1. Hence, we might
expect a weak-coupling treatment to be valid at low tem-
peratures for this QD system, as borne out by the excel-
lent agreement between experimental data and theory in

Refs. [11, 12]. However, by a temperature of 50 K, we find
|ΛW (0)|/ω2

c ≈ 0.4, such that the weak-coupling approx-
imation is now becoming dubious. In contrast, for the
same parameters, and taking Ω = 1 ps−1, we find that the
polaron condition [Eq. (26)] gives (Ω/ωc)

2(1−B4) ≈ 0.03
at T = 0, increasing up to (Ω/ωc)

2(1 − B4) ≈ 0.15 at
T = 50 K. In fact, we shall show below that it is around
temperatures of 30 K and above that we begin to see sig-
nificant differences between the weak-coupling and po-
laron treatments of our driven QD, signifying (in this
case) that the system is beginning to move out of the
weak-coupling regime, and both driving-renormalisation
and multiphonon processes are starting to become im-
portant.

IV. RESONANT EXCITATION DYNAMICS

We now proceed to explore the excitonic dynamics
of our QD system, focusing in particular on comparing
how the polaron and weak-coupling theories capture the
interplay between the driving-induced coherent popula-
tion oscillations and the phonon environment as we vary
the temperature. Interestingly, we shall see that as the
phonon-induced damping rate naturally depends upon
the renormalised Rabi frequency Ωr in the polaron the-
ory, but on the original Rabi frequency Ω in the weak-
coupling theory, the weak-coupling approach can actu-
ally overestimate the damping rate even in the high-
temperature regime where mulitphonon effects are im-
portant.

Experimentally, it is generally the excitonic popula-
tion ρXX that is measured, for example through pho-
tocurrent detection [8, 11] or microcavity-asissted photon
emission [13, 14]. Here, we express the solutions to our
Markovian master equation through the Bloch vector, de-
fined in the polaron frame as αP = (αxP, αyP, αzP)

T =
(〈σx〉P, 〈σy〉P, 〈σz〉P)T , where 〈σi〉P = trS+B(σiχP(t)),
for i = x, y, z. Since σz is invariant under the polaron
transformation, eSσze

−S = σz , we see that in the origi-
nal (lab) frame αz = trS+B(σzχ(t)) = trS+B(σzχP(t)) =
αzP, and the Bloch vector elements along z are equivalent
in the two representations. Hence, ρXX = (1 + αz)/2 =
(1 + αzP)/2, and we may work entirely in the polaron
frame provided we are only interested in population dy-
namics.

From Eq. (25) we find that the polaron frame Bloch
vector evolves according to

α̇P = M(t) ·αP + b(t), (30)

where

M(t) =





−(Γz − Γy) 0 0
0 −Γy −Ωr(t)
0 (Ωr(t) + λ) −Γz



 , (31)
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and b(t) = (−κx, 0, 0)
T . Here,

Γy =
Ω(t)2

2
γx(0), (32)

Γz =
Ω(t)2

4
(γy(Ωr(t)) + γy(−Ωr(t)) + 2γx(0)) , (33)

λ =
Ω(t)2

2
(Sy(Ωr(t))− Sy(−Ωr(t))) , (34)

κ =
Ω(t)2

4
(γy(Ωr(t))− γy(−Ωr(t))) , (35)

where

γl(ω) = 2Re[K
(P)
l (ω)], (36)

and

Sl(ω) = Im[K
(P)
l (ω)], (37)

written in terms of the polaron response function

K
(P)
l (ω) =

∫ ∞

0

dτeiωτΛl(τ). (38)

Note that as we are solely interested in the exciton pop-
ulation dynamics it suffices to consider only the Bloch
equations for αy and αz since, in the resonant case, that
for αx becomes decoupled.
The polaron theory developed here will be compared to

the Born-Markov weak-coupling treatment presented in
Refs. [11, 12]. With the weak-coupling theory we again
find that the equation of motion for αx is decoupled,
while αy and αz obey

α̇y = −ΓWαy − (Ω(t) + λW )αz , (39)

α̇z = Ω(t)αy . (40)

The damping rate and energy shift can be expressed in
our current notation as

ΓW =
1

4
(γW (Ω(t)) + γW (−Ω(t))) , (41)

λW =
1

2
(SW (Ω(t)) − SW (−Ω(t))) , (42)

respectively, with the weak-coupling correlation function
given by

ΛW (τ) =

∫ ∞

0

J(ω)dω(cosωτ coth (βω/2)− i sinωτ).

(43)
We can evaluate ΓW in closed form, giving

ΓW =
π

2
J(Ω(t)) coth(βΩ(t)/2). (44)

Hence, the weak-coupling rate displays a linear temper-
ature dependence in the high-temperature regime [11]
and, as mentioned previously, is dependent upon the
original Rabi frequency Ω(t) as opposed to the bath-
renormalised value. Furthermore, we see that there is no
pure-dephasing contribution to the weak-coupling rate in
the Born-Markov approximation, in contrast to the terms
γx(0) appearing in the polaron theory through Γy and Γz.
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FIG. 1: Excitonic population as a function of driving pulse
area (in units of π), for temperatures ranging from 5 K to
75 K, where each curve has been off-set by an increasing in-
teger for clarity. Blue solid lines are calculated using the
polaron approach, while red dashed lines are calculated us-
ing weak-coupling theory. Parameters: α = 0.027 ps2 and
ωc = 2.2 ps−1.

A. Time-dependent driving

Having outlined some of the similarities and differences
between the weak-coupling and polaron transform ap-
proaches, we shall now compare their respective predic-
tions in the case of resonant driving with a Gaussian
pulse envelope. Rather than looking at the dynamics in
the time domain, we shall instead explore oscillations in
the excitonic population (Rabi rotations) as a function

of varying pulse area, Θ =
∫ +∞

−∞
Ω(t)dt, for fixed pulse

duration, as is common experimentally. We therefore
consider a Gaussian pulse of fixed width τ but varying
peak magnitude, centred around t = 0, and described by
Ω(t) = (Θ/2τ

√
π)exp[−(t/2τ)2]. Starting at a time −t0

well before the pulse (i.e. t0 ≫ τ), we initialise the QD in
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its ground state: αP = α = (0, 0,−1)T . We then numer-
ically solve the Bloch equations (Eq. (30) in the polaron
case, Eqs. (39) and (40) in the weak-coupling case) to find
the state of the system at any time t satisfying t ≫ τ ,
such that the pulse has effectively ended.
Fig. 1 shows the final excitonic population, ρXX, cal-

culated from the polaron and weak-coupling theories as
described above, as a function of total pulse area, Θ (in
units of π), for temperatures ranging from T = 5 K to
T = 75 K (each plot has been offset by an increasing
integer for clarity). We use experimentally determined
values of the exciton-phonon coupling strength and cut-
off frequency, α = 0.027 ps2 and ωc = 2.2 ps−1, re-
spectively [12], and a Gaussian driving pulse of width
τ = 4 ps. Note that for the largest pulse areas studied
here the ratio Ω/ωc has a maximum value of ∼ 1.2.
At low to intermediate temperatures (T < 30 K), we

see that the weak-coupling and polaron theories agree
very closely in their predictions for the population dy-
namics, consistent with the excellent agreement found
previously between experimental observations and the
weak-coupling theory in this regime [11, 12]. Impor-
tantly, the two theories predict almost exactly the same
dependence of the Rabi rotation damping rate and fre-
quency shift [63] on increasing temperature and pulse
area, provided the temperature does not increase much
above 30 K. As expected, the phonon-induced damping
is strongly driving-dependent, with oscillations becoming
almost totally suppressed at high pulse areas for all but
the lowest temperatures [64].
Perhaps the most striking feature apparent from Fig. 1,

however, is that the weak-coupling theory tends to over-

estimate the damping effect of the phonons at higher tem-
peratures, when compared to the polaron theory. In fact,
as we shall see below in the case of constant driving, pro-
vided Ω/ωc ∼ 0.7 or smaller, the weak-coupling theory
predicts a larger damping rate than the polaron theory
at all temperatures for the realistic parameters studied
here.
At the single-phonon level, this difference can be at-

tributed directly to the temperature-dependent suppres-
sion of the driving pulse that occurs in the polaron
transformed Hamiltonian (see Eq. (5)). Among other
things, this has the consequence that the rates appear-
ing in the polaron Bloch equations are to be evalu-
ated at the (smaller) renormalised pulse strength Ωr(t),
rather than at the bare pulse strength Ω(t) as in the
weak-coupling theory. The resulting effect can be seen
clearly by expanding the relevant polaron rates Γy and
Γz (in Eqs. (32) and (33), respectively) up to their single-
phonon terms. We then find a damping rate of precisely
the same form as in the weak-coupling theory,

Γ1−ph =
π

2
J(Ωr(t)) coth (βΩr(t)/2) , (45)

though evaluated at the renormalised Ωr(t), as expected.
For low pulse areas, we can approximate Γ1−ph ≈
(απ/2)Ωr(t)

3 coth (βΩr(t)/2). Hence, for single-phonon

processes at least, the lessening of the damping rate in
the polaron theory is simply due to the fact that we are
sampling the spectral density at a lower frequency, since
Ωr(t) < Ω(t). Any differences would then become more
pronounced at higher temperatures, since this is when Ωr

most differs from Ω.
In the full polaron theory, however, the situation is of

course much more complicated than this simple analy-
sis would suggest. To begin with, we have no particular
reason to expect the single-phonon rate of Eq. (45) to
be valid over a larger temperature range than the weak-
coupling rate of Eq. (44), so the sampling of the spec-
tral density at different frequencies in the two theories
cannot be the whole story. Looking again, for exam-
ple, at the full polaron rate Γy (which in fact disap-
pears in the single-phonon approximation), we see from
Eqs. (18), (32), (36) and (38) that it may be written

Γy = Ω(t)2Re

∫ ∞

0

dτΛx(τ),

=
Ωr(t)

2

2
Re

∫ ∞

0

dτ(eφ(τ) + e−φ(τ) − 2). (46)

Thus, in determining the overall size of the full polaron
rates at higher temperatures, there additionally exists a
competition between the multiphonon effects accounted
for by the exponentiation of the phonon propagator φ(τ),
which increases the rate in comparison to the single-
phonon approximation, and the overall factor propor-
tional to Ωr(t)

2, which again acts to decrease it with
increasing temperature.
A further feature to draw out from the comparison pre-

sented in Fig. 1 is that while the polaron theory predicts
physical behaviour at all temperatures considered, for
the highest temperature (T = 75 K) the weak-coupling
theory actually predicts unphysical behaviour, since ρXX

becomes negative for pulse areas Θ ∼ π. This behaviour
can be related to an overestimate of the phonon-induced
frequency shift in the weak-coupling analysis at high tem-
peratures, and will again be discussed in more detail be-
low for the case of constant driving.

B. Constant driving

In order to put the arguments outlined in the previous
section on a more formal footing, it is helpful to consider
the dynamics of the QD system for constant driving, in
which case an analytic form can be given for the popula-
tion difference, αz = ρXX − ρ00. We construct a second-
order differential equation for the time evolution of αz

in both the polaron and weak-coupling theories. From
Eq. (30) we find for the polaron theory (using αzP = αz)

α̈z + (Γy + Γz)α̇z + (Ωr(Ωr + λ) + ΓyΓz)αz = 0, (47)

which has solution (for αz(0) = −1)

αz(t) = −e−ΓPt/2

(

cos(ξPt/2) +
ΓP

ξP
sin(ξPt/2)

)

, (48)
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FIG. 2: Temperature dependence of the weak-coupling rate
ΓW (red dashed curve), polaron rate ΓP (blue solid curve),
and single-phonon expansion of the polaron rate Γ1−ph (green
dotted curve). Parameters: α = 0.027 ps2, ωc = 2.2 ps−1, and
we have evaluated each rate at Ω = 0.5 ps−1.

with damping rate

ΓP = Γy + Γz =
Ω2

4
(γy(Ωr) + γy(−Ωr) + 4γxx(0)),

(49)

and oscillation frequency

ξP =
√

4Ωr(Ωr + λ)− (Γz − Γy)2. (50)

On the other hand, Eqs. (39) and (40) give for the weak-
coupling theory

α̈z + ΓW α̇z +Ω(Ω + λW )αz = 0, (51)

which has a solution of exactly the same form,

αzW (t) = −e−ΓW t/2

(

cos(ξW t/2) +
ΓW

ξW
sin(ξW t/2)

)

,

(52)
though this time with the weak-coupling damping rate
ΓW of Eq. (44), and oscillation frequency

ξW =
√

4Ω(Ω + λW )− Γ2
W . (53)

In the constant driving case, we may therefore directly
compare the rate ΓP and frequency ξP in the polaron
theory to the weak-coupling expressions ΓW and ξW , re-
spectively.
In Fig. 2 we plot the damping rates ΓP and ΓW ,

along with the single-phonon expansion of the polaron
rate (Γ1−ph of Eq. (45)), as a function of temperature
for an arbitrarily chosen value of the constant driving,
Ω = 0.5 ps−1. For these parameters, the weak-coupling
approximation is indeed shown to predict a larger rate for
all values of T . Furthermore, there is a significant differ-
ence between the full polaron rate (ΓP ) and its single-
phonon expansion (Γ1−ph) above temperatures of about

T=5K

T=75K
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0.0
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FIG. 3: Dependence of the polaron damping rate ΓP (blue
solid curves) and weak-coupling damping rate ΓW (red dashed
curves) on the driving frequency Ω. The two sets of curves
correspond to temperatures of T = 5 K and T = 75 K, as
indicated. Parameters: α = 0.027 ps2, ωc = 2.2 ps−1

10−15 K, indicating that multiphonon effects are becom-
ing important. Hence, in this regime, even though the
weak-coupling rate is still too large, we cannot simply fix
it by replacing Ω → Ωr in ΓW (i.e. taking ΓW → Γ1−ph)
as this neglects important multiphonon processes. No-
tice also that while the weak-coupling rate varies linearly
with temperature above a few Kelvin, the single-phonon
expansion does not, despite having a very similar form,
due to the temperature dependence inherent to Ωr.
In Fig. 3 we show how the polaron and weak-coupling

rates vary with the strength of the driving frequency Ω,
for low and high temperatures. As observed experimen-
tally [11, 12], we see a clear and strong dependence on
the driving strength for both temperature regimes, and
in both the weak-coupling and polaron theories. It is also
interesting to note that around Ω/ωc ∼ 0.7 in the high
temperature case, the polaron and weak-coupling rates
cross, indicating that above this value the hierarchy of
rates discussed in reference to Fig. 2 no longer holds.
We emphasise again that, as in the case of time-

dependent driving, there are two important effects
present in the polaron theory which are not captured by
the weak-coupling treatment, and which become increas-
ingly relevant as the temperature is increased. Firstly,
there are multiphonon contributions, which tend to in-
crease the damping rate, as can clearly be seen by com-
paring the full polaron rate to its single-phonon expan-
sion in Fig. 2. Secondly, the interaction of the QD exciton
with the phonon bath causes a reduction in the effective
driving field. For Ω/ωc < 1, this tends to decrease the
damping rate, as can be seen from Fig. 3.
We are also now in a position to explain the origin of

the unphysical behaviour predicted by the weak-coupling
theory at 75 K (see Fig. 1). In Fig. 4 we again plot
the excitonic population as a function of pulse area, but
this time for a constant driving pulse of 14 ps duration,
which is roughly equal to the full-width-half-maximum
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FIG. 4: Exciton population as a function of pulse area for
constant driving. The upper plot is calulated using polaron
theory while the lower uses weak-coupling theory. The differ-
ent curves in each plot correspond to temperatures ranging
from 5 K to 75 K in steps of 10 K, with lower temperatures
coloured blue and higher temperaturea red (the arrows in-
dicate increasing temperature). Parameters: pulse duration
= 14 ps, α = 0.027 ps2 and ωc = 2.2 ps−1.

(FWHM) of the Gaussian pulse used in Fig. 1. Notice
that for T = 75 K, the excited state again takes on un-
physical negative values in the weak-coupling theory for
pulse areas Θ ∼ π (lower plot). To see how this comes
about, we must consider the weak-coupling oscillation
frequency ξW of Eq. (53). For Γ2

W > 4Ω(Ω+λW ), we find
that ρXX can take on negative values when λW < −Ω,
i.e. when the correction to the driving frequency is larger
than the frequency itself, the weak-coupling theory dis-
cussed here breaks down. This can ultimately be at-
tributed to the fact that no secular approximation was
made in the derivation of the weak-coupling Bloch equa-
tions [56].
Let us now consider the frequency shift in slightly

more detail. In the weak-coupling theory we find from
Eqs. (42) and (43) that

λW = ΩP
∫ ∞

0

dω
J(ω) coth(βω/2)

Ω2 − ω2
, (54)

where P indicates that the Cauchy principal value
should be taken, and we have made use of the identity
∫∞

0 eiωsds = πδ(ω) +P(i/ω). Since we expect the weak-
coupling theory to break down in the high temperature
limit, we can evaluate λW analytically by approximating
coth(x) ≈ x−1 in the integrand of Eq. (54). In doing so,

we find

λW ≈ −Ω
√
παωc

β

(

1− 2(Ω/ωc)F (Ω/ωc)
)

, (55)

where F (x) = exp[−x2]
∫ x

0 exp[y2]dy is the Dawson inte-
gral. The condition λW < −Ω, which determines when
we expect unphysical behaviour from the weak-coupling
theory, then becomes

β <
√
παωc, (56)

where we take the limit Ω/ωc ≪ 1. For the parameters
of Fig. 4, we then expect to obtain unphysical behaviour
when T > 72 K, in good agreement with the actual dy-
namics. We note that while Eq. (56) may give a bound
on when the limits of the weak-coupling theory are met,
its degree of accuracy may become poor well before this
condition is satisfied (see Eq. (29) and discussion there).
We have seen previously that by expanding the full

polaron damping rate to its single-phonon terms we may
recover the weak-coupling damping rate, though eval-
uated at a renormalised frequency (compare Eqs. (44)
and (45)). In order to complete the picture, we shall
now show a similar equivalence between the polaron and
weak-coupling frequency shifts at the single-phonon level.
Expanding Eq. (34) to first order in J(ω) we find the
single-phonon approximation to the polaron frequency
shift, λ → λ1−ph, where

λ1−ph = Ω3
rP

∫ ∞

0

dω
J(ω)

ω2

coth(βω/2)

(Ω2
r − ω2)

. (57)

However, this is not quite the whole story since, in the
polaron theory, the driving frequency is shifted both by
λ, and also at the Hamiltonian level through Ω → Ωr.
Ultimately, it is the observables, such as the population
difference, that are the physically meaningful quantities
to consider. Inspection of the frequencies ξP in Eq. (50)
and ξW in Eq. (53) therefore tells us that we should com-
pare Ωr(Ωr + λ) in the polaron theory to Ω(Ω + λW ) in
the weak-couping theory, as we know that Γz −Γy ≈ ΓW

at the single-phonon level. Expanding Ωr to first order
in J(ω), we find Ωr(Ωr + λ) ≈ Ω(Ω +∆Ω) where

∆Ω = Ω

∫ ∞

0

dω
J(ω)

ω2
coth(βω/2)

(

ω2 +Ω2
r(B

2 − 1)

Ω2
r − ω2

)

.

(58)
Expanding the remaining factors of B and occurrences
of Ωr to first order in J(ω) we find that Eq. (58) reduces
to Eq. (54) (i.e. ∆Ω → λW ); in the weak-coupling limit,
the polaron and weak-coupling theories therefore predict
the same correction to the driving frequency.

C. Non-Markovian effects

Finally, we shall now relax the Markov approximation
made in section IIIA to investigate non-Markovian ef-
fects on the QD exciton dynamics [42–44, 52–55], within
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FIG. 5: Exciton population dynamics in the time domain
calculated with (solid blue curve) and without (dashed black
curve) a Markov approximation. The inset shows the non-
Markovian decay rate (dashed red curve) approaching its
constant Markovian value (solid orange line). Parameters:
α = 0.027ps2, ωc = 2.2ps−1, T = 10 K and Ω = 2ps−1.

the polaron frame [58]. Referring to Eq. (21), and consid-
ering the case of constant driving for simplicity, we find
that our non-Markovian master equation may be written

ρ̇SP(t) = − i

2
[δ′σz +Ωrσx, ρSP(t)]

−Ω2

4

∫ t

0

dτ
(

[σx, σx(t− τ, t)ρSP(t)]Λx(τ)

+[σy, σy(t− τ, t)ρSP(t)]Λy(τ) + H.c.
)

. (59)

Avoiding the Markov approximation thus corresponds
to the introduction of time-dependent rates and energy
shifts in our master equation [56].
We determine Bloch equations from Eq. (59) in exactly

the same way as the Markovian case. Considering reso-
nant excitation, δ′ = 0, and inserting σx(t − τ, t) = σx

and σy(t − τ, t) = cos(Ωrτ)σy + sin(Ωrτ) (which are ex-
act for constant driving), we find an equation of motion
for the polaron frame Bloch vector identical to Eqs. (30)-
(35) but with Ω(t) → Ω, Ωr(t) → Ωr, and all γl(ω) and
Sl(ω) replaced with the time-dependent quantities

γl(ω, t) = 2Re

[∫ t

0

eiωτΛl(τ)dτ

]

, (60)

and

Sl(ω, t) = Im

[∫ t

0

eiωτΛl(τ)dτ

]

, (61)

respectively. For the model we consider here, the dif-
ference between the non-Markovian and Markovian po-
laron frame dynamics is entirely captured in Eqs. (60)
and (61). The Markov approximation simply corresponds
to pushing the upper integration limits to infinity. We
can therefore make the immediate observation that we
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FIG. 6: Exciton population dynamics in the time domain for
parameters identical to Fig. 5 but with a higher temperature
of T = 50 K. Calculations with (solid blue curve) and with-
out (dashed black curve) a Markov approximation are again
shown. The inset shows the corresponding Markov (solid or-
ange line) and non-Markov (dashed red curve) rates.

should expect the Markovian and non-Markovian dynam-
ics to deviate most at short times, since this is when
γl(ω, t) differs significantly from γl(ω,∞) (and similarly
for Sl(ω, t) and Sl(ω,∞)). These deviations should be
most pronounced when Λl(0) is greatest in magnitude,
since this maximises the difference between the Marko-
vian and non-Markovian rates (and energy shifts), and
decays on a long timescale (set by 1/ωc), as this increases
the time over which the non-Markovian rates (and energy
shifts) reach their Markovian limits.
To show that this is indeed the case, in Fig. 5 we plot

the excitonic population of our QD as a function of time
(rather than pulse area). For this figure we take the rel-
atively large value of Ω = 2 ps−1, so that the excitonic
system evolves appreciably within the phonon bath cor-
relation time, and consider a low temperature regime of
T = 10 K. For these parameters non-Markovian effects
are most pronounced at short times, as expected, though
it is generally fairly difficult to distinguish between the
two theories, especially beyond t ∼ 10 ps. In the inset
we plot the non-Markovian generalisation of the polaron
theory decay rate (see Eq. (49))

ΓP (t) =
Ω2

4

(

γy(Ωr, t) + γy(−Ωr, t) + 4γx(0, t)
)

, (62)

which rapidly approaches its Markovian limit on a
timescale ∼ 1 ps.
We can enhance short-time non-Markovian effects by

considering higher temperatures, as this increases the dif-
ference between the Markov and non-Markov rates and
energy shifts on the bath correlation timescale (though it
does not change the timescale on which the Markov limit
is reached). This is shown in Fig. 6, where we again com-
pare Markovian and non-Markovian dynamics, but now
at the higher temperature of T = 50 K. Non-Markovian
effects are indeed more pronounced at short times in this
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case, and, as shown in the inset, the Markov and non-
Markov rates do differ more significantly at short times,
though the Markov limit is again reached on a similar
timescale to that at 10 K. Once more, beyond 5− 10 ps
there is very little to distinguish the Markovian and non-
Markovian dynamics.
The inclusion of non-Markovian effects within the po-

laron frame master equation can therefore affect the pop-
ulation dynamics at short times (∼ 5 ps and below), but
makes very little difference on longer timescales. When
plotting excitonic Rabi rotations as a function of pulse
area, as in Figs. 1 and 4, it is only the final exciton pop-
ulation which is measured. For the parameters of Fig. 4,
for example, this corresponds to reading out the excited
state population after 14 ps. Even for the relatively large
Rabi frequencies used in Figs. 5 and 6, we see that non-
Markovian effects are almost negligible on this timescale.
Furthermore, at larger temperatures, for which short-
time non-Markovian effects seem to be more noticeable,
the damping is more pronounced, so that the steady state
is reached sooner. Hence, since short time behaviour is
not captured in the pulse area plots of Figs. 1 and 4, nei-
ther are non-Markovian effects (remember that in Fig. 1
the pulse FWHM is close to 14 ps). In fact, if we plot
the exciton population as a function of pulse area using
our non-Markovian polaron master equation [Eq. (59)]
for the same parameters as Fig. 4, we find that it is al-
most indistinguishable from the Markov version on the
scale shown in the upper part of that figure. Hence, our
theory predicts that (for the parameters considered here)
in order for polaron frame non-Markovian signatures to
be evident in pulse-area plots, FWHM pulse durations on
the sub 5 ps timescale should be used, much shorter than
those in the experiments performed in Refs. [11, 12].

V. DISCUSSION AND SUMMARY

Inspired by recent experimental observations [11, 12],
we have investigated the excitonic dynamics of a res-
onantly driven QD under the influence of dephasing
due to its interactions with an acoustic phonon envi-
ronment. We have developed a combined polaron trans-
form, time-local master equation approach to the prob-
lem, which accounts for non-perturbative effects such
as multiphonon processes and phonon-induced driving
renormalisation. We have also extended the theory to
the non-Markovian regime. We have found that for low
temperatures (< 30 K), the weak-coupling theory pre-
sented in Refs. [11, 12] is in excellent agreement with
the polaron master equation dynamics. However, as the
temperature is increased, we find that the weak-coupling

treatment begins to over estimate the damping rate, com-
pared to the polaron theory prediction. In fact, it is in-
teresting to note that in Ref. [12] it was reported that a
weak-coupling fit to the data slightly overestimates the
damping for temperatures > 40 K, consistent with our
findings. For these temperatures, the non-perturbative
aspects of the polaron theory are becoming important.
Renormalisation of the Rabi frequency tends to decrease
the damping rate, while multiphonon processes act to in-
crease it above the single-phonon level (see Eqs. (44), (45)
and (49) for the weak-coupling rate, the single-phonon
approximation to the polaron rate, and the full polaron
rate, respectively). Deviations from the weak-coupling
theory should be even more pronounced at higher tem-
peratures (above the highest temperature of ∼ 50 K ex-
plored in Ref. [12]), though other decoherence mecha-
nisms could also come into play in this regime.

We also considered the important role of the energy-
shift terms in the weak-coupling and polaron theories.
These terms, analogous to the Lamb-shift in energy lev-
els of atomic physics, are responsible for driving and tem-
perature dependent shifts in the exciton population oscil-
lation frequency, as also reported in Ref. [12]. While, in
general, the energy shifts are necessary for a full descrip-
tion of the dynamics, at high temperatures (> 70 K for
the parameters studied here) we find that in the weak-
coupling theory they give rise to unphysical behaviour,
and therefore set a bound on the applicability of this ap-
proach. On the other hand, the polaron theory suffers no
such limitation in this regime.

Finally, we explored the role of non-Markovian ef-
fects within the polaron frame, and found that they
are predominantly a short-time phenomenon for our ex-
perimentally relevant parameters. Hence, they should
have little bearing on pulse area plots of Rabi rota-
tions if the pulse duration is long on the bath correla-
tion timescale [6, 8, 9, 11]. Note this implies that, under
the same excitation conditions, non-Markovian effects are
also negligible in pulse area plots in the weak-coupling
theory at low temperatures, since the polaron and weak-
coupling approaches agree well in this regime. In order to
enhance non-Markovian effects, shorter duration pulses
or longer bath correlation times are required.
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