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1. Introduction

Ultracold gases on optical lattices provide a powerful instrument for creating quantum

devices that can simulate, in a controlled manner, a variety of condensed matter systems.

The emerging possibility of acting on the system with carefully tuned electromagnetic

fields invites the design of a new generation of experiments [1]. It is in principle possible

to implement synthetic Abelian [2, 3, 4] and non-Abelian [5] gauge fields coupled to

neutral ultracold atoms on optical lattices. For the off-lattice implementations see

[6, 7]; for the rotation-based approach see [8]. Recently, synthetic abelian fields for

neutral atoms were successfully created [9, 10, 11]. For a recent review on this topic see

[12].

The main aim of this paper is twofold. First, we will show how the effective gauge

field created for systems of neutral atoms propagating on an optical lattice can be

transformed into other gauges by simply modifying the geometry of the experiment.

Furthermore, we will show that it will be possible to test the invariance of the

Hamiltonian, as proven by Lieb [13], under these gauge transformations by setting up

the experiment in different gauges and checking that certain measurements, in particular

the location of the Mott-Insulator-to-Superfluid phase transition, yield the same result.

More precisely, we will show that it is possible to simulate non-trivial pure gauge vector

potentials and to verify that the physical effects they have are the same as those of a

vector potential that is zero everywhere.

In recent years there have been many proposals to build quantum simulators.

Analogue simulators —where the dynamics of a real physical system are approximated

by another one in a lab— have been proposed. Quantum circuits whose outputs are

important ground states have been put forth [14]. Also, devices that reproduce exactly

the dynamics of a real-world system have been presented [15]. In this article, for the

first time we propose the simulation of a gauge symmetry or, to be more precise, of a

gauge transformation.

The second aim of this paper is to study the phase diagram of the Bose-Hubbard

(BH) Hamiltonian with complex, position-dependent hopping amplitudes beyond mean

field theory using a tensor network ansatz. This model is considered to be hard for

Monte Carlo simulations due to the phase problem, a generalization of the fermionic

sign problem, and is of great relevance for ultracold atomic systems on optical lattices.

Although there is an extensive body of literature devoted to its study with mean field

techniques, see Ref. [16] and references therein, it has not been approached using

methods that go beyond mean field for systems sizes that are beyond the reach of

exact diagonalization. Using a projected entangled-pair state (PEPS) ansatz with

bond dimension χ = 1, 2 we compute the ground state and determine the quantum

critical point of the Mott-insulator-to-superfluid phase transition [17] as a function of

the magnetic flux going through the system. We find that the result for χ = 2, which

allows for some degree of entanglement in the ground state, is not qualitatively different

than that found with χ = 1, i.e. with a mean field ansatz.
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The paper is organized in the following way. We will begin by reviewing the proposal

by Jaksch and Zoller [2] to create an artificial magnetic field for neutral atoms on an

optical lattice. In the next section we will discuss how the experimental setup can be

modified in a simple way in order to transform the vector potential into a collection

of other gauges. The last two sections will be devoted to introducing the relevant

observable and to its computation using tensor network states.

2. Synthetic gauge fields on an optical lattice

Our starting point will be the Bose-Hubbard (BH) Hamiltonian, which describes bosonic

atoms loaded on an optical lattice [18, 19]. By increasing the laser intensity in one of the

directions of the lattice it is possible to create an array of uncoupled two dimensional

lattices, each of which is governed by a 2d BH Hamiltonian,

H = −
∞
∑

m,n=−∞

(

Jxa
†
m+1,nam,n + Jya

†
m,n+1am,n +H.c

)

.+

+
U

2

∞
∑

m,n=−∞

Nm,n(Nm,n − 1)−
∞
∑

m,n=−∞

µm,nNm,n ,

(1)

where the bosonic operators a†m,n and am,n create and destroy respectively an atom at

a lattice site xm,n = a(m,n), with m,n integers and a being the lattice period. The

constant Jx (Jy) is the site-to-site tunneling energy in the x (y) direction. The parameter

U is the pair interaction energy at each site, µm,n is the local chemical potential, and

Nm,n is the local occupation.

The next step is to make the lattice state-dependent. That is, let us suppose the

atoms can be in two hyperfine states |g〉 and |e〉, and that the lifetime of the excited

state is such that spontaneous decays from |e〉 to |g〉 are negligible. Then, if the two

states are trapped in different rows of the lattice, and we increase the laser intensity in

the direction which is orthogonal to these rows we will obtain an array of uncoupled one

dimensional lattices that trap atoms of each state in every other row.

Now, let us couple the states |g〉 and |e〉 by shining two Raman lasers on the system

with wave vectors kg and ke. It follows that an atom on the lattice will undergo Rabi

oscillations between the two levels with a (crucially) position-dependent Rabi frequency

Ω (x) = Ω0e
i(ke−kg)x , (2)

where Ω0 is a constant depending on the Raman laser intensity and the detuning.

When an atom undergoes a transition from |g〉 and |e〉 and vice-versa it finds itself

in a maximum of the optical potential, and tends to fall towards a neighboring row of

the lattice at a rate given by

JR =
1

2

∫

ω∗ (x− xm,n+1)Ω (x)ω (x− xm,n) , (3)

where ω (x− xm,n) is a Wannier function centered at site (m,n). Setting q ≡ ke − kg

parallel to the m direction we obtain JR = J0exp(2πiαm), as in [2], with α = |q|a/(2π).
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However, allowing for q to point in any direction of the plane, that is, setting

q = |q| (cos θ, sin θ), the induced tunnelling rate in the n direction becomes

JR =
Ω0

2
eiAy(m,n)

∫

dx |ωx (x) |2 cos (2α cos θ x)×

×
∫

dy ω∗
y (y) e

2πiα sin θωy(y −
π

2
) ,

(4)

where Ay is the y-th component of the vector potential,

Ay (m,n) = 2πα (cos θm+ sin θ n/2) , (5)

plus an irrelevant constant. As we show in the appendix A, the integrals in x and y

depend very weakly on θ and can thus be set to a constant. The final result is

JR = J0e
2πiα(cos θm+sin θ n/2) . (6)

Note that for sin θ = 0 the model reduces to the Hofstadter Hamiltonian [20]. The BH

Hamiltonian for the system, because Ω0 can be tuned in order to set Jx = J0, now reads

H = −J
∞
∑

m,n=−∞

(

a†m+1,nam,n + eiA(m,n)a†m,n+1am,n +H.c.
)

+

+
U

2

∞
∑

m,n=−∞

Nm,n(Nm,n − 1)−
∞
∑

m,n=−∞

µm,nNm,n .

(7)

Hence, by coupling the two hyperfine states with Raman lasers and thus inducing

transitions between them with a position dependent Rabi frequency, an atom going

around a plaquette of the lattice will acquire a non-vanishing phase in the same way

charged particles acquire an Aharanov-Bohm phase in a magnetic field (see Fig.1,

|m,n〉 �−→ ei(A(m,n)−A(m,n+1))|m,n〉 (8)

However if the atom starts the closed path at an adjacent site (m+ 1) it will

acquire the opposite phase because the Rabi frequency for the |g〉 → |e〉 is the complex

conjugate of the Rabi frequency for the |e〉 → |g〉 transition. In other words, an atom

going from an even to an odd row will pick up the opposite phase than an atom going

from odd to even rows. This is the most important drawback of the scheme, as it

leads to a staggered magnetic field. In order to remedy the problem, the authors of

Ref. [2] proposed to break the symmetry between both transitions by tilting the lattice,

which is very challenging from an experimental point of view. Recently, a way around

this problem was proposed in Ref. [21]. There, the authors propose the introduction

of an optical superlattice which breaks the degeneracy between transitions in adjacent

plaquettes. Because the degeneracy is broken, it is possible to drive, e.g. the transitions

|m,n〉 → |m,n+ 1〉 and |m,n〉 → |m,n− 1〉 with different lasers, whose wave vectors

can be chosen opposite to each other and thus rectify the staggered magnetic field.

The scheme we propose to create a vector potential in different gauges requires a

modification if it is implemented with an optical superlattice. It is necessary that the

lasers that drive the different transitions, which were originally degenerate, be rotated

simultaneously and by the same angle.
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Figure 1. Circulation around a plaquette and phases picked up at each transition

between lattice sites. The plaquettes in rows adjacent to the one in the diagram get

opposite phases as in those cases the transitions between the two levels of the atoms

take place in the other direction ( first form |e〉 to |g〉 as opposed to |g〉 to |e〉 ). This
configuration gives rise to a staggered magnetic field. Filled circles trap atoms in state

|g〉 and empty circles trap those in state |e〉.

3. Artificial gauge transformations

In this section we discuss how the geometry of the Raman lasers applied in order to

induce the artificial gauge field can be varied in order to transform the vector potential

into another gauge.

The Hamiltonian en Eq. 1 is invariant under a global transformation where all

the creation and annihilation operators are replaced according to a†m,n → e−iβa†m,n and

am,n → eiβam,n. This leads to global particle number conservation. However, if the

phase β is allowed to vary from one lattice site to another, the Hamiltonian is no longer

invariant.

Nevertheless, it is possible to make this local transformation a symmetry of system

by changing the configuration of the Raman lasers that generate the vector potential.

Let A1 be the vector potential induced by a given configuration in which the Raman-

lasers’ wave-vectors form a given angle θ1 and frequency such that α = α1. Then, it

is straightforward to see that there always exists another configuration that gives rise

to another vector potential A2 given by θ2 and α2 such that α1 cos θ1 = α2 cos θ2, i.e.

such that the magnetic flux is the same. Hence, by tuning α and θ accordingly it is

possible to transform the vector potential into a whole family of gauges which differ by

a linear function of n. Let us stress that these gauge transformations are forced upon

the system, they do not possess a dynamical origin.
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The spectrum of the Hamiltonian in Eq 7 is invariant under a broader set of gauge

transformations [13]. Indeed, one can see that the Hamiltonian remains unchanged if

the hopping phases, i.e. the artificial vector potential, is changed according to

Ax(m,n) → Ax(m,n)− (Λ(m+ 1, n)− Λ(m,n))

Ay(m,n) → Ay(m,n)− (Λ(m,n+ 1)− Λ(m,n)) ,
(9)

as long as one redefines the creation and destruction operators following

am,n → eiΛ(m,n)am,n

a†m,n → e−iΛ(m,n)a†m,n .
(10)

A pure gauge configuration is one that does not contribute to the magnetic flux

going through the system. Due to the fact that the spectrum of the Hamiltonian can

only depend on the gauge field through the flux, a gauge invariant configuration can also

be defined as one that has no physical effect. It follows that all pure gauge configurations

can be cast into the form

APG = (Λ (m+ 1, n)− Λ (m,n) ,Λ (m,n+ 1)− Λ (m,n)) , (11)

as it is easy to check that
∮

C
APG = 0, where C is an arbitrary closed path on the lattice.

It is particularly simple to transform the zero magnetic field Ay = 0 configuration

into a pure gauge. Indeed, for any α 6= 0 if one sets θ = π/2 the vector potential

becomes A′
y = αn/2, which is a pure gauge configuration. A test of the invariance of

the system under artificial gauge transformations would be to perform the appropriate

measurements on the system and verify that the same results are obtained for Ay and

A′
y.

4. Insulator-Superfluid quantum phase transition

In this section we will discuss the phase diagram of the Bose-Hubbard model, which is

gauge invariant. This will allow us to give an experimental protocol to measure these

quantities and hence test the gauge invariance of the actual system in a lab.

A fundamental difference between systems coupled to real gauge fields and systems

coupled to synthetic gauge fields is that in the first system only gauge invariant quantities

are physical whereas in the second system this is not the necessarily case. Indeed, in

Ref. [9] the authors report having experimentally distinguished between two pure gauge

configurations. This is only possible if the measurements they performed were not

gauge-invariant. While a gauge-dependent quantity in the ultracold gas system may be

physically meaningful, it cannot have a counterpart in a system with charged particles

coupled to a real gauge field.

It is well known that the BH Hamiltonian shows a phase transition in its ground

state which depends on the ratio J/U . For J/U → 0 and commensurate filling the

ground state is a product state with a definite occupation at each site,

|MI〉 =
NL
⊗

i=1

|n̄〉i (12)
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where n̄ = N/NL is the ratio between the total number of atoms,N , and the total

number of lattice sites is NL. The subscript i labels the lattice site. In the other

limit, J/U → ∞ the ground state a product of N single-particle Bloch functions with

momentum corresponding to the minimum of the first energy band. In the limit where

the system is very large both in number of atoms and lattice sites, keeping n̄ fixed, the

ground state can be shown to be a product over coherent single-site occupation states,

|SF 〉 =
L

⊗

m,n=1

exp
(√

n̄a†m,n

)

|0〉 . (13)

where N is the number of atoms. It is possible to distinguish between these two ground

states by the presence or not of long range order or equivalently by computing the

condensate fraction

ρ0 ≡
〈

a†k=0ak=0

〉

=
1

N2
L

∑

m,m′,n,n′

〈

a†m,nam′,n′

〉

. (14)

which counts the number of atoms in which are in the zero momentum single particle

state. As J/U decreases the condensate is depleted until the many-particle reaches the

Mott-Insulator state for J/U = 0. Hence the phase transition between the two states is

continuous.

A large condensate fraction is a signature of the superfluid phase, as it possesses

long range order. Indeed, in the thermodynamic limit the only way ρ0 can be large is

by manifesting long-range non-vanishing correlations. Conversely, the Mott-state does

not present long range order. Off-diagonal correlations decay exponentially fast, and ρ0
is vanishingly small in the limit of an infinite lattice.

The location of the critical point between the two phases cannot be changed by a

gauge transformation, as we shall discuss later on. If the order parameter is zero, i.e.

the system is an insulator, it is zero independently of the choice of gauge. Indeed, the

correlators in any two gauges will at most differ phase exp(i (Λ (R)− Λ (R′))).

5. Determination of the ground state in mean field theory

We now turn to the study of the superfluid-insulator phase diagram of the BH model in

a magnetic field. This problem has been approached using strong-coupling perturbation

theory in [22], although we proceed with variational techniques.

An arbitrary state of the Hilbert space is given by

|Ψ〉 =
∑

n1,n2,..,nN

Cn1,n2,..,nN |n1, n2, .., nN〉 (15)

where ni is the atom number at site i and L2 is the total number of sites on the lattice.

If we allow at most d atoms to occupy each site, then the dimension of the many-body

Hilbert space, which is the tensor product over all the single-site Hilbert spaces will have

dimension dL
2

. The exponential dependence of the many-body Hilbert space dimension

makes it impossible to attempt an exact diagonalization or a variational approach on
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the complete Hilbert space already for a 4 × 4 lattice with d = 3. Consequently, an

approximate scheme is needed where most of the states of the Hilbert space are ignored.

The fact that in both limits, J ≫ U and J ≪ U , the ground state can be expressed

as a product over single-site states allows for the quantum phase transition to be probed

by a mean-field ansatz, also known as Gutzwiller’s ansatz, which neglects quantum

correlations between neighboring sites,

|ΨMF 〉 =
⊗

m,n

∑

N

fN
m,n|N〉m,n . (16)

This approximation is completely inadequate in one dimension, whereas it is exact in

infinite dimensions. It was used in [23] to determine the phase diagram of the BH model

in 2 + 1 dimensions.

The mean field energy EMF is a sum of single site energies,

EMF

({

fN
m,n

})

=
∑

m,n

Em,n

({

fN
m±1,n, f

N
m,n±1

})

, (17)

where Em,n depends only on the single-site states neighboring with site (m,n). The

authors of [24] approximate the ground state of the BH model with a magnetic field

by sequentially minimizing the local quantities Em,n with respect to the parameters
{

fN
m±1,n, f

N
m,n±1

}

using a self-consistent method. However, in stead of using the general

mean-field ansatz of Eq. 16, they impose the q-periodicity of the Hamiltonian when the

flux per plaquette, in our notation α cos θ = p/q is a rational number. Imposing this

periodicity and translational invariance in the other direction on the trial state reduces

the problem of minimizing EMF on an infinite lattice to that on a q × 1 lattice.

In Ref. [24] the optimization of the ansatz is carried out by defining a local

Hamiltonian Hm,n which only depends on the local states in the neighboring sites,
{

fN
m±1,n, f

N
m,n±1

}

. Then Hm,n is diagonalized in the occupation basis and the lowest

lying eigenvector becomes the updated state at site (m,n).

However, if the above method is applied to an unconstrained mean-field ansatz,

where the symmetries are not imposed by hand, it often converges to local minima and

there is no guarantee that the energy is being minimized at each step. To bypass this

problem we optimize |ΨMF 〉 by euclidean evolution.

Fig. 2 depicts the phase diagram of the model determined by optimizing the mean

field ansatz with euclidean evolution. A particularly simple confirmation of the gauge-

invariance of the model would be to check that the location of the Mott-to-Superfluid

transition for a vector potential Ay(m,n) = αn/2 is located at the same value of J/U

as for the case Ay(m,n) = 0, as they are gauge equivalent because the former is a pure

gauge configuration. In principle this can be done for any value of θ, but the case θ = 0

is particularly simple.

6. Determination of the ground state using a Tensor Network Ansatz

The Hamiltonian under study, Eq. 7, presents the so-called phase problem which hinders

progress through Monte Carlo calculations. Hence, in order to obtain results beyond
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mean-field we resort to a tensor network approach, which has proven to be very successful

in describing one dimensional systems [25]. Recently, a great deal of effort has been made

towards developing a tensor network ansatz for two dimensional systems. In this section

we employ one of these ansätze, namely the PEPS ansatz [26, 27, 28], to determine the

phase diagram allowing for some degree of quantum correlation between different sites

of the lattice. The ansatz replaces the quantities f i
n in each lattice site with tensors

Ani

αβγδ where the Greek indices can take up to χ values. The trial state now reads

|ΨPEPS〉 = F (An1,1 , · · · , An1,L , · · · , AnL,L) |n1,1 · · ·n1,L · · ·nL,L〉 , (18)

where the operator F(·) stands for the contraction of the whole tensor network according

to the connectivity of the lattice (in our case a square one) and the indices ni,j are

summed over.

In order to compute local quantities all the indices of the tensors must be contracted.

This can be done, approximately, in an efficient way. This means that the amount of

resources needed to carry out the contraction scales polynomially in χ.

We will follow the algorithm described in [29] which is based on two different

ways of finding the ground state of a given Hamiltionian. The first approach consists

in iteratively minimizing the expected value of the Hamiltonian (the so-called direct

minimization). The second one is called euclidean evolution and consists in evolving a

given PEPS state in imaginary time by minimizing the distance between the evolved

state and a new PEPS state. The computational effort is the same in each case and

grows as χ12.

The implementation of the algorithm to the present work has been done by

combining both methods. The direct minimization is used for initializing the state

and then the approximate ground state is reached by an evolution in imaginary time.

Furthermore, we take the χ = 1 PEPS (mean-field solution) as the initial state for the

χ = 2 PEPS in order to accelerate the convergence. Every converged PEPS is obtained

with imaginary time step dt = 10−3 and the Suzuki-Trotter expansion of second order.

We compute the condensate fraction for different values of α for a 3 × 3 lattice of

3-valued sites, i.e. sites whose occupation may be between 0 and 2. We choose two

different values of alpha, 0 and 1/2, in order to compare the two curves. Results are

shown in Fig. 3.

For an infinite system the insulator-to-superfluid quantum phase transition is

located at the value of J/U for which the condensate fraction computed in the ground

state becomes larger than 1/N . However, for finite systems there is no exact phase

transition. In order to estimate the position of the critical value of J/U as accurately as

possible for the infinite system from studying a finite system we compute the derivative

of the condensate fraction with J/U and determine the point where it is greatest. As

the size of the lattice increases this criterion yields the correct result for the location of

the critical point.
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Figure 2. Critical value of J/U for which the ground state of the BH Hamiltonian, Eq.

7, undergoes an insulator-to-superfluid transition as a function of the magnetic flux

Φ = α cos θ. The phase diagram was determined using the mean field approximation

for a 10× 10 square lattice with open boundary conditions for µm,n = 0.5U maximum

one-site occupation d = 2. As the angle of external lasers is changed, a transfer from

the transverse component to longitudinal component of the effective gauge field takes

place and modifies the location of the critical value of J/U . For α cos θ → 0, the

hopping phase is Ay(m,n) = αn/2, and the Mott-insulator-to-superfluid transition

point appears at the known value (J/U)c = 0.043. Although site-dependent phases

are present, this transition point remains unchanged because Ay(m,n) is completely

gauged-away, as it only depends on n and hence the derivative in the m direction are

zero. Only the interval Φ ∈ [0, 0.5] is considered because the Hamiltonian in Eq. 7 is

invariant under the replacement Φ → 1− Φ and is periodic in Φ with unit period.

7. Results

The two phases of the infinite BH model in Eq. 7 can be distinguished using as order

parameter the condensate fraction ρ0. In the superfluid phase corresponding to large

J/U , the condensate fraction is non-zero because the ground state presents long range

order. Conversely, in the Mott-insulator phase there is no such order and ρ0 = 0. In the

case of a finite size system, the transition does not appear at the point where ρ0 is no

longer vanishing but, rather, as a sharp transition from a small to a large value of ρ0.

The point of the phase transition is then determined as the point where the derivative

of the order parameter reaches a maximum.

In Fig.2, we plot the phase diagram in the J/U vs Φ = α cos θ plane, that is, we

analyze the value of the critical coupling J/U as a function of the flux per plaquette. The

system we have studied corresponds to a 10× 10 lattice with possible local occupations
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Figure 3. Condensate fraction ρ0 as a function of J/U for µm,n = 0.5U and for two

different values of magnetic flux Φ = α cos θ = 0 (top) and Φ = 0.5 (bottom) computed

by exact diagonalization and by PEPS ansätze with bond dimension χ = 1, 2 on a 3×3

lattice with maximum local occupation d = 2. In all cases, ρ0 tends to 1/N for small

enough values of J/U and approaches a macroscopic value for J/U → 1, which is a

sign of long range order. In order to compute the critical point we determine the value

of J/U where the variation of ρ0 reaches its maximum. As can be seen with the naked

eye, the critical point for α = 0 is located at a smaller J/U than that for α = 0.5. The

discontinuities in the exact curves are due to changes in total particle number of the

ground state and are smoothed out in the thermodynamic limit.
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d = 0, 1, 2. The result shown in this plot has been obtained by optimizing a mean

field ansatz, which is a PEPS ansatz with χ = 1. Let us note that, for Φ = 0, we

recover the well known mean-field value for the quantum phase transition J/U = 0.043.

Then, as the magnetic field increases the critical value of J/U raises monotonically until

roughly J/U = 0.07. This result produces a clear experimental prediction. The action

of external laser fields as described in the previous chapters should shift the transition

point to larger values than those measured in the absence of effective magnetic fields.

In order to analyze whether this result is an artifact of the mean field approximation,

we have studied a smaller 3×3 lattice using χ = 1 (mean field) and χ = 2 tensor networks

as well as an exact diagonalization. Again, the possible occupation per site is d = 0, 1, 2

and the chemical potential is maintained equal to µ = 0.5U , which ensures that the

Mott state has n̄ = 1. The main result we obtain is that a χ = 2 PEPS does not differ

significantly from that obtained with a χ = 1 ansatz, and both of them are very close

to the exact result. We conclude that the phase diagram of the BH model obtained

by variational means with a product state ansatz does not change significantly when

a small amount of entanglement is included. The consistency between mean field and

χ = 2 PEPS results holds for all values of the flux, though the departure of χ = 2 results

from the χ = 1 ones is larger when Φ = α cos θ increases.

8. Conclusion

Artificial non-dynamical gauge fields can be simulated in optical lattices using external

laser fields. The model describing such a system corresponds to a Bose-Hubbard

Hamiltonian with complex hopping phases.

In this paper, we have presented a scheme that allows for the transformation of these

artificial gauge fields. In particular, we have found the way to experimentally transform

the vector potential into different gauges. We stress that these gauge transformations

are unrelated to the gauge symmetry of the underlying electromagnetic interactions.

We have also analyzed the phase transition present in this modified BH Hamiltonian

using a PEPS ansatz. We have determined the position of the Mott-insulator-to-

superfluid critical point as a function of the magnetic flux going through the system. Our

main result is that the critical value of J/U of the insulator-to-superfluid phase transition

grows smoothly with the induced magnetic flux. This result is already present in the

mean field approximation and remains stable when PEPS are used. The modifications

introduced by the PEPS ansatz are more significant for large values of the induced

external flux.
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Appendix A.

In the calculation of the Raman-assisted tunnelling rate JR = JeiAy(m,n) we neglected

to observe that the constant J depends on α and θ. In order to justify this assumption

we numerically compute

J =
Ω0

2

∫

dx|ωx (x) |2 cos (2α cos θx)×

×
∫

dyω∗
y (y) e

2πiα sin θ (x)ω
(

y − π

2

)

.

(A.1)

As can be seen in Fig. A1 the dependence on J on α in units of the recoil energy ER

is quite more significant then its dependence on θ. This suggests that, in order to vary

the magnetic flux going through the system, it would be far more efficient to vary θ

in stead of α. Indeed, to ensure that the system remains isotropous it is necessary to

tune the value of Ω0 such that for every value of α we have Jx = J . By changing θ this

compensation is not necessary because the maximum variation of J as a function of θ

is 4%, as opposed to 25% when α is varied.
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[24] M. O. Oktel, M. Niţă and B. Tanatar, Phys. Rev. B 75, 045133 (2007).

[25] S. White. Phys. Rev. Lett., 69:2863, 1992.

[26] F. Verstraete and J.I. Cirac, cond-mat/0407066.

[27] G. Sierra and M. A. Mart́ın-Delgado, cond-mat/9811170.

[28] T. Nishino and K. Okunish, J.Phys. Soc. Jpn 67 3066 (1998).

[29] V. Murg, F. Verstraete and J. I. Cirac, Phys. Rev. A 75, 033605 (2007).

http://arxiv.org/abs/1008.4864
http://arxiv.org/abs/1008.5378
http://arxiv.org/abs/cond-mat/0407066
http://arxiv.org/abs/cond-mat/9811170

	1 Introduction
	2 Synthetic gauge fields on an optical lattice
	3 Artificial gauge transformations
	4 Insulator-Superfluid quantum phase transition
	5 Determination of the ground state in mean field theory
	6 Determination of the ground state using a Tensor Network Ansatz
	7 Results
	8 Conclusion
	Appendix A 

