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Entanglement evolution of non-trace-preserving maps
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We study the entanglement evolution of non-trace-preserving one-sided maps for 2× 2 quantum
states. We present an expression for the maximum entanglement of the output state of a given
non-trace preserving map, and also an explicit equation of the initial state which maximizes the
entanglement of the output state. An experiment is proposed and it is numerically simulated. We
also present the averaged entanglement factorization equation in a multi-outcome process.
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Introduction.— Quantum entanglement plays a central
role in quantum information and also in the foundations
of quantum physics. Thus, it has been extensively stud-
ied (see, e.g., [1–6]).
In practice, one often needs to manipulate quantum en-

tanglement with measurements. Moreover, systems are
exposed to the disturbance of a noisy environment. For
example, there is no perfect channel for entanglement
distribution, i.e., the channel can be regarded as a one-
sided noisy channel. In teleporting quantum entangle-
ment [7], the pre-shared entanglement is often imperfect
and Bell measurements are involved. Most generally, the
channel is noisy and non-trace-preserving. Even though
the entanglement dynamics in open systems has been ex-
tensively studied, there are almost no general results on
entanglement evolution independent of the detailed dy-
namical process.
Recently, Konrad et al [8] proposed a striking factor-

ization law for entanglement evolution of one-sided maps.
They [8] concludes that the output entanglement depends
on the channel and the entanglement of the initial state,
but it is independent of the specific form of the initial
state. This conclusion has been experimentally tested [9]
with a trace-preserving map.
Here, we study the entanglement evolution of non-

trace-preserving maps. We emphasize that the results
presented here, though closely related to, are not sub-
sumed by Ref. [8]. As shown below, by a concrete counter
example, the entanglement factorization law presented in
Ref. [8] does not apply to non-trace-preserving maps.
Here we show that, given a non-trace-preserving one-

sided map, I ⊗ $, if we know how the map changes the
maximized entangled state |φ+〉 = 1√

2
(|00〉 + |11〉), we

can always know how the map changes any other pure
bipartite state. More importantly, we present an explicit
expression for the largest possible output entanglement
over all input states. Moreover, we derive the explicit
initial state which achieves such maximum output en-
tanglement.
Multi-outcome processes, conditional output states,

and non-trace-preserving maps.— Any quantum state

evolution can be described by a completely positive map.
If there are measurements during the evolution, then we
need a non-trace preserving map. Following Ref. [10],
we consider the intuitive picture in Fig. 1. Initially, a

FIG. 1: (color on line) An intuitive description of a non-trace
preserving map. Let mode 1′ be the incident mode. Then a
certain process P , which contains measurements, takes place.
If certain specific measurement outcome i appears in process
P , we regard the outgoing state on qubit 2 as the output state
of the non-trace preserving map for the conditional process
P |i. If we regard the initial bipartite state of qubit 1 and 1’
as the input state, a conditional process corresponds to a one-
sided map and the output state is a bipartite state on qubit
1 and qubit 2.

single-mode state ρin on mode 1′ is sent to box D. Pro-
cess P then takes place inside the box, where there can
be many qubits and complicated interactions, as well
as measurements with known results. We regard P as
a multi-outcome process, if there are different possible
measurement outcomes at the measurement stages. Af-
ter process P is run, a qubit labeled by 2 comes out of the
box. Instead of studying the averaged output state over
all possible measurement outcomes {i}, we shall study
the output state conditional on the appearance the spe-
cific outcome i. Namely, we want to study the single-shot
output state only when the measurement outcome is i.
Equivalently, if outcome i is obtained for the measure-
ments, we say that the conditional process P |i happens,
and the final state ρout on qubit 2 outgoing from the box
is the state we study. We focus on the output state of the
conditional process P |i rather than the averaged output
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state of process P .
To fully identify the conditional process P |i, one can

prepare a maximized two-mode entangled state |φ+〉 (on
qubits 1 and 1’ in Fig. 1) and let one mode (qubit 1’) of
the bipartite state evolve under the conditional process
P |i. The final two-mode state ρ$ on qubit 1 and qubit
2 fully characterizes the conditional process [11]. Such
a conditional process can be described by a non-trace
preserving (one-sided) map.
If the initial state is a two-mode state on modes 1 and

1′, and only mode 1′ is sent to box D, such a conditional
process P |i is regarded as a one sided map of I⊗$, and the
output state is also a two-mode state on mode 1 and 2.
This map is fully characterized by ρ$, which is the output
state on modes 1 and 2, given the maximally-entangled
state |φ+〉〈φ+| as the input state [11]. We assume

I ⊗ $(|φ+〉〈|φ+|) = fρ$

I ⊗ $(|ψ〉〈ψ|) = f ′ρψ , (1)

where f = tr [I ⊗ $(|φ+〉〈|φ+|)], f ′ = tr [I ⊗ $(|ψ〉〈ψ|)].
We wish to derive an explicit expression for the largest
possible output entanglement among all initial input pure
states {|ψ〉}, and also to seek the specific initial state |ψ〉
which leads to the maximum output entanglement given
ρ$ which characterizes the map.
No entanglement factorization law for non-trace pre-

serving map.—The explicit formula [8] for the factoriza-
tion law is C(ρψ) = C(|ψ〉〈ψ|)C(ρ$), where C(X) is the
entanglement concurrence for density matrix X . This
shows that the output entanglement concurrence is de-
pendent on the input entanglement but independent of
the input state. Also the output entanglement is an in-

creasing function of the entanglement of the input state.
This factorization for C(ρψ) does not apply to non-trace-
preserving maps, as shown by the following counter ex-
ample.
We now present a counter example with a non-trace-

preserving map. Consider the following specific map

I ⊗ $(ρin) = I ⊗ M̂(ã, b̃)ρinI ⊗ M̂(ã, b̃) (2)

where M̂(ã, b̃) = ã|0〉〈0| + b̃|1〉〈1|, and |ã|2 + |b̃|2 = 1.
Given a normalized input state ρin = |χ〉〈χ| and |χ〉 =
a|00〉+ b|11〉, we have

I ⊗ $(ρin) = γ|χ′〉〈χ′| (3)

and γ =

√

|aã|2 + |bb̃|2, |χ′〉 = aã
γ
|00〉 + bb̃

γ
|11〉. The

entanglement concurrence of the outcome state is

C(|χ′〉〈χ′|) = 2|aãbb̃|
|aã|2 + |bb̃|2

. (4)

Setting |a| = |b̃| and |b| = |ã| for the input state, we
shall obtain the maximum output entanglement concur-
rence, C = 1. Clearly, the entanglement of the output

state is dependent on the input state rather than the en-

tanglement of the input state, and, in general, is not an
increasing function of the initial entanglement. For ex-

ample, setting ã =
√

1
3 and b̃ =

√

2
3 , the input state

√

2
3 |00〉+

√

1
3 |11〉 will have the maximum output entan-

glement concurrence C = 1, while the input state |φ+〉
would only have an output entanglement concurrence of
C = 2

3 , less than 1.

The map given by Eq. (3) corresponds to the following
conditional process in Fig. 1: Prior to the process, there
is a bipartite channel state ã|00〉 + b̃|11〉 for modes 2′

and 2 inside the box. The initial input bipartite state
is prepared on modes 1 and 1′. Mode 1′ is then sent
to the box D and a Bell measurement is taken on the
input mode and mode 2′. If |φ+〉〈φ+| is observed, the
conditional process P |i happens, and the bipartite state
of mode 1 and mode 2 is the output state.

Entanglement evolution maximization over non-trace-

preserving one-sided maps.— A 2 × 2 pure state |χ〉 =
a|00〉 + b|11〉 can be rewritten in the form |χ〉〈χ| =
2M̂(a, b)⊗I(|φ+〉〈φ+|)M̂(a, b)⊗I. From Eq. (1) we have
I ⊗ $(|χ〉〈χ|) = 2fM̂(a, b) ⊗ Iρ$M̂(a, b) ⊗ I = f ′ρχ. We
emphasize here that even though ρ$ is normalized, the
operator 2M̂(a, b)⊗Iρ$M̂(a, b)⊗I is not necessarily nor-
malized. Moreover, the factor g here is dependent on the
parameters in both |χ〉 (the initial state) and ρ$ (which
characterizes the map I ⊗ $). We shall present the ex-
plicit formula for the relation between the entanglement
of ρ$ and ρχ. Based on this we show which input state
|χ〉 will lead to the maximum entanglement concurrence
of ρχ, given the channel ρ$.

For clarity, we define the following function C of an
arbitrary non-negative definite 4 × 4 matrix (operator)
N

C(N) = max{0,
√

ξ1 −
√

ξ2 −
√

ξ3 − ξ4} (5)

where the ξis are the eigenvalues of N · Ñ , in descend-
ing order, with Ñ = σy ⊗ σyN

∗σy ⊗ σy , with N∗ the
complex conjugate of N . If N is a density matrix of a
2× 2 system, C(N) is just the entanglement concurrence
of the system [5]. In particular, C(|χ〉〈χ|) = 2|ab|. With
this definition of C, we can summarize the major result,
equation (5) in Ref. [8] as follows:
Lemma 1 Given any density matrix ρ$, if N =
2M̂(a, b)⊗ Iρ$M̂

†(a, b)⊗ I, then

C(N) = C(|χ〉〈χ|) · C(ρ$) = 2|ab|C(ρ$). (6)

However, this is not the entanglement concurrence of
ρχ because N is not necessarily normalized, even though
ρ$ is. Now denote N = gρχ, and g = trN . According to
the definition of C:

C(ρχ) = C(N)/g = 2|ab|C(ρ$)/g. (7)
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Note that the so-called factorization law as presented
in [8] is the function C of the operator N = 2M̂(a, b) ⊗
Iρ$M̂

†(a, b) ⊗ I, rather than, the entanglement con-
currence of the density operator ρχ. For any trace-
preserving map, we always have N = ρχ, and therefore
the major conclusion in [8] applies. However, for a non-
trace-preserving map, in general ρ$ 6= N , because the
factor g depends on both ρ$ and |χ〉.
The remaining task now is to derive an explicit formula

for g in terms of ρ$ and |χ〉. According to its definition,
g = trN = 2trM̂(a, b)⊗ Iρ$M̂ †(a, b)⊗ I. To avoid mean-
ingless results, we assume C(ρ$) > 0 throughout this
paper. Suppose the density matrix of mode 1 of ρ$ is

ρ0 = tr2ρ$ =

(

c1 α
α∗ c2

)

= K0, where tr2 is the partial

trace over the subspace of the second qubit and

c1 = 〈0|tr2ρ$|0〉, c2 = 〈1|tr2ρ$|1〉. (8)

Consequently, We have

g = 2trM(a, b)ρ0M
†(a, b) = 2|a|2c1 + 2|b|2c2 (9)

where c1 = 〈0|tr2ρ$|0〉 and c2 = 〈1|tr2ρ$|1〉 . Since ρ$
itself is normalized, we have c1 + c2 = 1. Therefore,
when |a| = √

c2, |b| =
√
c1, the value C(ρχ) in Eq. (7) is

maximized and

C(ρχ) =
C(ρ$)

2
√
c1c2

(10)

More generally, the initial pure state can be

|ψ〉 = I ⊗ U |χ〉 =
√
2M̂(a, b)⊗ U |φ〉 (11)

where U is an arbitrary unitary operator. Given the fact
that U ⊗ U |φ+〉 = |φ+〉 for any unitary U , we have

√
2M̂(a, b)⊗ U |φ+〉 =

√
2M̂(a, b)U † ⊗ I|φ+〉. (12)

In such a case, we have

C(ρψ) = 2|ab| · C(ρ$)/g′ (13)

and g′ = tr
[

M̂(a, b)U † ⊗ Iρ$ÛM(a, b)⊗ I
]

. To maxi-

mize C(ρψ), we first fix U and maximize it with a, b. Sup-

pose U †K0U =

(

c′1 α′

α′∗ c′2

)

. The largest value for C(ρψ)

is C(ρ$)

2
√
c′1c

′

2

as shown already. To maximize the value over

all U , we only need to minimize c′1c
′
2. Since U is unitary,

det(U †K0U) = detK0. Therefore c′1c
′
2 = detK0 + |α′|2,

which is minimized when α′ = 0. Namely, C(ρψ) is max-
imized when U †K0U is diagonalized. Therefore, we have
the following formula for the maximized output entan-
glement concurrence for a given map ρ$:

Max{C(ρψ)} =
C(ρ$)

2
√

det [tr2ρ$]
(14)

when

|ψ〉 = I ⊗ U(a|00〉+ b|11〉) (15)

and U is the unitary operator that diagonalizes tr2ρ$ in
U †tr2ρ$U = diag(c′1, c

′
2), |a| =

√

c′1; |b| =
√

c′2. Eq. (14-
15) are the main results of this paper.
Proposed experiment and numerical simulation.—We
propose to test Eq. (14) with imperfect entanglement and
a Bell measurement. The proposed conditional process
consists of two stages: (i) Disturbance of the incident
qubit, mode 1′. Assume now a probability (1− ǫ) of not
affecting the mode and a probability ǫ to make a rotation

R̂(θ) =

(

cos θ sin θ
sin θ − cos θ

)

; (ii) Initially there is a bipar-

tite mixed state ρ̃ for qubits 2′ and 2, inside the box.
After stage (i), a Bell measurement on qubits 1′ and 2′

takes place and |φ+〉〈φ+| is observed as the measurement
outcome.
In an experiment, we assume there is no a priori knowl-
edge of the disturbance and ρ̃. One needs to know ρ$
by testing the channel with the maximally entangled
state |φ+〉 as the input state; and then calculate the
largest possible entanglement output of the conditional
process and the corresponding input state, according to
our Eq. (14). Later on, the channel should be tested with
many different bipartite input states to verify whether
the largest entanglement output and its corresponding
input states are in agreement with the theoretical pre-
diction from Eq. (14).
Now we check Eq. (14) numerically. The output state

on qubits 1 and 2 of the conditional process can be writ-
ten in the following input-output form with the map I⊗$:

I ⊗ $(|ψ〉〈ψ|) = 〈φ+|1′2′ [Ω11′(ψ)⊗ ρ̃2′2] |φ+〉1′2′
= N

[

(1 − ǫ)ρ̃12 + ǫR̂†(θ) ⊗ Iρ̃12R̂(θ)⊗ I
]

(16)

where N is the normalization factor and Ω11′(ψ) =
(1 − ǫ)|ψ〉〈ψ| + ǫI ⊗ R̂(θ)|ψ〉〈ψ|I ⊗ R̂†(θ). The map
is characterized by the output state ρ$, which can
be calculated with Eq. (16) by setting ψ = φ+.
Suppose ǫ = 0.06, θ = 2π/5, ρ̃ = 0.1|ϕ′〉〈ϕ′ | +
0.12|ϕ′′〉〈ϕ′′ |+0.78|φ+〉〈φ+|, where |ϕ′〉 = R̂(θ1)⊗ I|00〉,
|ϕ′′〉 = R̂(θ2) ⊗ I|11〉 with θ1 = π/5, θ2 = −3π/10.

We find tr2ρ̃ =

(

0.5340 0.1046
0.1046 0.4660

)

which can be di-

agonalized via U †tr2ρ̃U = diag[0.39, 0.61] and U =
(

0.5878 −0.8090
−0.8090 −0.5878

)

. According to Eq. (14), the

largest output entanglement is C(ρ̃)/(2
√

det(tr2ρ̃)) =
0.7036. This value is reached when setting the ini-
tial input state to be |ψ〉 = 0.4591|00〉 − 0.6318|01〉 −
0.5053|10〉−0.3671|11〉. Numerical tests in Figs. 2-4 have
indeed confirmed this. By changing the input state |ψ〉
with many different values of a and θ, we first calculate
the output state by Eq. (16). After normalization, we
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FIG. 2: (color online) The concurrence C versus a and θ. The
arrow on top indicates the maximum concurrence 0.7036 with
a = 0.7810 and θ = −0.9424.
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FIG. 3: (color online) The concurrence C versus a [in (a)] and
θ [in (b)].

calculate its entanglement concurrence directly by using
Wooters’s formula as Eq. (5).
Factorization law for the averaged entanglement of a

multi-outcome process.— Consider now a multi-outcome
process P . The conditional process P |i produces the
output states, ρ$i and ρiψ, for the input states |φ+〉
and |ψ〉, respectively. For simplicity, we first assume
|ψ〉 = |χ〉 = a|00〉 + b|11〉. Denote: $i as the map of
process P |i, pi$ and piψ the probabilities that the condi-
tional process P |i takes place in applying P to initial
input states |φ+〉 or |ψ〉, respectively. We now have
pi$/piψ = fi/f

′
i , where fi = tr [I ⊗ $i(|φ+〉〈φ+|)] and

f ′
i = tr [I ⊗ $i(|ψ+〉〈ψ+|)]. Using |ψ〉〈ψ| = 2M̂(a, b) ⊗
I|φ+〉〈φ+|M̂ †(a, b) ⊗ I, we have gi = f ′

i/fi = piψ/p$i ,

where gi = trN and N =
[

2M̂(a, b)⊗ Iρ$iM̂(a, b)⊗ I
]

.

Given a multi-outcome process P , Lemma 1 actually
says C(ρ$i) = C(|ψ〉〈ψ|)C(giρiψ), which is equivalent to
p$iC(ρ$i) = piψC(|ψ〉〈ψ|)C(ρiψ). This leads to

〈Cψ〉 = C(|ψ〉〈ψ|)〈Cφ+ 〉 (17)

where 〈Cψ〉 =
∑

i piψC(ρiψ) and 〈Cφ+〉 = ∑

i p$iC(ρ$i).
This provides the factorization law for the averaged en-

tanglement in a multi-outcome process. When there is
only one outcome in the process, it is just the factoriza-
tion equation for the trace-preserving map.

Eq. (17) actually holds for any initial state |ψ〉 =

U ′⊗U |χ〉 = U⊗I|ψ̃〉, where U = U−1U ′−1
, |ψ̃〉 = a|0̃0̃〉+

b|1̃1̃〉, and |x̃〉 = U |x〉, x = 0, 1 . Since the entangle-
ment evolution does not change under any local unitary
transformation of mode 1, we have 〈Cψ〉 = 〈Cψ̃〉. Since
Eq. (17) does not depend on any specific basis, it holds if
|0〉 and |1〉 are replaced by |0̃〉 and |1̃〉 for all states. Hence
〈Cψ̃〉 = C(|ψ̃〉〈ψ̃|)〈Cφ̃+〉 = C(|ψ〉〈ψ|)〈Cφ̃+ 〉, and Cφ̃+ is
the averaged entanglement output given the initial input
state |φ̃+〉 = 1√

2
(|0̃0̃〉 + |1̃1̃〉). Obviously, |φ̃+〉 = |φ+〉.

This proves that Eq. (17) holds for any initial state |ψ〉.
In summary, we have studied the entanglement evolu-

tion under non-trace-preserving maps. The formulas for
the maximum output entanglement and its correspond-
ing initial state are presented. We also show that the
factorization equation of Ref. [8] also applies to the aver-
aged entanglement evolution in a multi-outcome process.
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