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In contrast to classical physics, the language of quantuahargcs involves operators and wave functions (or, moreigiy,
density operators). However, in 1932, Wigner formulatedrgum mechanics in terms of a distribution functiéf{q, p), the
marginals of which yield the correct quantum probabilifiesg andp separately [1]. Its usefulness stems from the fact that it
provides a re-expression of quantum mechanics in termsassidal concepts so that quantum mechanical expectatioasva
are now expressed as averages over phase-space distriiouiddions. In other words, statistical information istséerred from
the density operator to a quasi-classical (distributiomgtion.

Wigner [1] presented a specific form fir (p, ¢), while recognizing that other possibilities exist, depagan the conditions
which are imposed of. Wigner’'s choice has the virtue of mathematical simplidityt it has the feature that it may take
negative values, with the result that several authors haxestigated non-negative distribution functions. Howewe regard
negative values of¥ as a manifestation of its quantum nature and the fact that it * cannot be really interpreted as the
simultaneous probability for coordinates and momenta - {1] Wigner’s original paper was concerned with usingfor the
specific purpose of calculating the quantum correction fi@rmodynamic equilibrium. The recognition of its more gahe
applicability stems mainly from the work of Groenewold [2ZjcaMoyal [3], who investigated the correspondence between
physical quantities and quantum operators and showed riitylar, that the correspondence is not unique and morethes
the distribution functions obtained by the Weyl correspamzk [4] are the Wigner functions. Moyal also showed howithe t
dependence o and other such functions (which arise from alternative eission rules other than Wigner-Weyl but which
lead to the same physical results) may be determined withsing the Schidinger equation. In fact, Moyal's paper was a
landmark contribution as, in essence, ” - - it establishesmdapendent formulation of quantum mechanics in phasesSpHx]

As for all guantum formulations, Ballentine [6] has showattthe development of the classical limit of the Wigner disttion

is a subtle process, especially in view of the fact that, inegal, W (g, p) has negative parts. Turning to specifics, we present
some basic results developed in the original pioneeringsaji—4] but conveniently presented in a comprehensiviewelyy
Hillery et al. [7]. Thus, in one dimensional space (genesdion ton dimensions being straightforward), for a mixed state
represented by a densty matfix
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whereas, for a pure state represented by a wave fungtign
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However, in order to calculate correct expectation valueb ensemble averages, it is also necessay to specify thacelas
function A(q, p) corresponding to a quantum operatbas

- 1 . 1
Alg.p) = [ dz Mg - JalAlg + 52) ©
sothatf [ dqdp A(q,p) = 2nh Tr(A). This ensures that
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and
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so that, in particular, we see th#f(q, p) derived from the density matrix, iQ7h)~! times the phase space operator which
corresponds to the same matrix.
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Following these original papers, [1-4] there were many pagevoted to extending the framework and overall undedatgn
of distribution functions. In addition, distributions @hthan those of Wigner were introduced, notable those dfviiod,
Cahill and Glauber, Glauber, Sudarshan and Husimi (all aEiwhare reviewed in Ref. [8], where it is noted that some oféhe
are everywhere non-negative) and Cohen [9] and all reqlassical functions different from that given in (3) in orderensure
consistency. It is clear that all distribution functiong aiot measurable, despite some claims to the contrary intératlre,
where in fact what is observed are the margipptobabilities from which values d# (¢, p) are inferred but one could equally
have inferred values for other distribution functions.

The earliest applications of the Wigner function were indhena of statistical mechanics but, more recently, amanditrerse
areas in which théV function was found to be useful we mention hydrodynamic$ [aldsmas [11], quantum corrections for
transport coefficients [12], collision theory [13] and sidjianalysis [14]. However, we feel that the overwhelming arigy
of applications are to be found in quantum systems whereutiticns and dissipation are playing an important role. ls th
context, the 1984 review of thid” function by Hillery et al. [7] made extensive reference ri¢levance in quantum optics,
which is underlined by the more recent books of Scully andafyb[15] and Schleich [16]. Complementary to this work
is the application of théV function to a variety of problems in quantum statistical hretcs, where effects associated with
the analysis of quantum systems in a heat bath (includingatimtion field heat bath) are of the essence. As examples of
the usefulness of thB” function in this context we note its role in obtaining the plest approach to solving the initial value
guantum Langevin equation and, concomitantly, the saliticGan exact master equation [17] and also its role in thestiyation
of Schidinger cat superpositions [18]. However there are linotagito the usefulness of th& function (some of which were
discussed by Moyal [3]), notably for particles with spin diod relativistic particles. Finally, we mention the exegit and
comprehensive overview of selected papers on quantum miestia phase space, with emphasis on the Wigner function [5]
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