
ar
X

iv
:1

00
9.

44
64

v1
  [

qu
an

t-
ph

] 
 2

2 
Se

p 
20

10

General theory of assisted entanglement distillation

Francesco Buscemi∗ Nilanjana Datta†

September 24, 2010

Abstract

We evaluate the one-shot entanglement of assistance for an arbi-
trary bipartite state. This yields another interesting result, namely a
characterization of the one-shot distillable entanglement of a bipartite
pure state. This result is shown to be stronger than that obtained
by specializing the one-shot hashing bound to pure states. Finally,
we show how the one-shot result yields the operational interpretation
of the asymptotic entanglement of assistance proved in [Smolin et al.
Phys. Rev. A 72, 052317 (2005)].

1 Introduction

One of the most basic and widely studied entanglement measures for bipar-
tite quantum states is the entanglement of formation (EoF) [1], a quantity
so named because it was intended to quantify the resources needed to create
(or form) a given bipartite entangled state. The EoF of any bipartite pure
state is quantified by the entropy of entanglement, which is equal to the
von Neumann entropy of the reduced state of a subsystem. The EoF of a
bipartite mixed state ρAB , is then defined via the convex roof extension,
that is, as the minimum average entanglement of an ensemble of pure states
that represents ρAB :

EF (ρAB) := min
E

∑

i

piS(ρ
i
A), (1)

where E = {pi, |ψi
AB〉} is an ensemble of pure biparite states such that∑

i pi|ψi〉〈ψi| = ρAB, and S(ρ
i
A) is the von Neumann entropy of the reduced

state ρiA = TrB |ψi〉〈ψi|AB . The popularity of the EoF is partly due to
its formal elegance and the many nice properties it enjoys [29, 30], and
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perhaps also due to its connections with the additivity problem in quantum
information theory [31].

From the operational point of view, the EoF is associated with the en-
tanglement manipulation protocol by which two distant parties, say Alice
and Bob, prepare a given bipartite quantum state, starting from an initial
entangled state which they share, by using only local operations and classi-
cal communication (LOCC). It turns out that the optimal (i.e., minimum)
rate, at which entanglement has to be consumed in order for Alice and Bob
to create multiple copies of the state with asymptotically vanishing error, is
given by the regularized EoF of the state [4].

Soon after the introduction of the EoF, another quantity, namely the
entanglement of assistance (EoA) [3], was introduced as its “dual”. It is de-
fined analogously to EoF but with the minimisation over ensembles replaced
by a maximisation, i.e.,

EA(ρAB) := max
E

∑

i

piS(ρ
i
A). (2)

Unlike the EoF, the EoA is not an entanglement monotone and hence
it can in general increase under local operations and classical communica-
tion [2]. However, like the EoF, the EoA too can be associated with an
entanglement manipulation protocol, namely the one by which Alice and
Bob distill entanglement from an initial mixed bipartite state which they
share, when a third party (say Charlie), who holds the purification of the
state, assists them. Charlie is allowed to do local operations on his share of
the tripartite pure state, and his assistance is in the form of one-way clas-
sical communication to Alice and Bob. This is the sort of scenario which
occurs, for example, in the case of environment-assisted quantum error cor-
rection [5, 6, 7, 8, 9, 10], in which errors, incurred from sending quantum
information through a noisy environment, are corrected by using classical in-
formation obtained from a measurement on the environment. In this case the
tripartite structure Alice-Bob-Charlie is mirrored by the structure sender-
receiver-environment, and the assistance from Charlie is replaced by the
ability to perform measurements on the environment and to exploit the re-
sulting information for error correction.

Another area in which the EoA arises naturally, is in the study of local-
izable entanglement in spin systems [11, 12, 13, 14]. The scenario here is as
follows: a pure state of a system of n≫ 1 interacting spins is given, and the
goal is to localize (or “focus”) as much entanglement as possible between
two arbitrarily chosen spins, by performing a suitable measurement on the
remaining n − 2 spins. In this case, the assisting party is actually divided
into many subsystems (which are the n− 2 spins) and so it is natural to ask
what happens when the assisting measurements are restricted to be local in
each subsystem. The amount of entanglement that can be focussed in this
case is referred to as the localizable entanglement, and it is always at most
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as much as the EoA. In fact, it is equal to the EoA when the assisting party
is allowed to act globally on all the constituent subsystems.

In the literature, one encounters cases in which the EoA is used to char-
acterize operational tasks of assisted distillation studied in the generic sce-
nario, where no assumptions are made on the state to be distilled. This
is often referred to as the “one-shot” scenario. However, the definition of
the EoA given in eq. (2) has been shown to have an operational relevance
only in the asymptotic regime, i.e., when asymptotically many copies of
the same state are available for assisted distillation [7]. This points to an
apparent mismatch between the operational task and the quantity used to
characterize it. In order to remedy this problem, one should start from the
operational task itself, and from it, evaluate an expression quantifying the
amount of entanglement that can be distilled under assistance. This leads
to a one-shot EoA, which, by its very construction, has a direct operational
interpretation.

In Section 2 we introduce the necessary notation and definitions. In Sec-
tion 3 we evaluate the one-shot distillable entanglement of a pure bipartite
state. The one-shot entanglement of assistance is introduced in Section 4
and evaluated in Section 5. Section 6 deals with the asymptotic scenario,
where some previous results are recovered. Finally, Section 7 concludes the
paper with a summary and an open question.

2 Notation and definitions

2.1 Mathematical preliminaries

LetB(H ) denote the algebra of linear operators acting on a finite–dimensional
Hilbert space H and let S(H ) ⊂ B(H ) denote the subset of positive op-
erators of unit trace (states). Further, let 1 ∈ B(H ) denote the identity
operator. Throughout this paper we restrict our considerations to finite-
dimensional Hilbert spaces, and we take the logarithm to base 2. For any
given pure state |φ〉, we denote the projector |φ〉〈φ| simply as φ. Moreover,
for any state ρ, we define Πρ to be the projector onto the support of ρ.

For a state ρ ∈ S(H ), the von Neumann entropy is defined as S(ρ) :=
−Tr ρ log ρ. Further, for a state ρ and a positive operator σ such that
suppρ ⊆ suppσ, the quantum relative entropy is defined as S(ρ||σ) =
Tr ρ log ρ − ρ log σ, whereas the relative Rényi entropy of order α ∈ (0, 1)
is defined as

Sα(ρ||σ) :=
1

α− 1
log
[
Tr(ρασ1−α)

]
. (3)

For given orthonormal bases {|iA〉}di=1 and {|iB〉}di=1 in isomorphic Hilbert
spaces HA ≃ HB of dimension d, we define a maximally entangled state
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(MES) of rank M ≤ d to be

|ΨM
AB〉 =

1√
M

M∑

i=1

|iA〉 ⊗ |iB〉. (4)

In order to measure how close two states are, we will use the fidelity,
defined as

F (ρ, σ) := Tr
√√

ρσ
√
ρ =

∣∣∣∣√ρ
√
σ
∣∣∣∣
1
, (5)

and the trace distance

||ρ− σ||1 := Tr |ρ− σ|. (6)

The trace distance between two states ρ and σ is related to the fidelity
F (ρ, σ) as follows (see e. g. [18]):

1− F (ρ, σ) 6
1

2
||ρ− σ||1 6

√
1− F 2(ρ, σ), (7)

where we use the notation F 2(ρ, σ) =
(
F (ρ, σ)

)2
The following lemmas will prove useful.

Lemma 1 (Gentle measurement lemma [26, 27]). For a state ρ ∈ S(H )
and operator 0 ≤ Λ ≤ 1, if Tr(ρ Λ) ≥ 1− δ, then

∣∣∣
∣∣∣ρ−

√
Λρ

√
Λ
∣∣∣
∣∣∣
1
≤ 2

√
δ.

The same holds if ρ is a subnormalized density operator.

Lemma 2. For any pure state |φ〉 and any given ε ≥ 0, if 0 ≤ P ≤ 1 is an
operator such that Tr(Pφ) ≥ 1− ε, then

F (
√
P |φ〉, |φ〉) ≥ 1−

√
ε. (8)

Proof. Since, Tr(Pφ) ≥ 1− ε, by Lemma 1 we have that

‖
√
Pφ

√
P − φ‖1 ≤ 2

√
ε.

The lower bound on the trace distance in (7) then yields

F (
√
P |φ〉, |φ〉) ≡ F (

√
Pφ

√
P , φ) ≥ 1−

√
ε. (9)

Lemma 3. For any normalized state ρ and any 0 ≤ P ≤ 1, if Tr[Pρ] ≥ 1−ε,
then

F (ω, ρ) ≥ 1− 2
√
ε, (10)

where ω :=
√
Pρ

√
P

Tr[Pρ] .
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Proof. The condition Tr[Pρ] ≥ 1−ε implies that
∣∣∣
∣∣∣
√
Pρ

√
P − ρ

∣∣∣
∣∣∣
1
≤ 2

√
ε, [26,

27]. Let us define ω̃ :=
√
Pρ

√
P . Due to Lemma 11 in [28], we have that

F (ω̃, ρ) : =
∣∣∣
∣∣∣
√
ω̃
√
ρ
∣∣∣
∣∣∣
1

≥ Tr[Pρ] + 1

2
− 1

2
||ω̃ − ρ||1

≥ 1− ε

2
−

√
ε

≥ 1− 2
√
ε.

(11)

Let ω be a normalized state defined as ω := ω̃
Tr(ω̃) . Since F (ω, ρ) ≥ F (ω̃, ρ),

we obtain the statement of the lemma.

In this paper we consider entanglement distillation under LOCC trans-
formations. In this context, a result by Lo and Popescu [17] on entanglement
manipulation of bipartite pure states plays a crucial role. They proved that
any LOCC transformation (AB 7→ A′B′) on a bipartite pure state |φAB〉,
shared between two distant parties Alice and Bob, is equivalent to a LOCC
transformation with only one-way classical communication, which can be
represented as follows:

Λ(φAB) =
∑

k

(Uk ⊗ Ek)φAB(Uk ⊗ Ek)
†, (12)

where the operators Uk are unitary and the operators Ek satisfy the relation∑
k E

†
kEk = 1B . Henceforth, we say that an LOCC transformation is of the

Lo-Popescu form if it can be expressed as in (12). Consequently, for a map
Λ of the Lo-Popescu form, we have

Λ(1A ⊗ σB) =
∑

k

UkU
†
k ⊗ EkσBE

†
k,

= 1A′ ⊗ τB′ , (13)

where τB′ :=
∑

k EkσBE
†
k. .

2.2 Entropies and coherent information

Optimal rates of the entanglement distillation protocols considered in this
paper are expressible in terms of the following entropic quantities:

For any ρ, σ ≥ 0, any 0 ≤ P ≤ 1, and any α ∈ (0,∞)\{1}, we define the
following entropic function (introduced in [22])

SP
α (ρ‖σ) :=

1

α− 1
log Tr[

√
Pρα

√
Pσ1−α]. (14)
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Notice that, for P = 1, the function defined above reduces to relative Rényi
entropy of order α given by (3).

In this paper, we are in particular interested in the quantity,

SP
0 (ρ‖σ) := lim

αց0
SP
α (ρ‖σ) = − log Tr[

√
PΠρ

√
P σ], (15)

where Πρ denotes the projector onto the support of ρ.
Note that

S1

0 (ρ‖σ) = S0(ρ‖σ) := − log(TrΠρσ), (16)

which is the relative Rényi entropy of order zero. This quantity acts as a
parent quantity for the zero-coherent information, defined as follows:

IA→B
0 (ρAB) := min

σB∈S(HB)
S0(ρAB‖1A ⊗ σB), (17)

the nomenclature arising from its analogy with the ordinary coherent in-
formation IA→B(ρAB), which is expressible in a similar manner, when the
zero-relative Rényi entropy is replaced by the ordinary relative entropy:

IA→B(ρAB) := S(ρB)− S(ρAB) (18)

≡ min
σB∈S(HB)

S(ρAB‖1A ⊗ σB). (19)

If Ψρ
ABE is a purification of the state ρAB, then

IA→B(ρAB) = −IA→E(ρAE), (20)

where ρAE = TrB Ψρ
ABE .

Note in particular that for a MES of rank M , as defined by (4),

IA→B
0 (ΨM

AB) = IA→B(ΨM
AB) = logM. (21)

Another entropic quantity of relevance in this paper is the min-entropy
of a state, which is defined for any state ρ as follows:

Smin(ρ) = − log
[
λmax(ρ)

]
, (22)

where λmax(ρ) denotes the maximum eigenvalue of the state ρ.
For one-shot entanglement distillation protocols it is natural to allow

for a finite accuracy, i.e., a non-zero error (say ε ≥ 0), in the extraction of
singlets from a given state. In this case the optimal rates of the protocols are
given by “smoothed versions” of the entropic quantities introduced above.
In order to define them we consider the following sets of positive operators
for any normalized state ρ, and any ε > 0:

b(ρ; ε) :=
{
σ : σ ≥ 0, Tr[σ] = 1, F 2(ρ, σ) ≥ 1− ε2

}
, (23)
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p(ρ; ε) := {P : 0 ≤ P ≤ 1, Tr[Pρ] ≥ 1− ε} . (24)

Henceforth we shall refer to b(ρ; ε) as the ε−ball around the state ρ.
Further, by restricting the states σ in (23) to be pure states, we obtain

the subset
b∗(ρ; ε) := {|ϕ〉 : ϕ ∈ b(ρ; ε)} . (25)

It was proved in [25] that for a bipartite pure state |φAB〉, for any ε ≥ 0,

{TrA[ϕAB ] : ϕAB ∈ b∗(φAB ; ε)} = b(ρφB ; ε), (26)

where ρBφ := TrA φAB.
The relevant smoothed entropic quantities are then defined as follows:

Definition 1. For any given ε ≥ 0 the smoothed min-entropy of a state ρ is
defined as

Sε
min(ρ) := max

ρ̄∈b(ρ;ε)
Smin(ρ̄). (27)

We consider two different smoothed versions of the zero-coherent infor-
mation, defined as follows:

Definition 2. The state-smoothed zero-coherent information is given by

IA→B
0,ε (ρAB) := max

ρ̄AB∈b(ρAB ;ε)
min

σB∈S(HB)
S0(ρ̄AB‖1A ⊗ σB), (28)

and the operator-smoothed zero-coherent information is given by

ĨA→B
0,ε (ρAB) := max

P∈p(ρAB ;ε)
min

σB∈S(HB)
SP
0 (ρAB‖1A ⊗ σB). (29)

The following technical lemmas involving the operator-smoothed coher-
ent information are used in proving some of our main results.

Lemma 4. If for a bipartite state ρAB and a pure state |ψAB〉, for any given
ε ≥ 0,

F 2(ρAB , ψAB) ≡ Tr[ρABψAB ] ≥ 1− ε, (30)

then
ĨA→B
0,ε (ρAB) ≥ IA→B

0 (ψAB). (31)

Proof. From (30) it follows that ψAB ∈ p(ρAB ; ε). Using this fact, (29) and
(14), we obtain

ĨA→B
0,ε (ρAB) ≥ min

σB∈S(HB)

[
− log Tr

(√
ψABΠρAB

√
ψAB(1A ⊗ σB)

)]

≥ min
σB∈S(HB)

[
− log Tr

(
ψAB(1A ⊗ σB)

)]

= IA→B
0 (ψAB). (32)

where the second inequality follows from the fact that
√
ψABΠρAB

√
ψAB ≤

ψAB .
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Lemma 5. For any bipartite pure state |φAB〉, any LOCC map Λ : AB 7→
A′B′, and any ε ≥ 0,

ĨA→B
0,2

√
ε(φAB) ≥ ĨA

′→B′

0,ε (Λ(φAB)). (33)

Proof. Since the LOCCmap Λ acts on a pure state, without loss of generality
we can assume it to be of the Lo-Popescu form (12). Defining ωA′B′ :=
Λ(φAB), we have, starting from (29),

ĨA
′→B′

0,ε (Λ(φAB)) = max
P∈p(ωA′B′ ;ε)

min
σB′∈S(HB′ )

{
− log Tr

[√
PΠωA′B′

√
P (1A′ ⊗ σB′)

]}

= min
σB′∈S(HB′ )

{
− log Tr

[√
P0ΠωA′B′

√
P0 (1A′ ⊗ σB′)

]}

≤ − log Tr
[√

P0ΠωA′B′

√
P0 (1A′ ⊗ σ̃B′)

]

= − log Tr
[√

P0ΠωA′B′

√
P0 Λ(1A ⊗ σB)

]

= − log Tr
[
Λ∗
(√

P0ΠωA′B′

√
P0

)
(1A ⊗ σB)

]
,

(34)

for any state σB ∈ S(HB). In the above, P0 is the operator in p(ωA′B′ ; ε)
for which the maximum in the first line is achieved; σ̃B′ is a state in S(HB′)
such that σ̃B′ = Λ(1A ⊗ σB), and Λ∗ denotes the dual map of Λ, defined,
for any operator X and state ρ, as Tr[XΛ(ρ)] = Tr[Λ∗(X)ρ].

Let us now define Q̃AB := Λ∗(
√
P0ΠωA′B′

√
P0). Then, continuing from

equation (34), we obtain

ĨA
′→B′

0,ε (Λ(φAB)) ≤ − log Tr
[
Q̃AB (1A ⊗ σB)

]

≤ − log Tr

[√
Q̃AB φAB

√
Q̃AB (1A ⊗ σB)

]
,

(35)

for any state σB and any pure state φAB , since Q̃AB ≥
√
Q̃ABφAB

√
Q̃AB.

Let us now choose σB to be the state σ̃B achieving the minimum in the
second line of (35), i. e.

min
σB

{
− log Tr

[√
Q̃AB φAB

√
Q̃AB (1A ⊗ σB)

]}

=− log Tr

[√
Q̃AB φAB

√
Q̃AB (1A ⊗ σ̃B)

]
,

(36)

so that

ĨA
′→B′

0,ε (Λ(φAB)) ≤ min
σB

{
− log Tr

[√
Q̃AB φAB

√
Q̃AB (1A ⊗ σB)

]}
(37)
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We next prove that Q̃AB ∈ p(φAB ; 2
√
ε). In fact, since P0 ∈ p(ωA′B′ ; ε),

by the Gentle Measurement Lemma,

∣∣∣
∣∣∣Λ(φAB)−

√
P0Λ(φAB)

√
P0

∣∣∣
∣∣∣
1
≤ 2

√
ε. (38)

We therefore have, by definition of Q̃AB,

Tr
[
Q̃ABφAB

]
= Tr

[√
P0ΠΛ(φAB)

√
P0 Λ(φAB)

]

= Tr
[
ΠΛ(φAB)

√
P0Λ(φAB)

√
P0

]

= Tr
[
ΠΛ(φAB)Λ(φAB)

]

+Tr
[
ΠΛ(φAB)

(√
P0 Λ(φAB)

√
P0 − Λ(φAB)

)]

≥ 1− ‖
√
P0Λ(φAB)

√
P0 − Λ(φAB)‖1

≥ 1− 2
√
ε, (39)

where the second line follows from the cyclicity of the trace, and the last
inequality follows from (38). This implies that Q̃AB ∈ p(φAB ; 2

√
ε). Hence,

we have from (37)

ĨA
′→B′

0,ε (Λ(φAB)) ≤ min
σB

{
− log Tr

[√
Q̃AB φAB

√
Q̃AB (1A ⊗ σB)

]}

≤ max
P∈p(φAB ;2

√
ε)
min
σB

− log Tr
[√

P φAB

√
P (1A ⊗ σB)

]

≡ ĨA→B
0,2

√
ε(φAB),

(40)

which completes the proof.

Lemma 6. For any bipartite pure state |φAB〉 and any ε ≥ 0,

IA→B
0,ε (φAB) ≥ Sε

min(ρ
φ
A), (41)

where ρφA := TrB φAB. Further,

ĨA→B
0,ε (φAB) ≤ S

2
√
ε

min (ρ
φ
A)− log(1− ε). (42)
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Proof. We first prove (41). Starting from (28) we have:

IA→B
0,ε (φAB) : = max

ρ̄AB∈b(φAB ;ε)
min

σB∈S(HB)
S0(ρ̄AB‖1A ⊗ σB)

≥ max
ϕ̄AB∈b∗(φAB ;ε)

min
σB∈S(HB)

S0(ϕ̄AB‖1A ⊗ σB)

= max
ϕ̄AB∈b∗(φAB ;ε)

min
σB∈S(HB)

{− log Tr [ϕ̄AB(1A ⊗ σB)]}

= max
ϕ̄AB∈b∗(φAB ;ε)

{
− log λmax(ρ

ϕ̄
B)
}

= max
ρ̄B∈b(ρφB ;ε)

Smin(ρ̄B)

= Sε
min(ρ

φ
B),

(43)

where in the fifth line we made use of (26).
Next, we prove (42). By Lemma 2 for any P ∈ p(φ; ε), the state

√
P |φ〉

is a pure state such that F 2
(√

P |φ〉, |φ〉
)

≥ 1 − 2
√
ε. Let us define the

following two sets, for any given bipartite pure state φAB and any ε′ = 2
√
ε:

A
ε′

1 (φAB) :=

{
|ϕAB〉 ∈ HA ⊗ HB : |ϕAB〉 =

√
P |φAB〉√
Tr[PφAB ]

, P ∈ p(φAB ; ε
′)

}
.

(44)
Obviously, A ε′

1 (φAB) ⊆ b∗(φAB ; ε
′), with the set b∗(φAB ; ε

′) being defined
by (25). Then,

ĨA→B
0,ε (φAB) = max

P∈p(φAB ;ε)
min
σB

[
− log Tr

(√
PφAB

√
P (1⊗ σB)

)]

≤ max
|ϕAB〉∈A ε′

1 (φAB)
min
σB

[
− log Tr

(
ϕAB(1⊗ σB)

)]
− log(1− ε)

≤ max
|ϕAB〉∈b∗(φAB ;ε′)

min
σB

[
− log Tr

(
ϕAB(1⊗ σB)

)]
− log(1− ε),

= max
ρ̄B∈b(ρBφ ;ε′)

min
σB

[
− log Tr

(
ρ̄BσB

)]
− log(1− ε),

= max
ρ̄B∈b(ρB ;ε′)

[
− log λmax(ρ̄B)

]
− log(1− ε)

=Sε′
min(ρ

φ
B)− log(1− ε) (45)

=S
2
√
ε

min (ρ
φ
A)− log(1− ε), (46)

where ρφB := TrA φAB and ρAφ := TrB φAB . In the above, the second inequal-

ity follows from the fact that A ε′
1 (φAB) ⊆ b∗(φAB ; ε

′), the third inequality

follows from the fact that b∗(φAB ; ε
′) = b(ρφB ; ε

′) as stated in (26), and the
last identity holds because φAB is a pure state.

10



3 Distillable entanglement of a single pure state

In order to approach the problem of quantifying the one-shot EoA of an
arbitrary bipartite mixed state, we start from the simple but insightful case
in which two distant parties, say Alice and Bob, initially share a single
copy of a pure state |φAB〉. Their aim is to distill entanglement from this
shared state (i.e., convert the state to a maximally entangled state) using
local operations and classical communication (LOCC) only. For sake of
generality, we consider the situation where, for any given ε ≥ 0, the final
state of the protocol is ε-close to a maximally entangled state, with respect
to a suitable distance measure. More precisely, we require the fidelity (5)
between the final state of the protocol and a maximally entangled state to
be ≥ 1− ε.

Definition 3 (ε-achievable distillation rates for pure states1). For any given
ε ≥ 0, a real number R ≥ 0 is said to be an ε-achievable rate for one-shot
entanglement distillation of a pure state φAB := |φAB〉〈φAB |, if there exists
an integer M ≥ 2R and a maximally entangled state ΨM

A′B′ such that

F 2
(
Λ(φAB),Ψ

M
A′B′

)
≥ 1− ε, (47)

for some LOCC operation Λ : AB 7→ A′B′.

Definition 4 (One-shot pure-state distillable entanglement). For any given
ε ≥ 0, the one-shot distillabe entanglement, ED(φAB ; ε), of a pure state φAB

is the maximum of all ε-achievable entanglement distillation rates for the
state φAB.

Bounds on the one-shot distillable entanglement of a pure state φAB are
given by the following theorem.

Theorem 1. For any bipartite pure state φAB and any ε ≥ 0,

Sε
min(ρ

φ
A)−∆ ≤ ED(φAB ; ε) ≤ Sε′

min(ρ
φ
A)− log(1− 2

√
ε), (48)

where ρφA := TrB φAB, ε
′ =

√
2
√
ε, and 0 ≤ ∆ ≤ 1 is a number

included to ensure that the lower bound in (48) is the logarithm of
an integer number.

Remark 1. The above theorem shows that, for any given ε ≥ 0, the smoothed
min-entropy Sε

min(ρ
φ
A) essentially characterizes the one-shot distillable entan-

glement of the bipartite pure state |φAB〉.
1For the more general case of mixed states, see [28]
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Remark 2. It is interesting to compare the lower bound of Theorem 1 with
the one-shot hashing bound proved in Lemma 2 of [28] for an arbitrary
(possibly mixed) state. For pure states, using Lemma 6, the latter yields:

ED(φAB ; ε) ≥ S
ε/8
min(ρ

φ
A) + log

(
1

d
+
ε2

4

)
−∆, (49)

where d = dimHA. It is evident that the bound in Theorem 1 is tighter
than (49), in particular because there is no explicit logarithmic dependence
on the smoothing parameter ε. From the technical point of view, this arises
because, for the case of pure states, we can directly employ Nielsen’s ma-
jorization criterion and hence do not need to use random coding arguments,
which are necessary in the general case.

The proof of Theorem 1 can be divided into the following two lemmas.

Lemma 7. For any bipartite pure state φAB and any ε ≥ 0,

ED(φAB ; ε) ≥ Sε
min(ρ

φ
A)−∆, (50)

where ∆ ≥ 0 is the least number such that the left hand side is equal to the
logarithm of a positive integer.

Proof. Let us begin by considering the case ε = 0. In this case, Nielsen’s
majorization theorem [16] implies that, using LOCC, it is possible to exactly
convert any pure state |φAB〉 to a maximally entangled state of rank equal to⌊

1
λmax

⌋
, where λmax denotes the maximum eigenvalue of the reduced density

matrix ρφA. Using the definition (27) of the min-entropy we then infer that

ED(φAB ; 0) ≥ log
⌊
2Smin(ρ

φ
A)
⌋
. (51)

If we allow a finite accuracy in the conversion, a lower bound to the
distillable entanglement can be given as follows.

For any |φ̄AB〉 ∈ b∗(φAB ; ε), by Nielsen’s theorem, there exists an LOCC
map Λ̄ such that

F 2
(
Λ̄
(
φ̄AB

)
,ΨM̄

A′B′

)
= 1, (52)

where log M̄ := Smin

(
ρφ̄A

)
.

On the other hand, due to the monotonicity of fidelity under the action
of a completely positive trace-preserving map,

1− ε ≤ 1− ε2 ≤ F 2(φ̄AB , φAB)

≤ F 2
(
Λ̄
(
φ̄AB

)
, Λ̄(φAB)

)

= F 2
(
ΨM̄

A′B′ , Λ̄(φAB)
)
.

(53)

12



This yields the bound ED(φAB ; ε) ≥ log M̄ , for any |φ̄AB〉 ∈ b∗(φAB ; ε). In
particular, we have that

ED(φAB ; ε) ≥ max
φ̄AB∈b∗(φAB ;ε)

log
⌊
2Smin(ρ

φ̄
A)
⌋
. (54)

Since the two sets {TrB [φ̄AB ] : φ̄AB ∈ b∗(φAB)} and b(ρφA; ε) coincide [25],
we finally arrive at

ED(φAB ; ε) ≥ log
⌊
2S

ε
min(ρ

φ
A)
⌋
. (55)

Lemma 8. For any bipartite pure state φAB and any ε ≥ 0,

ED(φAB ; ε) ≤ Sε′
min(ρ

φ
A), (56)

for ε′ =
√

2
√
ε.

Proof. Let r be the maximum of all achievable rates of entanglement dis-
tillation for the pure state φAB , i.e. log r = ED(φAB ; ε). This means
that there exists an LOCC transformation Λ that maps |φAB〉 into a state
ωA′B′ = Λ(φAB) which is ε-close to a maximally entangled state |Ψr

A′B′〉 of
rank r, i.e., F 2(Λ(φAB ,Ψ

r
A′B′) ≥ 1− ε. Then,

ED(φAB ; ε) = log r

= IA
′→B′

0 (Ψr
A′B′)

≤ ĨA
′→B′

0,ε (Λ(φAB))

≤ ĨA→B
0,2

√
ε(φAB)

≤ Sε′

min(ρ
φ
A)− log(1− 2

√
ε),

(57)

for ε′ =
√
2
√
ε, where the first, second and third inequalities follow from

Lemma 4, Lemma 5 and Lemma 6, respectively.

4 One-shot entanglement of assistance

As stated in the introduction, the definition of the EoA arises naturally
when considering the task in which Alice and Bob distill entanglement from
an initial mixed bipartite state ρAB which they share, when a third party
(say Charlie), who holds the purification of the state, assists them, by doing
local operations on his share and communicating classical bits to Alice and
Bob.

In order to express these ideas in a mathematically sound form, we start
by noticing that any strategy that Charlie may employ can be described

13



as the measurement of a positive operator-valued measure (POVM) {P i
C}i,

followed by the communication, to both Alice and Bob, of the resulting
classical outcome i. Since the state shared between Alice, Bob, and Charlie is
pure, say |Ψρ

ABC〉, Charlie’s POVM’s are in one-to-one correspondence with
decompositions of ρAB into ensembles {pi, ρiAB}i, via the relation piρ

i
AB :=

TrC [Ψ
ρ
ABC (1AB ⊗ P i

C)]. The fact that Charlie announces which outcome
he got, means that Alice and Bob can apply a different LOCC map for each
value of i.

An important point to stress now is that, in general, the distillation pro-
cess is allowed to be approximate. This is needed, in particular, if one later
wants to recover, from the one-shot setting, the usual asymptotic scenario,
where errors are required to vanish asymptotically but are finite otherwise.
In the classically-assisted case we are studying here, since the index i is visi-
ble to Alice and Bob, they can apply a different LOCC map Λi for each state
ρiAB. We can hence choose to evaluate the distillation accuracy according to
a worst-case or an average criterion. Here we choose the average fidelity as
a measure of the “expected” accuracy. This leads us to define the maximum
amount of entanglement that can be distilled in the assisted case, namely,
the one-shot entanglement of assistance, as,

EA(ρAB ; ε)

:= max
{P i

C}i
max
M∈N

{
logM : max

{Λi
AB}i

F 2

(
∑

i

piΛ
i(ρiAB),Ψ

M
A′B′

)
≥ 1− ε

}
,

(58)

where each Λi is an LOCC map from AB to A′B′.
As proved in Appendix A, the maximization over Charlie’s measurement

in the above definition can always be restricted, without loss of generality,
to rank-one POVM’s. Since rank-one POVM’s at Charlie’s side are in one-
to-one correspondence with pure state ensemble decompositions of ρAB, we
can equivalently write

EA(ρAB ; ε)

= max
{pi,φ

i
AB

}i
∑

i piφ
i
AB

=ρAB

max
M∈N

{
logM : max

{Λi
AB}i

F 2

(
∑

i

piΛ
i(φiAB),Ψ

M
A′B′

)
≥ 1− ε

}
.

(59)

In order to quantify EA(ρAB ; ε) then, it is sufficient to quantify the
maximum expected amount of entanglement that can be distilled, in average,
from any given ensemble of pure bipartite states. This is the aim of the
following section.
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5 Distillable entanglement of an ensemble of pure
states

Given an ensemble E = {pi, φiAB} of pure states, we define, for any given
ε ≥ 0 the one-shot distillable entanglement of E as

ED(E; ε) := max
M∈N

{
logM : max

{Λi
AB}i

F 2

(
∑

i

piΛ
i(φiAB),Ψ

M
A′B′

)
≥ 1− ε

}
,

(60)
where each Λi is an LOCC map from AB to A′B′. According with equa-
tion (59), the one-shot entanglement of assistance EA of a given mixed state
ρAB is given by

EA(ρAB; ε) = max
E

ED(E; ε), (61)

where the maximum is over all possible pure state ensemble decompositions
E of ρAB .

For any given ensemble E = {pi, φiAB} of pure states, we define the
quantity

Fmin(E) := min
i
Smin(ρ

φi

A ), (62)

where ρφ
i

A := TrB φ
i
AB . This quantity can be intuitively interpreted as a

conservative estimate of the amount of entanglement present in the ensemble
E. Further, for any such ensemble, and any given ε ≥ 0, let us define the set

S6(E; ε) :=

{
Ē =

{
ϕ̄i
AB

}
i
: Tr ϕ̄i

AB ≤ 1,
∑

i

piF (ϕ̄
i
AB , φ

i
AB) ≥ 1− ε

}
,

(63)
and let S=(E; ε) denote the set obtained from S6(E; ε) by restricting the pure
states ϕ̄i

AB to be normalized.

Theorem 2. For any given ensemble E = {pi, φiAB} of pure states,
and any ε ≥ 0,

max
Ē∈S=(E;ε′)

Fmin(Ē)−∆ ≤ ED(E; ε) ≤ max
Ē∈S6(E;ε′′)

Fmin(Ē), (64)

where ε′ = ε/2, ε′′ :=
√

2
√
ε, and 0 ≤ ∆ ≤ 1 is a number which is

included to ensure that the lower bound in (64) is the logarithm of
an integer number.

The proof of this theorem is divided into the following two lemmas.

Lemma 9 (Direct part). For any pure state ensemble E = {pi, φiAB} and
any ε ≥ 0,

ED(E; ε) ≥ max
Ē∈S=(E;ε′)

Fmin(Ē)−∆, (65)
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where ∆ is the minimum number in [0, 1] such that the right hand side is
equal to the logarithm of an integer number M ≥ 1.

Proof. From Theorem 1, we know that, given the pure bipartite state φiAB,

Alice and Bob can distill log

⌊
2
Smin

(

ρφ
i

A

)⌋
ebits with zero error. Hence,

given the ensemble E = {pi, φiAB}, Alice and Bob can distill, without error,

at least mini log

⌊
2
Smin

(

ρφ
i

A

)⌋
ebits. For any pure state ensemble E, let us

then introduce the quantity M(E) := mini

⌊
2
Smin

(

ρφ
i

A

)⌋
.

If a finite accuracy ε > 0 is allowed, then it is possible to give a lower
bound on the one-shot distillable entanglement ED(E; ε) as follows. Let us
consider the set of ensembles of normalized pure states of the form Ē =
{pi, ϕ̄i

AB}, such that
∑

i piF (φ
i
AB , ϕ̄

i
AB) ≥ 1− ε. Then, for any ensemble Ē

in such a set, there exist LOCC maps Λi : AB → A′B′ such that

F

(
∑

i

piΛ
i(ϕ̄i

AB),Ψ
M(Ē)
AB

)
= 1, (66)

where Ψ
M(Ē)
A′B′ denotes a maximally entangled state of rank M(Ē). Equiva-

lently, Λi(ϕ̄i
AB) = Ψ

M(Ē)
AB , for all i. Then,

1− ε ≤
∑

i

piF (φ
i
AB , ϕ̄

i
AB)

≤
∑

i

piF
(
Λi(φiAB),Λ

i(ϕ̄i
AB)

)

≤ F

(
∑

i

piΛ
i(φiAB),

∑

i

piΛ
i(ϕ̄i

AB)

)

= F

(
∑

i

piΛ
i(φiAB),Ψ

M(Ē)
AB

)
,

(67)

where the second line follows from the monotonicity of fidelity under com-
pletely positive trace-preserving (CPTP) maps, the third line follows from
the concavity of the fidelity, and the last identity follows from (66). Hence,
we conclude that there exist LOCC maps Λi for which

F 2

(
∑

i

piΛ
i(φiAB),Ψ

M(Ē)
A′B′

)
≥ 1− 2ε, (68)

that is,
ED(E; 2ε) ≥ logM(Ē), (69)
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for any Ē in the set introduced above. By maximizing M(Ē) over all such
ensembles and comparing the result with the definition in (62), we obtain
the statement of the lemma.

Lemma 10 (Converse part). For any pure state ensemble E = {pi, φiAB}
and any ε ≥ 0,

ED(E; ε) ≤ max
Ē∈S6(E;ε′)

Fmin(Ē), (70)

where ε′ =
√
2
√
ε.

Proof. Let r be a positive integer such that ED(E; ε) = log r. According
to (60), this means that there exist LOCC maps Λi : AB → A′B′ such that

Tr

[
∑

i

piΛ
i(φiAB) Ψ

r
A′B′

]
≥ 1− ε. (71)

Since the maps Λi act on pure states, without loss of generality we can
assume them to be of the Lo-Popescu form (12).

Further, equation (71) above, in particular, informs us that

Ψr
A′B′ ∈ p

(
∑

i

piΛ
i(φiAB); ε

)
. (72)

This fact in turns implies that

ED(E; ε) = log r

= IA
′→B′

0 (Ψr
A′B′)

≡ min
σB′

{− log Tr [Ψr
A′B′ (1A′ ⊗ σB′)]}

≤ − log Tr [Ψr
A′B′ (1A′ ⊗ σ̃B′)]

≤ − log Tr
[(

Ψr
A′B′ Π∑

i piΛ
i(φi

AB) Ψ
r
A′B′

)
(1A′ ⊗ σ̃B′)

]
,

(73)

for any state σ̃B′ . To obtain the last inequality, we simply used the fact that
Ψr

A′B′ ≥ Ψr
A′B′ΠΨr

A′B′ , for any 0 ≤ Π ≤ 1. We then choose σ̃B′ so that

− log Tr
[(

Ψr
A′B′ Π∑

i piΛ
i(φi

AB) Ψ
r
A′B′

)
(1A′ ⊗ σ̃B′)

]

= min
σB′

{
− log Tr

[(
Ψr

A′B′ Π∑

i piΛ
i(φi

AB) Ψ
r
A′B′

)
(1A′ ⊗ σB′)

]}
.

(74)

From (72), (73) and (74) we infer that

ED(E; ε) ≤ ĨA
′→B′

0,ε

(
∑

i

piΛi(φ
i
AB)

)
. (75)
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Let us now introduce an auxiliary system Z and an orthonormal basis
for it {|iZ〉} that keeps track of the classical outcome i labeling the states
in E. Let us denote by πiZ the projector |i〉〈i|Z . By further introducing the
states ωA′B′ :=

∑
i piΛi(φ

i
AB) and ωA′B′Z :=

∑
i piΛi(φ

i
AB) ⊗ πiZ , so that

ωA′B′ = TrZ ωA′B′Z , we have

ED(E; ε) ≤ ĨA
′→B′

0,ε (ωA′B′)

≡ max
P∈p(ωA′B′ ;ε)

min
σB′

{
− log Tr

[√
PΠωA′B′

√
P (1A′ ⊗ σB′)

]}

= min
σB′

{
− log Tr

[√
P0ΠωA′B′

√
P0 (1A′ ⊗ σB′)

]}

≤ − log Tr
[√

P0ΠωA′B′

√
P0 (1A′ ⊗ ν̄B′)

]
,

(76)

where the operator P0 in the third line is the one achieving the maximum,
and ν̄B′ in the fourth line is any state in S(HB′). In particular, since
ΠωA′B′ ⊗ 1Z ≥ ΠωA′B′Z

, we have that

ED(E; ε) ≤ − log Tr
[√

P0ΠωA′B′

√
P0 (1A′ ⊗ ν̄B′)

]

= − log Tr
[√

P0 ⊗ 1Z(ΠωA′B′ ⊗ 1Z)
√
P0 ⊗ 1Z (1A′ ⊗ ν̄B′Z)

]

≤ − log Tr
[√

P0 ⊗ 1ZΠωA′B′Z

√
P0 ⊗ 1Z (1A′ ⊗ ν̄B′Z)

]
,

(77)

for any state ν̄B′Z .
Let us then choose ν̄B′Z to be the state such that

− log Tr
[√

P0 ⊗ 1ZΠωA′B′Z

√
P0 ⊗ 1Z (1A′ ⊗ ν̄B′Z)

]

= min
νB′Z

{
− log Tr

[√
P0 ⊗ 1ZΠωA′B′Z

√
P0 ⊗ 1Z (1A′ ⊗ νB′Z)

]}
.

(78)

Moreover, note that (P0⊗1Z) ∈ p(ωA′B′Z ; ε), since P0 ∈ p(ωA′B′ ; ε). In fact,
the operator (P0⊗1Z) also belongs to the following set of quantum-classical
(q-c) operators:

pqc(σABZ ; ε) :={
PABZ =

∑

i

P i
AB ⊗ πiZ

∣∣∣∣∣ 0 ≤ P i
AB ≤ 1AB, Tr

(
PABZσABZ

)
≥ 1− ε

}
.

(79)

Hence, we can write

ED(E; ε) ≤ max
Q∈pqc(ωA′B′Z ;ε)

min
νB′Z

{
− log Tr

[√
QΠωA′B′Z

√
Q (1A′ ⊗ νB′Z)

]}

(80)
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Let the Kraus representations of the CPTP maps Λi : AB 7→ A′B′

satisfying (71) be written as Λi(ρ) =
∑

µi
VµiρV

†
µi , so that

∑
µi
V †
µiVµi = 1AB

for all i. Using these, we construct a CPTP map M : ABZ → A′B′Z as

M (ρABZ) :=
∑

i

∑

µi

(
Vµi ⊗ πiZ

)
ρABZ

(
Vµi ⊗ πiZ

)†
. (81)

In terms of the map M so constructed,

ωA′B′Z = M

(
∑

i

piφ
i
AB ⊗ πiZ

)
. (82)

Defining the quantum-classical (q-c) state σABZ :=
∑

i piφ
i
AB⊗πiZ , we have,

continuing from (80),

ED(E; ε) ≤ max
Q∈pqc(M (σABZ );ε)

min
νB′Z

{
− log Tr

[√
QΠM (σABZ )

√
Q (1A′ ⊗ νB′Z)

]}

≡ min
νB′Z

{
− log Tr

[√
Q0ΠM (σABZ )

√
Q0 (1A′ ⊗ νB′Z)

]}
, (83)

where Q0 ∈ pqc(M (σABZ); ε) is the q-c operator achieving the maximum in
the second line. This implies that

ED(E; ε) ≤ − log Tr
[√

Q0ΠM (σABZ )

√
Q0 (1A′ ⊗ νB′Z)

]
, (84)

for any state νB′Z .
Due to the fact that the maps Λi are in the Lo-Popescu form (12), it

follows that the map M (obtained from the Λi’s) is also in the Lo-Popescu
form. The identity (13) then implies that

ED(E; ε) ≤ − log Tr
[√

Q0ΠM (σABZ )

√
Q0 M (1A ⊗ ν̃BZ)

]
, (85)

for any state ν̃BZ . By using the dual map M ∗,

ED(E; ε) ≤ − log Tr
[
M

∗
(√

Q0ΠM (σABZ )

√
Q0

)
(1A ⊗ ν̃BZ)

]
, (86)

for any state ν̃BZ . By denoting the operator M ∗ (√Q0ΠM (σABZ )

√
Q0

)
as

Q̃ABZ , we have, for any state ν̃BZ ,

ED(E; ε) ≤ − log Tr

[√
Q̃ABZΠσABZ

√
Q̃ABZ (1A ⊗ ν̃BZ)

]
, (87)

since Q̃ABZ ≥
√
Q̃ABZΠσABZ

√
Q̃ABZ . Let us also choose ν̃BZ so that

− log Tr

[√
Q̃ABZΠσABZ

√
Q̃ABZ (1A ⊗ ν̃BZ)

]

= min
νBZ

{
− log Tr

[√
Q̃ABZΠσABZ

√
Q̃ABZ (1A ⊗ νBZ)

]}
.

(88)
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Using the particular form (81) of M , and the facts that σABZ is a q-
c state and Q0 ∈ pqc(σABZ ; ε), we can prove that the operator Q̃ABZ ∈
pqc(σABZ ; 2

√
ε), using arguments similar to those leading to (39).

Hence, continuing from equation (87), we can write

ED(E; ε) ≤ min
νBZ

{
− log Tr

[√
Q̃ABZΠσABZ

√
Q̃ABZ (1A ⊗ νBZ)

]}

≤ max
P∈pqc(σABZ ;2

√
ε)
min
νBZ

{
− log Tr

[√
PΠσABZ

√
P (1A ⊗ νBZ)

]}
.

(89)

Let ε′ := 2
√
ε. Then, for any P =

∑
i P

i
AB ⊗ πiZ in pqc(σABZ ; ε

′), let us

define |ϕi
AB〉 :=

√
P i
AB |φiAB〉. As a consequence of Lemma 2, we have that

∑
i piF (ϕ

i
AB , φ

i
AB) ≥ 1−

√
ε′, so that

ED(E; ε) ≤ max
P∈pqc(σABZ ;ε′)

min
νBZ

{
− log Tr

[√
PΠσABZ

√
P (1A ⊗ νBZ)

]}

≤ max
Ē∈S6(E;

√
ε′)

min
νBZ

{
− log Tr

[(
ϕ̄i
AB ⊗ πiZ

)
(1A ⊗ νBZ)

]}

= max
Ē∈S6(E;

√
ε′)

min
i

min
νB

{
− log Tr

[
ρϕ̄

i

B νB)
]}

= max
Ē∈S6(E;

√
ε′)

min
i

[
− log λmax(ρ

ϕ̄i

B )
]
,

= max
Ē∈S6(E;

√
ε′)

min
i
Smin(ρ

ϕ̄i

A ), (90)

where we used the fact that λmax(ρ
ϕ̄i

B ) = λmax(ρ
ϕ̄i

A ) = Smin(ρ
ϕ̄i

A ), since ϕ̄i
AB

is a pure state.

6 Asymptotic entanglement of assistance

Consider the situation in which three parties, Alice, Bob and Charlie jointly
possess multiple (say n) copies of a tripartite pure state |ΨABC〉. Alice
and Bob, considered in isolation, therefore possess n copies of the state
ρAB := TrC ΨABC , i.e., they share the state ρ⊗n

AB. We refer to this situation
as the “i.i.d. scenario”, in analogy with the classical case of independent and
identically distributed (i.i.d.) random variables. We define the asymptotic
entanglement of assistance of a state ρAB as

E∞
A (ρAB) := lim

ε→0
lim
n→∞

1

n
EA(ρ

⊗n
AB ; ε), (91)

where for any ε ≥ 0, EA(ρ
⊗n
AB ; ε) denotes the one-shot entanglement of as-

sistance of the state ρ⊗n
AB , defined in (58) and quantified in (61) and (64).
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The same notation E∞
A (ρAB) was used in Ref. [7] to denote the regular-

ized EoA, formally defined as limn→∞
1
nEA(ρ

⊗n
AB) from (2). The aim of this

section is to show that the two quantities coincide, so that, in fact, there is
no notational inconsistency. At the same time, this provides an alternative
proof of the operational interpretation of the regularized EoA given in [7].

The main result of this section is the following theorem:

Theorem 3. For any bipartite state ρAB

E∞
A (ρAB) := lim

ε→0
lim
n→∞

1

n
EA(ρ

⊗n
AB ; ε) = lim

n→∞
1

n
EA(ρ

⊗n
AB), (92)

where for any state ωAB,

EA(ωAB) := max
{pi,|ϕ

i
AB

〉}

ωAB=
∑

i piϕ
i
AB

∑

i

piS(ρ
ϕi

A ), (93)

denotes its entanglement of assistance, with ρϕ
i

A = TrB [ϕ
i
AB ].

In order to prove this, we first need to introduce a few more definitions.
Let σABZ be a quantum-classical (qc) state, i.e.

σABZ =
∑

i

piσ
i
AB ⊗ πiZ , (94)

for some probabilities pi ≥ 0,
∑

i pi = 1, some normalized states σiAB ∈
S(HA ⊗ HB), and some orthogonal rank-one projectors πiZ = |i〉〈i|Z (that
we fix here once and for all). As it has been done already in (79), along the
proof of Lemma 10, we define the sets

pqc(σABZ ; ε) :=

{
PABZ =

∑

i

P i
AB ⊗ πiZ

∣∣∣∣∣
0 ≤ P i

AB ≤ 1AB,

Tr[Pσ] ≥ 1− ε

}
, (95)

and

bqc(σABZ ; ε) :=


ω̄ABZ =

∑

i

piϕ̄
i
AB ⊗ πiZ

∣∣∣∣∣∣∣

∣∣∣∣ϕ̄i
AB

∣∣∣∣
1
=
∣∣∣∣ϕ̄i

AB

∣∣∣∣
∞ = 1,

F (ω̄, σ) =
∑

i

piF (ϕ̄
i, σi) ≥ 1− ε




.

(96)

The sets defined above are analogous to those introduced in (23) and (24),
with the difference that the quantum-classical structure of the argument
σABZ is here maintained.

For technical reasons that will be apparent in the proofs, we also need to
introduce an additional smoothed zero-coherent information, besides those
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in (28) and (29), defined as, for any qc state σABZ and any ε ≥ 0,

IA BZ
0,ε (σABZ) := max

σ̄ABZ∈bqc(σABZ ;ε)
min

νBZ∈S(HB⊗HZ )
S0(σ̄ABZ‖1A⊗νBZ). (97)

We then proceed by proving the following lemma, which is nothing but
a convenient reformulation of Theorem 2:

Lemma 11. For any bipartite state ρAB and any ε ≥ 0,

max
E

IA BZ
0,ε/2 (σEABZ)−∆ ≤ EA(ρAB ; ε) ≤ max

E
ĨA→BZ
0,2

√
ε (σEABZ), (98)

where the maxima are taken over all possible pure state ensembles E =
{pi, φiAB} such that ρAB =

∑
i piφ

i
AB, and for a given ensemble E = {pi, φiAB},

σEABZ =
∑

i piφ
i
AB⊗πiZ . In the above, the real number 0 ≤ ∆ ≤ 1 is included

to ensure that the lower bound is equal to the logarithm of a positive integer.

For the sake of clarity, we divide the proof of the Lemma above into two
separate lemmas. The first is the following:

Lemma 12. For any given ensemble E = {pi, φiAB} of pure states, and any
ε ≥ 0,

ED(E; ε) ≤ ĨA→BZ
0,2

√
ε (σEABZ), (99)

where σEABZ :=
∑

i piφ
i
AB ⊗ πiZ , and Ĩ

A→BZ
0,2

√
ε

(σEABZ) is defined in (29).

Proof. The equation number (89) in the proof of Theorem 2, that is,

ED(E; ε) ≤ max
P∈pqc(σABZ ;2

√
ε)
min
νBZ

{
− log Tr

[√
PΠσABZ

√
P (1A ⊗ νBZ)

]}

(100)
already proves the statement, since pqc(σABZ ; 2

√
ε) ⊂ p(σABZ ; 2

√
ε).

Lemma 13. For any given ensemble E = {pi, φiAB} of pure states, and any
ε ≥ 0,

ED(E; ε) ≥ IA BZ
0,ε/2 (σEABZ). (101)

where σEABZ :=
∑

i piφ
i
AB ⊗ πiZ and IA BZ

0,ε/2 (σEABZ) is defined in (97).

Proof. The statement is a direct consequence of the lower bound in Theorem
2. This can be shown as follows:

IA BZ
0,ε/2 (σEABZ) : = max

σ̄ABZ∈bqc(σABZ ;ε/2)
min
νBZ

{− log Tr [Πσ̄ABZ
(1A ⊗ νBZ)]}

= max
{ϕ̄i

AB
}i:Tr ϕ̄i

AB
=1

∑
i piF (ϕ̄i

AB
,φi

AB
)≥1−ε/2

min
i

min
νB

{
− log Tr

[
ρϕ̄

i

B νB

]}

= max
{ϕ̄i

AB
}i:Tr ϕ̄i

AB
=1

∑
i piF (ϕ̄i

AB
,φi

AB
)≥1−ε/2

min
i

{
− log λmax

(
ρϕ̄

i

B

)}

= max
{ϕ̄i

AB
}i:Tr ϕ̄i

AB
=1

∑
i piF (ϕ̄i

AB
,φi

AB
)≥1−ε/2

min
i
Smin(ρ

ϕ̄i

A ), (102)
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since λmax(ρ
ϕ̄i

B ) = λmax(ρ
ϕ̄i

A ) = Smin(ρ
ϕ̄i

A ), with ρϕ̄
i

B := TrA(ϕ̄
i) and ρϕ̄

i

A :=
TrB(ϕ̄

i), because ϕ̄i
AB is a pure state. To obtain the identity on the third

line, we made use of the fact that Πσ̄ABZ
=
∑

i ϕ̄
i
AB ⊗ πiZ .

The proof of Theorem 3 can be divided into the following two lemmas.

Lemma 14. For any bipartite state ρAB,

E∞
A (ρAB) ≥ lim

n→∞
1

n
EA(ρ

⊗n
AB), (103)

Proof. Let E = {pi, φiAB} be an ensemble of pure states for ρAB and En =
{pni , φiAnBn

} be an ensemble of pure states for ρ⊗n
AB. First of all, note that

the pure states φiAnBn
need not be factorized. For this ensemble, define the

tripartite state

σEn
ABZ =

∑

i

pni φ
i
AnBn

⊗ πn,iZ ∈ B
(
H

⊗n
A ⊗ H

⊗n
B ⊗ H

⊗n
Z

)
, (104)

where πn,iZ = |in〉〈in| ∈ S(H ⊗n
Z ), with {|in〉}i being an orthonormal basis

of H
⊗n
Z .

From (98) of Lemma 11 we have, for any given ε ≥ 0,

EA(ρ
⊗n
AB ; ε) ≥ max

En

IAn BnZn

0,ε/2 (σEn
ABZ)−∆n (105)

with 0 ≤ ∆n ≤ 1. We then have:

E∞
A (ρAB) := lim

ε→0
lim
n→∞

1

n
EA(ρ

⊗n
AB ; ε),

≥ lim
ε→0

lim
n→∞

1

n
max
En

IAn BnZn

0,ε/2 (σEn
ABZ)

≥ lim
ε→0

lim
n→∞

1

n
max
E

IAn BnZn

0,ε/2

(
(σEABZ)

⊗n
)

=max
E

[
IA→BZ(σEABZ)

]
. (106)

The proof of (106) can be found in Appendix B
From the definition of the state σEABZ it follows that for the ensemble

E = {pi, φiAB},
IA→BZ(σEABZ) =

∑

i

piS(ρ
φi

B ), (107)

where ρφ
i

B = TrAZ

(
σEABZ

)
. From (106) and (107) we hence obtain

E∞
A (ρAB) ≥ max

E

∑

i

piS(ρ
φi

B )

= EA(ρAB). (108)

The statement of the lemma can then be obtained by the usual blocking
argument.
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Lemma 15. For any bipartite state ρAB,

E∞
A (ρAB) ≤ lim

n→∞
1

n
EA(ρ

⊗n
AB), (109)

Proof. From (98) of Lemma 11 we have, for any given ε ≥ 0,

EA(ρ
⊗n
AB ; ε) ≤ max

En

IAn→BnZn

0,2
√
ε

(σEn
ABZ), (110)

where the maximisation is over all possible pure state decompositions of the
satte ρ⊗n

AB.
From Lemma 14 of [22] we have the following inequality relating the

smoothed zero-coherent information to the ordinary coherent information:

IAn→BnZn

0,2
√
ε

(σEn
ABZ) ≤

IAn→BnZn(σEn
ABZ)

1− ε′′

+
4
(
ε
′′
log
(
dnAd

n
BZ

)
+ 1
)

1− ε′′
, (111)

where ε′ = 2
√
ε, ε

′′
= 2

√
ε′, dnA = dimH

⊗n
A and dnBZ = dim

(
H

⊗n
B ⊗H

⊗n
Z

)
.

Moreover, analogous to (107) we have

IAn→BnZn(σEn
ABZ) =

∑

i

pni S(ρ
Bn

φi ). (112)

Hence,

E∞
A (ρAB) ≤ lim

n→∞
1

n
max
En

IAn→BnZn(σEn
ABZ)

= lim
n→∞

1

n
max
En

∑

i

pni S(ρ
Bn

φi )

= lim
n→∞

1

n
EA

(
ρ⊗n
AB

)
(113)

7 Discussion

In this paper we evaluated the one-shot entanglement of assistance for an
arbitrary bipartite state ρAB. In doing this, we proved a result, which is
of interest on its own, namely a characterization of the one-shot distillable
entanglement of a bipartite pure state. This result turned out to be stronger
than what one obtains by simply specializing the one-shot hashing bound,
obtained in [28], to pure states.

Further, we showed how our one-shot result yields the operational in-
terpretation of the asymptotic entanglement of assistance in the asymptotic
i.i.d. scenario. In this context, an interesting open question is to find a one-
shot analogue of the result E∞

A (ρAB) = min{S(ρA), S(ρB)} proved in [7].
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A Appendix A: optimality of rank-one measure-
ments in (58)

Suppose in fact that the optimal assisting measurement at Charlie’s is given
by the POVM {P i

C}i (not necessarily rank-one). Then the resulting shared
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state will be
∑

i p(i)ρ
i
AB⊗πiX⊗πiY , where p(i)ρiAB = TrC

[
(1AB ⊗ P i

C) ΨABC

]
,

and πi is the shorthand notation for the projector |i〉〈i|. In this form, the
systems X and Y , at Alice’s and Bob’s side respectively, are classical regis-
ters carrying the information about the outcome of Charlie’s measurement.

Now, consider the situation where Charlie actually performs the rank-one
POVM {|µi〉〈µi|C}(i,µi), with

∑
µi
|µi〉〈µi|C = P i

C , and communicates the
double index outcome (i, µi) to Alice and Bob. In this case, the shared state
between Alice and Bob can be written as

∑
i,µi

p(i, µi)|ϕ(i,µi)〉〈ϕ(i,µi)|AB ⊗
πiX ⊗ πµi

X′ ⊗ πiY ⊗ πµi

Y ′ , where

p(i, µi)|ϕ(i,µi)〉〈ϕ(i,µi)|AB = TrC [(1AB ⊗ |µi〉〈µi|C) ΨABC ] .

It is easy to verify that
∑

µi
p(i, µi)|ϕ(i,µi)〉〈ϕ(i,µi)|AB = p(i)ρiAB , so that,

in order to retrieve the optimal case, Alice and Bob simply have to first
perform a partial trace over the registers X ′ and Y ′, respectively, and then
proceed with the required LOCC transformation. The partial trace can be
effectively seen as a coarse-graining of Charlie’s measurement.

B Appendix B: proof of equation (106)

Equation (106) is proved by using Lemma 16 and Lemma 17, given be-
low. However, before stating and proving these lemmas, we need to recall
some definitions and notations extensively used in the Quantum Information
Spectrum Approach [32, 33]. A fundamental quantity used in this approach
is the quantum spectral inf-divergence rate, defined as follows [33]:

Definition 5 (Spectral inf-divergence rate). Given a sequence of states ρ̂ =
{ρn}∞n=1, ρn ∈ S(H ⊗n), and a sequence of positive operators σ̂ = {σn}∞n=1,
with σn ∈ B(H ⊗n), the quantum spectral inf-divergence rate is defined in
terms of the difference operators ∆n(γ) := ρn − 2nγσn as follows:

D(ρ̂‖σ̂) := sup
{
γ : lim inf

n→∞
Tr [{∆n(γ) ≥ 0}∆n(γ)] = 1

}
, (114)

where the notation {X ≥ 0}, for a self-adjoint operatorX, is used to indicate
the projector onto the non-negative eigenspace of X.

Lemma 16. For any given bipartite state ρAB, let E denote a pure-state
ensemble decomposition, and let En denote a pure-state ensemble decompo-
sition of the state ρ⊗n

AB . Then, using the notation of (104), we have

lim
ε→0

lim
n→∞

1

n
max
En

IAn BnZn
0,ε (σEn

ABZ) ≥ max
E

min
ν̂BZ

D(σ̂EABZ‖1̂A ⊗ ν̂BZ), (115)

where σ̂EABZ :=
{
(σEABZ)

⊗n
}
n≥1

, 1̂A := {1⊗n
A }n≥1, and ν̂BZ := {νnBZ ∈

S(H ⊗n
B ⊗ H

⊗n
Z )}n≥1.
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Proof. Let Ē be the pure state ensemble decomposition of ρAB for which
the maximum on the r.h.s. of eq. (115) is achieved. Since Ē is fixed, in the
following, we drop the superscript Ē whenever no confusion arises, denoting
σĒABZ simply as σABZ .

From the definition (97) it follows that, for any fixed ε > 0,

max
En

IAn BnZn
0,ε (σEn

ABZ)

=max
En

max
σ̄n
AnBnZn

∈bqc(σEn
ABZ ;ε)

min
νnBnZn

S0(σ̄
En
AnBnZn

‖1⊗n
A ⊗ νnBnZn

)

≥max
E

max
σ̄n
AnBnZn

∈bqc((σE

ABZ )⊗n;ε)
min
νnBnZn

S0(σ̄
n
AnBnZn

‖1⊗n
A ⊗ νnBnZn

)

≥ max
σ̄n
AnBnZn

∈bqc(σ⊗n
ABZ ;ε)

min
νnBnZn

S0(σ̄
n
AnBnZn

‖1⊗n
A ⊗ νnBnZn

). (116)

For each νnBnZn
and any γ ∈ R, define the projector

P γ
n ≡ P γ

n (ν
n
BnZn

) := {σ⊗n
ABZ − 2nγ(1⊗n

A ⊗ νnBnZn
) ≥ 0}. (117)

Since the operator σ̄nAnBnZn
in (116) is a qc operator, it is clear that the

minimization over νnBnZn
in (116) can be restricted to states diagonal in the

basis chosen in representing qc operators. Consequently, also P γ
n has the

same qc structure.
Next, let us denote by σ̂ABZ the i.i.d. sequence of states {σ⊗n

ABZ}n≥1.
For any sequence ν̂BZ := {νnBnZn

}n≥1, fix δ > 0 and choose γ ≡ γ(ν̂BZ) :=

D(σ̂ABZ‖1̂A ⊗ ν̂BZ)− δ. Then it follows from the definition (114) that, for
n large enough,

Tr
[
P γ
n σ⊗n

ABZ

]
≥ 1− ε2

4
, (118)

for any ε > 0. Further, define

ωn,γ
AnBnZn

≡ ωn,γ
AnBnZn

(νnBnZn
) :=

√
P γ
nσ

⊗n
ABZ

√
P γ
n

Tr
[
P γ
nσ

⊗n
ABZ

] , (119)

which, by Lemma 3, is clearly in bqc(σ
⊗n
ABZ ; ε), the qc-ball around the state

σ⊗n
ABZ ,defined by (96).
Then, using the fact that Πωn,γ

AnBnZn
≤ P γ

n , and Lemma 2 of [34], we have,
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for any fixed ε > 0,

lim
n→∞

1

n
{r.h.s. of (116)}

≥ lim
n→∞

1

n
min
νnBnZn

S0(ω
n,γ
RnAn

‖1⊗n
A ⊗ νnBnZn

)

= lim
n→∞

1

n
min
νnBnZn

{
− log Tr

[
Πωn,γ

AnBnZn
(1⊗n

A ⊗ νnBnZn
)
]}

≥ lim
n→∞

1

n
min
νnBnZn

{
− log Tr

[
P γ
n (1

⊗n
A ⊗ νnBnZn

)
]}

≥ min
ν̂BZ

γ(ν̂BZ)

= min
ν̂BZ

D(σ̂ABZ‖1̂A ⊗ ν̂BZ)− δ

= max
E

min
ν̂BZ

D(σ̂EABZ‖1̂A ⊗ ν̂BZ)− δ (120)

Since this holds for any arbitrary δ > 0, it yields the required inequality (115)
in the limit ε→ 0.

We also use the following lemma [4], which employs the Generalized
Stein’s Lemma [35] and Lemma 4 of [22]. We include its proof for the sake
of completeness.

Lemma 17. For any given bipartite state ρAR,

min
σ̂R

D(ρ̂AR‖1̂A ⊗ σ̂R) = S(ρAR‖1A ⊗ ρR), (121)

where ρ̂AR = {ρ⊗n
AR}n≥1, ρR = TrA ρAR, σ̂R := {σnRn

∈ S(H ⊗n
R )}n≥1, and

1̂A := {1⊗n
A }n≥1.

Proof. Consider the family of sets M := {Mn}n≥1

Mn :=
{
τnAn

⊗ σnRn
∈ S(H ⊗n

A ⊗ H
⊗n
R )

}
, (122)

such that τnAn
:= (1A/dA)

⊗n. For this family, the Generalized Stein’s
Lemma (Proposition III.1 of [35]) holds.

More precisely, for a given bipartite state ρAR, let us define

S∞
M (ρAR) := lim

n→∞
1

n
SMn(ρ

⊗n
AR), (123)

with SMn(ρ
⊗n
AR) := minωn

AnRn
∈Mn S(ρ

⊗n
AR‖ωn

AnRn
), and ∆n(γ) = ρ⊗n

AR−2nγωn
AnRn

.

From the Generalized Stein’s Lemma [35] it follows that, for γ > S∞
M
(ρAR),

lim
n→∞

min
ωn
AnRn

∈Mn

Tr [{∆n(γ) ≥ 0}∆n(γ)] = 0, (124)
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implying that minω̂AR∈MD(ρ̂AR‖ω̂AR) ≤ S∞
M
(ρAR). On the other hand, for

γ < S∞
M
(ρAR),

lim
n→∞

min
ωn
AnRn

∈Mn

Tr [{∆n(γ) ≥ 0}∆n(γ)] = 1, (125)

implying that minω̂AR∈MD(ρ̂AR‖ω̂AR) ≥ S∞
M
(ρAR). Hence

min
ω̂AR∈M

D(ρ̂AR‖ω̂AR) = S∞
M (ρAR).

Finally, by noticing that, due to the definition (122) of M,

min
ω̂AR∈M

D(ρ̂AR‖ω̂AR)

= min
σ̂R

D(ρ̂AR‖1̂A ⊗ σ̂R) + log dA,
(126)

and that, due to Lemma 4 in [22],

S∞
M (ρAR) = S(ρAR‖1A ⊗ ρR) + log dA, (127)

we obtain the statement of the lemma.

From Lemma 16 and Lemma 17 we conclude that

lim
ε→0

lim
n→∞

1

n
max
En

IAn BnZn
0,ε (σEn

ABZ) ≥ max
E

min
ν̂BZ

D(σ̂EABZ‖1̂A ⊗ ν̂BZ)

= max
E

S(σEABZ‖1A ⊗ σEBZ)

= max
E

[
IA→BZ(σEABZ)

]
, (128)

where σEBZ = TrA σ
E
ABZ . Thus (106) is proved.
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