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Abstract

Coin flipping is a cryptographic primitive for which strictly better protocols exist if the
players are not only allowed to exchange classical, but also quantum messages. During the past
few years, several results have appeared which give a tight bound on the range of implementable
unconditionally secure coin flips, both in the classical as well as in the quantum setting and for
both weak as well as strong coin flipping. However, all these results consider only protocols with
perfect correctness, i.e., where two honest players must always output the same value and never
abort. We remove this restriction by giving a more general definition of coin flipping which unifies
the notion of strong and weak coin flipping (it contains both of them as special cases) and allows
the honest players to abort with a certain probability. We give tight bounds on the achievable
range of parameters both in the classical and in the quantum setting.

1 Introduction

Coin flipping (or coin tossing) as a cryptographic primitive has been introduced by Blum [Blu83]
and is one of the basic building blocks of secure two-party computation [Yao82].

Coin flipping can be defined in several ways. The most common definition, sometimes called
strong coin flipping, allows two honest players to receive a uniform random bit c ∈ {0, 1}, such that
a dishonest player cannot increase the probability of any output. A dishonest player may, however,
abort the protocol, in which case the honest player gets the erasure symbol ∆ as output1. A weaker
definition, called weak coin flipping, only requires that each party cannot increase the probability of
their preferred value.

Without any additional assumptions, unconditionally secure weak coin flipping (and therefore
also strong coin flipping) is impossible to implement by a classical protocol. This follows from a
result by Hofheinz, Müller-Quade and Unruh [HMQU06], which implies that if two honest players
always receive the same uniform bit, then there always exists one player that can force the bit to be
his preferred value with certainty.

If the players can communicate using a quantum channel, unconditionally secure coin flipping
is possible to some extend. The bounds of the possibilities in the quantum setting have been
investigated by a long line of research. Aharanov et al. [ATSVY00] presented a strong coin flipping
protocol where no quantum adversary can force the outcome to a certain value with probability
larger than 0.914. This bound has been improved by Ambainis [Amb01] and independently by
Spekkens and Rudolph [SR01] to 0.75 (see also [Col07] for a different protocol). For weak coin
flipping, Spekkens and Rudolph [SR02] presented a protocol where the dishonest player cannot
force the outcome to its preferred value with probability larger than 1/

√
2 ≈ 0.707. (Independently,

Kerenidis and Nayak [KN04] showed a slightly weaker bound of 0.739.) This bound has further been
improved by Mochon, first to 0.692 [Moc04a] and finally to 1/2 + ε for any constant ε > 0 [Moc07],

1 The dishonest player may abort after receiving the output bit, but before the honest player gets the output bit.
This allows cases where the honest player gets, for example, 0 with probability 1/2 and ∆ otherwise. There exists also
a definition of coin flipping where a dishonest player does not have this unfair advantage, and the honest player must
always get a uniformly random bit, no matter what the other player does. See [Cle86, LC98, MNS09].
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therefore getting arbitrarily close to the optimum. For strong coin flipping, on the other hand,
this is not possible, since it has been shown by Kitaev [Kit02] (see [ABDR04] for a proof) that for
any quantum protocol there is always a player able to force an outcome with probability at least
1/
√
2. Chailloux and Kerenidis [CK09] showed that a bound of 1/

√
2+ ε for any constant ε > 0 can

be achieved, by combining two classical protocols with Mochon’s result: They first showed that an
unbalanced weak coin flip can be implemented using many instances of weak coin flips, and then that
one instance of an unbalanced weak coin flip suffices to implement a strong coin flip with optimal
bias.

1.1 Limits of previous Results

In all previous work on quantum coin flipping, honest players are required to output a perfect coin
flip, i.e., the probability of both values has to be exactly 1/2, and the players must never disagree
on the output or abort. However, the players may very well be willing to allow a small probability
of error even if both of them are honest. Furthermore, a (quantum) physical implementation of
any protocol will always contain some noise and, therefore, also some probability to disagree or
abort. This requirement is, therefore, overly strict and raises the question how much the cheating
probability can be improved by allowing some error.

Indeed, there exist examples of different cryptographic primitives where allowing an (arbitrarily
small) error can greatly improve the performance of the protocol. For example, as shown in [BM04],
the amount of secure AND gates (or, alternatively, oblivious transfers) needed between two parties
to test equality of two strings is only O(log 1/ε) for any small error ε > 0, while it is exponential
in the length of the inputs in the perfect case. Considering reductions from oblivious transfer to
different variants of oblivious transfer where the players can use quantum communication, it has
recently been shown in [WW10] that introducing a small error can reduce the amount of oblivious
transfer needed by an arbitrarily large factor.

That some improvement on the achievable parameters must be possible also in the case of coin
flipping can be seen easily: In any protocol, the honest players can simply flip the output bit with
some (small) probability. This increases the error, but decreases the bias. In the extreme case, the
two players simply flip two independent coins and output this value. This prohibits any bias from
the adversary, at the cost of making the players disagree with probability 1/2.

The only bound on coin flipping we are aware of allowing for an error of the honest players has
been given in [HMQU06], for weak coin flipping in the classical setting.

1.2 Contribution

We introduce a general definition of coin flipping, characterized by 6 parameters, which we denote
by

CF(p00, p11, p0∗, p1∗, p∗0, p∗1) .

The value pii (where i ∈ {0, 1}) is the probability that two honest players output i and the value p∗i
(pi∗) is the maximal probability that the first (second) player can force the honest player to output
i. With probability 1 − p00 − p11, two honest players will abort the protocol and output a dummy
symbol.2 This new definition has two main advantages:

• It generalizes both weak and strong coin flipping, but also allows for additional types of coin
flips which are unbalanced or lay somewhere between weak and strong.

• It allows two honest players to abort with some probability.

We will first consider classical protocols (Section 3), and give tight bounds for all parameters.
The impossibility result (Lemma 5) uses a similar proof technique as Theorem 7 in [HMQU06]. In

2Similar to [HMQU06], we can require two honest players to always output the same values. This is not a big
restriction, since the players can always add a final round to check if they have the same value and abort if the values
differ.
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Figure 1: For values p0∗ = p∗0 = p1∗ = p∗1 = 3
4 , this figure shows the achievable values of p00 and

p11 in the classical and the quantum setting. The light gray area is the set of all coin flips that can
be defined.

combination with two protocols showing that this bound can be reached (Lemma 4), we obtain the
following theorem.

Theorem 1. Let p00, p11, p0∗, p1∗, p∗0, p∗1 ∈ [0, 1]. There exists a classical protocol that implements
an unconditionally secure CF(p00, p11, p0∗, p1∗, p∗0, p∗1) if and only if

p00 ≤ p0∗p∗0

p11 ≤ p1∗p∗1

p00 + p11 ≤ p0∗p∗0 + p1∗p∗1 −max(0, p0∗ + p1∗ − 1)max(0, p∗0 + p∗1 − 1) .

For weak coin flipping, i.e., p∗1 = 1 and p0∗ = 1, the bound of Theorem 1 simplifies to

1− p00 − p11 ≥ (1− p∗0)(1− p1∗) ,

which is the bound that is also implied by Theorem 7 in [HMQU06].
In Section 4, we consider the quantum case, and give tight bounds for all parameters. The

quantum protocol (Lemma 10) bases on one of the protocols presented in [CK09], and is a classical
protocol that uses an unbalanced quantum weak coin flip as a resource. The impossibility result
follows from the proof of Kitaev’s bound on quantum strong coin flipping (Lemma 11).

Theorem 2. Let p00, p11, p0∗, p1∗, p∗0, p∗1 ∈ [0, 1]. There exists a quantum protocol that implements
an unconditionally secure CF(p00, p11, p0∗ + ε, p1∗ + ε, p∗0 + ε, p∗1 + ε) for any ε > 0, if

p00 ≤ p0∗p∗0

p11 ≤ p1∗p∗1

p00 + p11 ≤ 1 .

If these bounds are not satisfied, there does not exist a quantum protocol for ε = 0.

Our results, therefore, give the exact trade-off between weak vs. strong coin flipping, between
bias vs. abort-probability, and between classical vs. quantum coin flipping. (Some of these trade-offs
are shown in Figures 1 and 2.) They imply, in particular, that quantum protocols give strictly better
bounds if p0∗ + p1∗ > 1 and p∗0 + p∗1 > 1. Outside that range classical protocols can achieve the
same bounds as quantum protocols.

Since the optimal quantum protocol is a classical protocol using quantum weak coin flips as a
resource, the possibility to do weak coin flipping, as shown by Mochon [Moc07], can be seen as the
crucial difference between the classical and the quantum case.
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Figure 2: This graph shows the bounds for symmetric coin flipping of the form
CF(1−a

2 , 1−a
2 , p∗, p∗, p∗, p∗). The value p∗ is the maximal probability that any player can force the

coin to be a certain value, and a is the abort probability. Therefore, the smaller p∗ for a fixed value
of a, the better is the protocol. The optimal bound is p∗ =

1−a
2 . In the quantum case, the achievable

bound is p∗ =
√

(1− a)/2, and in the classical case the achievable bound is equal to the quantum
bound for a ≥ 1

2 , but p∗ = 1−
√

a/2 for a < 1
2 .

2 Preliminaries

In a classical protocol, the two players (Alice and Bob) are restricted to classical communication.
Both players are given unlimited computing power and memory, and are able to locally sample ran-
dom variables from any distribution. In a quantum protocol, the two players may exchange quantum
messages. They have unlimited quantum memory and can perform any unitary transformation on
it. All operations are noiseless. At the beginning of the protocol, the players do not share any
randomness or entanglement. While honest players have to follow the protocol, we do not make any
assumption about the behavior of the malicious players. We assume that the adversary is static,
i.e., any malicious player is malicious from the beginning.

Definition 1. Let p00, p11, p0∗, p1∗, p∗0, p∗1 ∈ [0, 1], such that p00 + p11 ≤ 1, p00 ≤ min{p0∗, p∗0} and
p11 ≤ min{p1∗, p∗1} holds. A protocol implements a CF(p00, p11, p0∗, p1∗, p∗0, p∗1), if the following
conditions are satisfied:

• If both players are honest, then they output value i ∈ {0, 1} with probability pii and ∆ with
probability 1− p00 − p11.

• For any dishonest Alice, the probability that Bob outputs 0 is at most p∗0, and the probability
that he outputs 1 is at most p∗1.

• For any dishonest Bob, the probability that Alice outputs 0 is at most p0∗, and the probability
that she outputs 1 is at most p1∗.

Definition 1 generalizes the notion of both weak and strong coin flips and encompasses, in fact,
the different definitions given in the literature.

• A perfect weak coin flip is a CF
(

1
2 ,

1
2 , 1,

1
2 ,

1
2 , 1

)

.

• A perfect strong coin flip is a CF
(

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)

.

• The weak coin flip with error ε > 0 of [Moc07] is a CF
(

1
2 ,

1
2 , 1,

1
2 + ε, 12 + ε, 1

)

.

• The unbalanced weak coin flip WCF(z, ε) of [CK09] is a CF (z, 1 − z, 1, 1 − z + ε, z + ε, 1).

• The strong coin flip of [CK09] is a CF
(

1
2 ,

1
2 ,

1√
2
+ ε, 1√

2
+ ε, 1√

2
+ ε, 1√

2
+ ε

)

.
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Note that CF(p00, p11, p0∗, p1∗, p∗0, p∗1) can also be defined as an ideal functionality that is equiv-
alent to the above definition. Such a functionality would look like this: If there is any corrupted
player, then the functionality first asks him to send a bit b ∈ {0, 1} that indicates which value he
prefers. The functionality then flips a coin c ∈ {0, 1,∆}, where the probabilities depend on b and
on which player is corrupted. For example, if the first player is corrupted and b = 0, then c = 0
will be chosen with probability p∗0, c = 1 with probability min(p∗1, 1 − p∗0) and ∆ otherwise. The
functionality then sends c to the adversary, and the adversary chooses whether he wants to abort
the protocol or not. If he does not abort, the honest player receives c, and ∆ otherwise. If none of
the players are corrupted, the functionality chooses a value c ∈ {0, 1,∆} which takes on i ∈ {0, 1}
with probability pii and sends c to the two players.

3 Classical Coin Flipping

3.1 Protocols

Protocol CoinFlip1:
Parameters: p0∗, p1∗, p∗0, p∗1 ∈ [0, 1], p0∗ + p1∗ ≤ 1.

1. Alice flips a three-valued coin a such that the probability that a = i is pi∗ for i = {0, 1},
and a = ∆ otherwise. She sends a to Bob.

2. If a = ∆, Bob outputs b = ∆. If a 6= ∆, Bob flips a coin b such that b = a with probability
p∗a and b = ∆ otherwise. Bob sends b to Alice and outputs b.

3. If b = a Alice outputs b, otherwise ∆.

Lemma 1. If either p0∗+p1∗ ≤ 1 or p∗0+p∗1 ≤ 1, then there exists a classical coin flipping protocol
with p00 = p0∗p∗0 and p11 = p1∗p∗1.

Proof. If p0∗ + p1∗ ≤ 1, they use Protocol CoinFlip1. (If p∗0 + p∗1 ≤ 1, they exchange the role of
Alice and Bob.) By construction, a malicious Bob cannot bias Alice’s output by more than pi∗, and
a malicious Alice cannot bias Bob’s output by more than p∗i. Honest players output the value 0
with probability p0∗p∗0 and 1 with probability p1∗p∗1.

Protocol CoinFlip2:
Parameters: p, x0, x1, y0, y1 ∈ [0, 1].

1. Alice flips a coin a ∈ {0, 1} such that a = 0 with probability p and sends it to Bob.

2. Bob receives the coin a and flips a coin b ∈ {0, 1} such that the probability that b = a is
xa. He sends b to Alice. If b = a he outputs b.

3. If b = a, then Alice outputs b. If a 6= b, then Alice flips a coin c, such that with probability
yb, c = b and else c = ∆. She sends c to Bob and outputs it.

4. If c = b Bob outputs c, else ∆.

Lemma 2. If p0∗+p1∗ > 1, p∗0+p∗1 > 1, p00 ≤ p0∗p∗0 and p11 ≤ p1∗p∗1, then there exists a protocol
that achieves a coin flip with

p00 + p11 = p0∗p∗0 + p1∗p∗1 − (p0∗ + p1∗ − 1)(p∗0 + p∗1 − 1) . (1)
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Proof. We use Protocol CoinFlip2 and choose the parameters

xi := p∗i , y0 :=
p0∗ − p

1− p
, y1 :=

p1∗ + p− 1

p
, p :=

p00 − p0∗ + p0∗p∗1
p∗0 + p∗1 − 1

.

These parameters need to be between 0 and 1. We have y0, y1 ∈ [0, 1], if p ∈ [1 − p1∗, p0∗]. To see
that p lies indeed in this interval, note that the upper bound follows from

p =
p00 − p0∗ + p0∗p∗1

p∗0 + p∗1 − 1
≤ p0∗p∗0 − p0∗ + p0∗p∗1

p∗0 + p∗1 − 1
=

p0∗(p∗0 + p∗1 − 1)

p∗0 + p∗1 − 1
= p0∗ .

For the lower bound, note that

1− p =
p∗0 + p∗1 − 1

p∗0 + p∗1 − 1
− p00 − p0∗ + p0∗p∗1

p∗0 + p∗1 − 1

=
p∗0 + p∗1 − 1− p00 + p0∗ − p0∗p∗1

p∗0 + p∗1 − 1

=
p1∗p∗0 − p1∗ + p11

p∗0 + p∗1 − 1
,

where we have used that

p∗0 + p∗1 − 1− p00 + p0∗ − p0∗p∗1

= p∗0 + p∗1 − 1− (p0∗p∗0 + p1∗p∗1 − (p0∗ + p1∗ − 1)(p∗0 + p∗1 − 1)− p11) + p0∗ − p0∗p∗1

= p∗0 + p∗1 − 1− p0∗p∗0 − p1∗p∗1 + p0∗p∗0 + p0∗p∗1 − p0∗ + p1∗p∗0 + p1∗p∗1 − p1∗ − p∗0 − p∗1 + 1

+ p11 + p0∗ − p0∗p∗1

= p1∗p∗0 − p1∗ + p11 .

Therefore

p = 1− p11 − p1∗ + p1∗p∗0
p∗0 + p∗1 − 1

≥ 1− p∗1p1∗ − p1∗ + p1∗p∗0
p∗0 + p∗1 − 1

= 1− p1∗ .

It follows that p, x0, x1, y0, y1 ∈ [0, 1].
If both players are honest, then the probability that they both output 0 is

px0 + (1− p)(1− x1)y0 = px0 + (1− p)(1− x1)
p0∗ − p

1− p

= pp∗0 + (1− p∗1)(p0∗ − p)

= pp∗0 − p(1− p∗1) + p0∗(1− p∗1)

=
p00 − p0∗ + p0∗p∗1

p∗0 + p∗1 − 1
(p∗0 + p∗1 − 1) + p0∗(1− p∗1)

= p00 .

That they both output 1 is

p(1− x0)y1 + (1− p)x1 = p(1− p∗0)
p1∗ + p− 1

p
+ (1− p)p∗1

= (1− p∗0)(p1∗ + p− 1) + (1− p)p∗1

= p1∗(1− p∗0)− (1− p)(1− p∗0) + (1− p)p∗1

= p1∗(1− p∗0) + (1− p)(p∗1 + p∗0 − 1)

= p1∗(1− p∗0) +
p1∗p∗0 − p1∗ + p11

p∗0 + p∗1 − 1
(p∗1 + p∗0 − 1)

= p11 .

If Alice is malicious, she can bias Bob to output value i either by sending i as first message
hoping that Bob does not change the value, which has probability xi = p∗i; or by sending the value

6



1− i hoping that Bob changes the value, which occurs with probability 1− x1−i = 1− p∗1−i ≤ p∗i.
Hence, she succeeds with probability p∗i.

Bob can bias Alice to output value i by sending b = i independently of what Alice had sent as
first message. For i = 0, Alice will accept this value with probability

p+ (1− p)y0 = p+ (1− p)
p0∗ − p

1− p
= p0∗

and for i = 1 with probability

1− p+ py1 = 1− p+ p
p1∗ + p− 1

p
= p1∗ .

In order to show that all values below the bound can be reached, we will need additionally the
following lemma.

Lemma 3. If there exists a protocol P that implements CF(p00, p11, p0∗, p1∗, p∗0, p∗1), then there
exists a protocol P ′ that implements CF(p′00, p

′
11, p0∗, p1∗, p∗0, p∗1), for any p′00 ≤ p00 and p′11 ≤ p11.

Proof. P ′ is defined as follows: The players execute protocol P . If the output is i ∈ {0, 1}, then Alice
changes to ∆ with probability 1− p′ii/pii. Obviously, the cheating probabilities are still bounded by
p0∗, p1∗, p∗0, p∗1, which implies that that protocol P ′ implements a CF(p′00, p

′
11, p0∗, p1∗, p∗0, p∗1).

Combining Lemma 1, 2 and 3, we get

Lemma 4. Let p00, p11, p0∗, p1∗, p∗0, p∗1 ∈ [0, 1]. There exists a classical protocol that implements
CF(p00, p11, p0∗, p1∗, p∗0, p∗1) if

p00 ≤ p0∗p∗0

p11 ≤ p1∗p∗1

p00 + p11 ≤ p0∗p∗0 + p1∗p∗1 −max(0, p0∗ + p1∗ − 1)max(0, p∗0 + p∗1 − 1) .

Proof. If p0∗ + p1∗ ≥ 1 and p∗0 + p∗1 ≥ 1, then Lemmas 2 and 3 imply the bound. Otherwise, i.e., if
either p0∗+ p1∗ < 1 or p∗0+ p∗1 < 1, then max(0, p0∗ + p1∗− 1)max(0, p∗0 + p∗1− 1) = 0. Therefore,
the bound is implied by Lemmas 1 and 3.

3.2 Impossibilities

The following lemma shows that the bounds obtained in Lemma 4 are optimal. The proof uses the
same idea as the proof of Theorem 7 in [HMQU06].

Lemma 5. Let p00, p11, p0∗, p1∗, p∗0, p∗1 ∈ [0, 1]. A CF(p00, p11, p0∗, p1∗, p∗0, p∗1) can only be imple-
mented by a classical protocol if

p00 ≤ p0∗p∗0

p11 ≤ p1∗p∗1

p00 + p11 ≤ p0∗p∗0 + p1∗p∗1 −max(0, p0∗ + p1∗ − 1)max(0, p∗0 + p∗1 − 1) .

Proof. We can assume that the output is a deterministic function of the transcript of the protocol.
This can be enforced by adding an additional round at the end of the protocol where the two players
tell each other what they are going to output. Since we do not require the protocol to be efficient,
Lemma 7 in [HMQU06] implies that we can also assume that the honest parties maintain no internal
state except for the list of previous messages.

For any partial transcript t of a protocol, we define pt0∗ as the maximum over all transcripts
starting with t, i.e., the maximum probability with which Bob can force Alice to output 0, given

7



the previous interaction has given t. In the same way, we define pt1∗, p
t
∗0, p

t
∗1. We define pt00 and pt11

as the probabilities that the output of the honest players will be 00 and 11, respectively, given the
previous interaction has given t. We will now do an induction over all transcripts, showing that for
all t, we have

pt00 ≤ pt0∗p
t
∗0

pt11 ≤ pt1∗p
t
∗1

pt00 + pt11 ≤ pt0∗p
t
∗0 + pt1∗p

t
∗1 −max(0, pt0∗ + pt1∗ − 1)max(0, pt∗0 + pt∗1 − 1) .

For complete transcripts t, each honest player will output either 0, 1 or ∆ with probability 1.
We always have pt0∗ + pt1∗ − 1 = 0 and pt∗0 + pt∗1 − 1 = 0. Therefore, we only need to check that
pt00 ≤ pt0∗p

t
∗0 and pt11 ≤ pt1∗p

t
∗1. For j ∈ {0, 1}, if ptjj = 1, then ptj∗ = pt∗j = 1, so the condition is

satisfied. In all the other cases we have ptjj = 0, in which case the condition is satisfied as well.
Let t now be a partial transcript, and let Alice be the next to send a message. Let M be the set

of all possible transcripts after Alice has sent her message. For the induction step, we now assume
that the statement holds for all transcript in M , and show that then it must also hold for t. Let ri
be the probability that an honest Alice will choose message i ∈ M . By definition, we have

pt00 =
∑

i∈M

rip
i
00, pt11 =

∑

i∈M

rip
i
11, pt0∗ =

∑

i∈M

rip
i
0∗, pt1∗ =

∑

i∈M

rip
i
1∗,

pt∗0 = max
i∈M

pi∗0, pt∗1 = max
i∈M

pi∗1 .

For j ∈ {0, 1} it holds that

ptjj =
∑

i∈M

rip
i
jj ≤

∑

i∈M

rip
i
j∗p

i
∗j ≤

∑

i∈M

rip
i
j∗p

t
∗j = ptj∗p

t
∗j ,

which shows the induction step for the first two inequalities. For the last, let

f(a, b, c, d) := ac+ bd−max(0, a+ b− 1)max(0, c + d− 1) ,

where a, b, c, d ∈ [0, 1]. If we fix the values c and d, we get the function fc,d(a, b) := f(a, b, c, d). It
consists of two linear functions: If a+ b ≤ 1, we have

fc,d(a, b) = ac+ bd ,

and if a+ b ≥ 1 we have

fc,d(a, b) = ac+ bd− (a+ b− 1)max(0, c + d− 1) .

Note that these two linear functions are equal if a+b = 1, and we have (a+b−1)max(0, c+d−1) ≥ 0
if a+ b ≥ 1. It follows that fc,d(a, b) is concave, meaning that for all α, a, b, a′, b′ ∈ [0, 1], we have

αfc,d(a, b) + (1− α)fc,d(a
′, b′) ≤ fc,d(αa+ (1− α)a′, αb+ (1− α)b′) . (2)

Using

∂

∂c
f(a, b, c, d) ≥ 0 and

∂

∂d
f(a, b, c, d) ≥ 0 , (3)

we obtain

pt00 + pt11 =
∑

i∈M

ri(p
i
00 + pi11)

≤
∑

i∈M

ri
(

pi0∗p
i
∗0 + pi1∗p

i
∗1 −max(0, pi0∗ + pi1∗ − 1)max(0, pi∗0 + pi∗1 − 1)

)

(3)
≤

∑

i∈M

ri
(

pi0∗p
t
∗0 + pi1∗p

t
∗1 −max(0, pi0∗ + pi1∗ − 1)max(0, pt∗0 + pt∗1 − 1)

)

(2)
≤ pt0∗p

t
∗0 + pt1∗p

t
∗1 −max(0, pt0∗ + pt1∗ − 1)max(0, pt∗0 + pt∗1 − 1) .

Hence, the inequalities also hold for t. The statement follows by induction.
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4 Quantum Coin Flipping

4.1 Protocols

An unbalanced weak coin with error ε WCF(z, ε) is a CF(z, 1 − z, 1, 1 − z + ε, z + ε, 1), i.e., a coin
flip where Alice wins with probability z, Bob with probability 1 − z and both cannot increase
their probability to win by more than ε. (They may, however, decrease the probability to 0.). Let
WCF(z) := WCF(z, 0).

It has been shown by Mochon [Moc07] that weak coin flipping can be implemented with an
arbitrarily small error.

Theorem 3 ([Moc07]). For any constant ε > 0, there exists a quantum protocol that implements
WCF(1/2, ε).

In [Moc04b], Mochon showed that quantum coin flipping protocols compose sequentially. Im-
plicitly using this result, Chailloux and Kerenidis showed that an unbalanced weak coin flip can be
implemented from many instances of (balanced) weak coin flips.

Proposition 1 ([CK09]). For all z ∈ [0, 1], there exists a classical protocol that uses k instances of
WCF(1/2, ε) and implements WCF(x, 2ε), for a value x ∈ [0, 1] with |x− z| ≤ 2−k.

The following lemma shows that parameter z can be slightly changed without increasing the
error to much.

Lemma 6. For any 1 > z′ > z > 0, there exists a classical protocol that uses 1 instance of
WCF(z′, ε) and implements WCF(z, ε + z′ − z).

Proof. The protocol first calls WCF(z′, ε). If Alice wins, i.e., if the output is 0, then she changes the
output bit to 1 with probability 1−z/z′, and sends the bit to Bob. Bob only accepts changes from 0 to
1, but not from 1 to 0. Alice can force the coin to be 0 with probability at most z′+ε = z+(ε+z′−z).
Let x ∈ [0, 1− z′+ ε] be the probability that a corrupted Bob chooses WCF(z′, ε) to output 1. Alice
will output 1 with probability

x+ (1− x)
(

1− z

z′

)

= 1− z

z′
+ x · z

z′
≤ 1− z

z′
+ (1− z′ + ε) · z

z′
= 1− z + ε · z

z′
≤ 1− z + ε .

Theorem 3 together with Proposition 1 and Lemma 6 implies that WCF(z, ε) can be implemented
for any z ∈ [0, 1] with an arbitrarily small error ε. To simplify the analysis of our protocols, we will
assume that we have access to WCF(z) for any z ∈ [0, 1]. The following lemma shows that when
WCF(z) is replaced by WCF(z, ε), the bias of the output is increased by at most 2ε.

Lemma 7. Let P be a protocol that implements CF(p00, p11, p0∗, p1∗, p∗0, p∗1) using one instance
of WCF(z). If WCF(z) is replaced by WCF(z, ε), then P implements CF(p00, p11, p0∗ + 2ε, p1∗ +
2ε, p∗0 + 2ε, p∗1 + 2ε).

Proof. Let us compare two settings: one where the players execute P using one instance of WCF(z, ε),
and the other where they use one instance of WCF(z). When both players are honest, the two set-
tings are obviously identical. Let Alice be honest and Bob malicious. For each setting, we can define
an event that occurs with probability at most ε, such that conditioned that the two events do not
occur, WCF(z) and WCF(z, ε) and hence the whole protocol are identical. The probability that the
two events do not occur is at least 1− 2ε by the union bound. Therefore, the probabilities that the
honest player outputs 0 (or 1) differ by at most 2ε. The statement follows.

The following protocol is a generalization of the strong coin flipping protocol S from [CK09]. It
gives optimal bounds for the case where the honest players never abort, i.e., p00 + p11 = 1.
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Protocol QCoinFlip1:
Parameters: x, z0, z1, p0, p1 ∈ [0, 1].

• Alice flips a coin a ∈ {0, 1} such that the probability that a = 0 is x and sends a to Bob.

• Alice and Bob execute WCF(za).

• If Alice wins, then both output a.

• If Bob wins, then he flips a coin b such that b = a with probability pa. Both output b.

Lemma 8. Let p0∗, p1∗, p∗0, p∗1 ∈ [0, 1] where p∗0 + p∗1 > 1, p0∗ + p1∗ > 1 and p∗0p0∗ + p∗1p1∗ = 1.
Given access to one instance of WCF(z), we can implement a CF(p00, p11, p0∗, p1∗, p∗0, p∗1) where
p00 = p0∗p∗0 and p11 = p1∗p∗1.

Proof. We execute Protocol QCoinFlip1, choosing the parameters

pi := 1− p∗1−i , z0 :=
p∗0 + p∗1 − 1

p∗1
, z1 :=

p∗0 + p∗1 − 1

p∗0
and x :=

p0∗p∗0 + p∗1 − 1

p∗0 + p∗1 − 1
.

Note that

1− z0 =
1− p∗0
p∗1

and 1− z1 =
1− p∗1
p∗0

.

Since 1 − p∗0 < p∗1 and 1 − p∗1 < p∗0, these values are between 0 and 1, and hence also z0 and z1
are between 0 and 1. From p0∗ ≤ 1 follows that x ≤ 1, and from p∗0p0∗ + p∗1 ≥ p∗0p0∗ + p∗1p∗1 = 1
that x ≥ 0. Furthermore, we have

z0 + (1− z0)p0 =
p∗0 + p∗1 − 1

p∗1
+

(1− p∗1)(1− p∗0)

p∗1
= p∗0

and

z1 + (1− z1)p1 =
p∗0 + p∗1 − 1

p∗0
+

(1− p∗1)(1− p∗0)

p∗0
= p∗1 .

Alice can bias Bob’s coin to 0 with probability

max{z0 + (1− z0)p0; (1 − p1)} = p∗0

and to 1 with probability

max{z1 + (1− z1)p1; (1− p0)} = p∗1 .

The probability that Bob can bias Alice’s coin to 0 is

x+ (1− x)(1 − z1) = (1− z1) + xz1

=
1− p∗1
p∗0

+
p0∗p∗0 + p∗1 − 1

p∗0 + p∗1 − 1
· p∗0 + p∗1 − 1

p∗0

= p0∗

and the probability that he can bias it to 1 is

(1− x) + x(1− z0) = 1− xz0

= 1− p0∗p∗0 + p∗1 − 1

p∗0 + p∗1 − 1
· p∗0 + p∗1 − 1

p∗1

= 1− p0∗p∗0 + p∗1 − 1

p∗1

=
1− p0∗p∗0

p∗1

=
p1∗p∗1
p∗1

= p1∗ .

10



Furthermore, two honest players output 0 with probability

xz0 + x(1− z0)p0 + (1− x)(1− z1)(1− p1) = x(z0 + (1− z0)p0) + (1− x)
1− p∗1
p∗0

p∗0

= xp∗0 + (1− x)(1− p∗1)

= 1− p∗1 + x(p∗0 + p∗1 − 1)

= p0∗p∗0

= p00

and 1 with probability 1− p00 = 1− p0∗p∗0 = p1∗p∗1 = p11.

The following protocol gives optimal bounds for the general case. It uses one instance of the
above protocol, and lets Alice and Bob abort in some situations.

Protocol QCoinFlip2:
Parameters: Protocol P , ε0, ε1 ∈ [0, 12 ].

• Alice and Bob execute the coin flipping protocol P .

• If Alice obtains 0, she changes to ∆ with probability ε0. If Bob obtains 1, he changes
to ∆ with probability ε1. If either Alice or Bob has changed to ∆, they both output ∆,
otherwise they output the value obtained from P .

Lemma 9. Let p0∗, p1∗, p∗0, p∗1 ∈ [0, 1] where p∗0 + p∗1 > 1, p0∗ + p1∗ > 1 and p0∗p∗0 + p∗1p∗1 ≤ 1.
Given access to WCF(z) for any z ∈ [0, 1], we can implement a CF(p00, p11, p0∗, p1∗, p∗0, p∗1) where
p00 = p0∗p∗0 and p11 = p1∗p∗1.

Proof. From p∗0 + p∗1 > 1 and p0∗ + p1∗ > 1 follows that either p∗0 + p1∗ > 1 or p0∗ + p∗1 > 1.
Without loss of generality, let us assume that p∗0 + p1∗ > 1.

Let

p′0∗ := min

(

1,
1− p1∗p∗1

p∗0

)

p′∗1 :=
1− p′0∗p∗0

p1∗
.

First, note that since p0∗ ≤ 1−p1∗p∗1
p∗0

we have p′0∗ ≥ p0∗. Obviously, we also have p′0∗ ≤ 1. Since

p′0∗ ≤ 1−p1∗p∗1
p∗0

, we have

p′∗1 =
1− p′0∗p∗0

p1∗
≥

1− 1−p1∗p∗1
p∗0

p∗0

p1∗
=

p1∗p∗1
p1∗

= p∗1 ,

and since p′0∗ ≤ 1, we have

p′∗1 =
1− p′0∗p∗0

p1∗
≤ 1− p∗0

p1∗
<

p1∗
p1∗

≤ 1 .

Since p′0∗p∗0+ p1∗p
′
∗1 = 1, according to Lemma 8, we can use protocol QCoinFlip1 to implement

a CF(p′00, p
′
11, p

′
0∗, p1∗, p∗0, p

′
∗1), where p

′
00 = p′0∗p∗0 and p′11 = p1∗p

′
∗1. Using that protocol as protocol

P , let Alice and Bob execute protocol QCoinFlip2 with ε0 := 1− p0∗/p
′
0∗, and ε1 := 1− p∗1/p

′
∗1.

The probability that Bob can bias Alice to 0 is now (1 − ε0)p
′
0∗ = p0∗, and the probability that

Alice can bias Bob to 1 is now (1 − ε1)p
′
∗1 = p∗1. Furthermore, the probability that two honest

players output both 0 is (1 − ε0)p
′
00 = (1 − ε0)p

′
0∗p∗0 = p0∗p∗0 and the probability that they both

output 1 is (1− ε1)p
′
11 = (1− ε1)p1∗p

′
∗1 = p1∗p∗1.
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Lemma 10. Let p00, p11, p0∗, p1∗, p∗0, p∗1 ∈ [0, 1] with

p00 ≤ p0∗p∗0

p11 ≤ p1∗p∗1

p00 + p11 ≤ 1 .

there exists a quantum protocol that implements CF(p00, p11, p0∗+ ε, p1∗+ ε, p∗0+ ε, p∗1+ ε), for any
constant ε > 0.

Proof. Let us first assume that p∗0 + p∗1 > 1 and p0∗ + p1∗ > 1. We reduce the value of p0∗ to
p00/p∗0 and the value of p1∗ to p11/p∗1, which ensures that p0∗p∗0 + p∗1p∗1 ≤ 1. Now we can apply
Lemma 9, together Theorem 3, Proposition 1 and Lemmas 6, 7 and 3.

If the assumption does not hold then either p∗0 + p∗1 ≤ 1 or p0∗ + p1∗ ≤ 1. In this case, we can
apply Lemmas 1 and 3.

In order to see that this bound is tight, we can use the proof of Kitaev [Kit02] (printed
in [ABDR04]) showing that an adversary can always bias the outcome of a strong quantum coin
flipping protocol. In fact, Equations (36) - (38) in [ABDR04] imply that for any quantum coin flip-
ping protocol, it must hold that p11 ≤ p1∗p∗1. In the same way, it can be proven that p00 ≤ p0∗p∗0.
We obtain the following lemma.

Lemma 11. A CF(p00, p11, p0∗, p1∗, p∗0, p∗1) can only be implemented by a quantum protocol if p00 ≤
p0∗p∗0, p11 ≤ p1∗p∗1 and p00 + p11 ≤ 1.

Lemma 10 and 11 imply together Theorem 2.

5 Conclusions

We have shown tight bounds for a general definition of coin flipping, which give trade-offs between
weak vs. strong coin flip, between bias vs. abort-probability, and between classical vs. quantum.

Our results extends the work of [CK09], and shows that the whole advantage of the quantum
setting lies in the ability to do weak coin flips (as shown by Mochon [Moc07]). If weak coin flips
are available in the classical setting, classical protocols can achieve the same bounds as quantum
protocols.

For future work, it would be interesting to see if similar bounds holds for the definition of coin
flipping without the possibility for the malicious player to abort.
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