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Abstract

We study a financial model with a non-trivial price impact effect.
In this model we consider the interaction of a large investor trading in
an illiquid security, and a market maker who is quoting prices for this
security. We assume that the market maker quotes the prices such
that by taking the other side of the investor’s demand, the market
maker will arrive at maturity with the maximal expected utility of
the terminal wealth. Within this model we provide an explicit recur-
sive pricing formula for an exponential utility function, as well as an
asymptotic expansion for the price for a “small” simple demand.
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1 Introduction

The study of contingent claim valuation problem accounts for a large number
of papers in Finance, Economics and Mathematical Finance in particular.
This question was and currently is studied by many authors in various models
under different assumptions. A common assumption made by many authors
is the basic economic assumption (imposed either implicitly or explicitly)
that an economic agent can trade any security in the desired quantity at the
same price. The consequence of this assumption is that the economic agent’s
actions do not affect the traded security’s price, and that there is never a
shortage of any security in any quantity.

One way to relax this assumption is to consider a model where agent’s
actions move prices. We will achieve that by introducing the notion of liq-
uidity into the model. Liquidity is a complex concept standing for the ease of
trading of a security. (Il)liquidity can have different sources, such as inven-
tory risk – [Sto78], transaction costs – [CK95], uncertain holding horizons –
[Hua03], asymmetry of information – [GP04], demand pressure – [GPP09],
search friction – [DGP05], stochastic supply curve – [ÇJP04] and demand
for immediacy – [GM88], among many others (see [AMP05] for a thorough
literature overview).

We will consider the interaction of a large investor trading in an illiquid
security, and a market maker who is quoting prices for this security. We
will assume that the market maker quotes the prices such that by taking
the other side of the investor’s demand, she will arrive at maturity with the
maximal expected utility of the terminal wealth. This idea was also used in
a recent paper [GPP09] by Gârleanu, et. al. In Section 2 we will rigorously
define a model for a large investor. Within this model in this paper we will
be concerned with the following questions: “Does there exist a price process
corresponding to an arbitrary demand of the large investor, and whether this
process is unique.” An affirmative answer to these questions (under certain
conditions) is presented in Section 3.

An equally important problem is the replication of contingent claims in
the large investor model with price impact. A companion paper by [Ger10]
shows the existence of a unique pricing rule for a broad class of derivative
securities and utility functions, as well as the existence of a unique trading
strategy that leads to a perfect replication.

Our approach to the model of a large investor follows the traditional
framework of Economic Theory. We begin with economic primitives (such as
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agent’s preferences and market equilibrium) and then derive the model. This
is different from several papers in Mathematical Finance where the nature
of illiquidity is postulated a priori, see for example [CM96], [ÇJP04], [BB04]
and [Fre98].

2 Large investor market model

We assume that the uncertainty and the flow of information are modeled
by a filtered probability space (Ω,F , (Ft)0≤t≤T ,P), where the filtration F is
generated by a J-dimensional Brownian Motion B, that is,

(2.1) Ft = FB
t , 0 ≤ t ≤ T.

Here T is a finite time horizon, and F = FT .
The security market consists of J risky assets and a riskless asset. These

assets are traded between the investor and the market maker. We work in
discounted terms and (without loss of generality) assume that the return on
the riskless asset is zero. We denote by FT -measurable random variables f =
(f j)1≤j≤J the payoffs of the risky assets at maturity and by SH = (SH

t )0≤t≤T

the (J-dimensional) price process of the risky assets under the condition that
the investor is using the (J-dimensional) trading strategy or demand process

H = (Ht)0≤t≤T . Of course, at maturity the price does not depend on the
strategy:

(2.2) SH
T = f, for all H.

From here on we will implicitly understand that we have J-dimensional
processes, and without loss of generality we will use one-dimensional nota-
tion.

The market maker can be viewed then as a liquidity provider. She takes
the other side of the investor’s demand, which can be positive, as well as
negative. We assume that the market maker always responds to the investor’s
demand, that is the market maker always quotes the price (which turns out
to be a function of the trade size). Moreover, the market maker quotes the
pricies such that she arrives at maturity with the maximized expected utility
of her terminal wealth.

It may be tempting to think that the market maker would quote positive
infinity price when the investor is buying, and negative infinity when the
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investor is selling. However, by the natural economic assumption, the price
process S of the contingent claim f is a semimartingale. Moreover, by (2.2)
the price process at maturity is equal to f , and therefore the plus/minus
infinity price processes are ruled out here.

We will use the standard apparatus of utility functions. We assume that
the market maker has a utility function U : R → R, which is strictly in-
creasing, strictly concave, continuously differentiable, and satisfies the Inada
conditions

U ′(−∞) = lim
x→−∞

U ′(x) = ∞,

U ′(∞) = lim
x→∞

U ′(x) = 0.

We shall also require the following two technical assumptions.

Assumption 2.1. The terminal value of the traded asset f=(f j)1≤j≤J ∈ FT

has finite exponential moments, that is

E[exp(〈q, f〉)] < ∞, q ∈ RJ .

Assumption 2.2. Utility function U : R −→ R satisfies

c1 < −
U ′(x)

U ′′(x)
< c2 for some c1, c2 > 0.(2.3)

Notice that a linear combination of exponential functions of the form

U(x) =
N
∑

i=1

−ci
e−γix

γi
, γi, ci > 0, x ∈ R

satisfies the assumption above. We also notice that Assumption 2.2 implies
the Inada conditions.

We assume that the investor reveals his market orders (his demand pro-
cess) H to the market maker. The market maker responds to the investor’s
demand by quoting the price, and by taking the other side of the demand.
That is, if H is the investor’s strategy, then −H is the market maker’s strat-
egy. In other words, the market maker responds to the demand so that the
market rests in equilibrium (supply equals demand). The market maker is
quoting the price in such a way that she arrives at maturity with the maximal
expected utility of the terminal wealth. Formally this can be stated as
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Definition 2.1. Let x ∈ R be the initial cash endowment of the market

maker. Let f = (f j)1≤j≤J be an FT -measurable contingent claim. Let

H = (Hj)1≤j≤J be a predictable process. The equivalent probability mea-

sure P
H ∼ P is called the pricing measure of f under demand H, and the

semimartingale SH is called the price process of f under demand H if

dPH

dP
,

U ′(x−
∫ T

0
HudS

H
u )

E[U ′(x−
∫ T

0
HudSH

u )]
,(2.4)

and the price process SH with the integral
∫

HdSH are martingales under

P
H . In particular,

SH
t , E

H [f |Ft], 0 ≤ t ≤ T.

The above definition displays an intimate relationship between the price
process and the pricing measure. It may not be clear from the formulation
of Definition 2.1 that it reflects the mechanics of the market described in
the previous paragraph. However, notice that the density of PH is chosen in
such a way that the process −H is indeed a solution to the market maker’s
optimization problem (which will be defined below.) Naturally, the semi-
martingale SH is defined in such a way that it is a martingale under the
pricing measure. It will become evident from the following lemma, that the
numerator of (2.4) is nothing else but the market maker’s marginal utility.

Lemma 2.1. Let x ∈ R be the initial cash endowment of the market maker.

Suppose f satisfies Assumption 2.1, and U satisfies Assumption 2.2. Let

H = (Hj)1≤j≤J be a predictable process. Suppose that SH is the price process

of f under demand H. Then −H is the unique solution of the optimization

problem

u(x) , max
G∈H(SH ,PH)

E[U(x +

∫ T

0

GudS
H
u )],(2.5)

where H(SH ,PH) is the collection of predictable processes G such that

∫ ·

0

GudS
H
u

is a P
H-martingale.

5



The proof of this Lemma is given in the companion paper [Ger10].
In the following section we will be interested in finding the answers to the

following questions:

• Does the price process SH exist for an arbitrary demand H?

• Provided that SH exists, is it unique?

3 Price process under simple demand and ex-

ponential utility

In our model the market maker has to meet the demand H , which forces her
strategy to be −H . Therefore the value of the market maker’s portfolio at
time t is x−

∫ t

0
HudS

H
u , when SH is the price that the market maker is quoting

depending on the demand H , and x is the market maker’s initial wealth. An
important question is whether for every predictable demand process H and
an FT -measurable random variable f there is a corresponding price process
SH , that satisfies Definition 2.1.

In the following theorem we show that the price process SH exists and is
unique for an exponential utility U and bounded simple demand processes
H . Moreover, we provide an explicit recursive algorithm allowing the com-
putation of SH . We start by recalling the definition of simple strategies.

Definition 3.1. Let (ti)0≤i≤N be a partition of the time interval [0, T ] into
N intervals with t0 = 0, and tN = T > 0. Let {θi}0≤i≤N−1 be a sequence of

(Fti)0≤i≤N−1-measurable J-dimensional random variables respectively. Then

the process

(3.1) Ht = θ01{0}(t) +
N−1
∑

i=0

θi1(ti,ti+1](t)

is called a simple process.

We can now formulate the main results of this section.

Theorem 3.1. Assume that the utility function U is of exponential form:

U(x) = −
1

γ
e−γx, γ > 0,
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f is bounded, and (2.1) holds true. Then for a bounded simple demand process

H given by (3.1) the price process SH exists and is unique. Moreover, it

satisfies the following equations of backward induction:

SH
T = f,

SH
t =

E

[

f exp
{

γ
(

θkSH
tk+1

+
∑N−1

i=k+1 θ
i(SH

ti+1
− SH

ti
)
)}
∣

∣

∣
Ft

]

E

[

exp
{

γ
(

θkSH
tk+1

+
∑N−1

i=k+1 θ
i(SH

ti+1
− SH

ti
)
)}
∣

∣

∣
Ft

] ,

for t ∈ [tk, tk+1].

(3.2)

The pricing measure P
H is given by

(3.3)
dPH

dP
=

exp{γ
∑N−1

i=0 θi(SH
ti+1

− SH
ti
)}

E

[

exp{γ
∑N−1

i=0 θi(SH
ti+1

− SH
ti
)}
] .

Remark 3.1. Theorem 3.1 was formulated in [GPP09] (Theorem 1) in a
different form and without a formal proof. For the sake of mathematical
completeness we here provide a proof.

Proof. We first observe that since both f and H are bounded, the process
SH is also bounded and well defined. Therefore the density of PH , which is
defined in terms of the process SH , is well defined.

In this proof we will show that SH and P
H defined by (3.2) and (3.3)

satisfy Definition 2.1.
For the exponential utility function, (3.3) can be written as

dPH

dP
=

exp{γ
∑N−1

i=k+1 θ
i(SH

ti+1
− SH

ti
)}

E

[

exp{γ
∑N−1

i=k+1 θ
i(SH

ti+1
− SH

ti
)}
] =

U ′(x−
∫ T

0
HudS

H
u )

E[U ′(x−
∫ T

0
HudSH

u )]
,

for any x ∈ R.
Next we will verify by backward induction that SH defined by (3.2) can

be also represented as SH
t = E

H [f |Ft]. Indeed, let t ∈ [tN−1, T ]. Since

N−2
∑

i=0

θi(SH
ti+1

− SH
ti
)− θN−1SH

tN−1
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is an FtN−1
-measurable random variable,

E
H [f |Ft] =

E

[

f exp
{

γ
(

∑N−1
i=0 θi(SH

ti+1
− SH

ti
)
)}
∣

∣

∣
Ft

]

E

[

exp
{

γ
(

∑N−1
i=0 θi(SH

ti+1
− SH

ti
)
)}
∣

∣

∣
Ft

]

=
exp

{

γ
(

∑N−2
i=0 θi(SH

ti+1
− SH

ti
)− θN−1SH

tN−1

)}

exp
{

γ
(

∑N−2
i=0 θi(SH

ti+1
− SH

ti
)− θN−1SH

tN−1

)}

×
E

[

feγθ
N−1f

∣

∣

∣
Ft

]

E
[

eγθ
N−1f

∣

∣Ft

]

=
E

[

feγθ
N−1f

∣

∣

∣
Ft

]

E
[

eγθ
N−1f

∣

∣Ft

] .(3.4)

The equality (3.4) shows us that on the time interval t ∈ [tk−1, tk] with
k = N − 1, SH

t given by (3.2) is in fact equal to E
H [f |Ft].

Assume now that SH
t = E

H [f |Ft] for t ∈ [tk+1, tk+2]. Let t ∈ [tk, tk+1].
Since

k−1
∑

i=0

θi(SH
ti+1

− SH
ti
)− θkSH

tk

is an Ftk -measurable random variable, by induction

E
H [f |Ft] =

E

[

f exp
{

γ
(

∑N−1
i=0 θi(SH

ti+1
− SH

ti
)
)}
∣

∣

∣
Ft

]

E

[

exp
{

γ
(

∑N−1
i=0 θi(SH

ti+1
− SH

ti
)
)}
∣

∣

∣
Ft

]

=
exp

{

γ
(

∑k−1
i=0 θ

i(SH
ti+1

− SH
ti
)− θkSH

tk

)}

exp
{

γ
(

∑k−1
i=0 θ

i(SH
ti+1

− SH
ti
)− θkSH

tk

)}

×
E

[

f exp
{

γ
(

θkSH
tk+1

+
∑N−1

i=n+1 θ
i(SH

ti+1
− SH

ti
)
)}
∣

∣

∣
Ft

]

E

[

exp
{

γ
(

θkSH
tk+1

+
∑N−1

i=n+1 θ
i(SH

ti+1
− SH

ti
)
)}
∣

∣

∣
Ft

]

=
E

[

f exp
{

γ
(

θkSH
tk+1

+
∑N−1

i=n+1 θ
i(SH

ti+1
− SH

ti
)
)}
∣

∣

∣
Ft

]

E

[

exp
{

γ
(

θkS
H
tk+1

+
∑N−1

i=n+1 θ
i(SH

ti+1
− SH

ti
)
)}
∣

∣

∣
Ft

] .(3.5)
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Now we can see that (3.5) is precisely equal to (3.2). Hence we proved
that SH defined by (3.2) is indeed the price process of f under demand H .
Uniqueness follows from the construction.

Example 3.1. Consider a Bachelier model with f = ζBT , constant demand
Ht = θ, and U(x) = −e−γx

γ
, where θ, γ, ζ ∈ R, 0 < γ < ∞. B is a one-

dimensional Brownian Motion under P.
Although in this example we would like to illustrate an application of

Theorem 3.1, for technical reasons we chose f to be an unbounded random
variable (which does not satisfy the conditions of the theorem.) Therefore
we cannot directly apply the result of the above theorem. However, instead
we will refer to Definition 2.1, and in this simple case we can work out the
price process right from the definition.

By the Definition 2.1, the pricing measure P
H is given by

dPH

dP
=

U ′(x−
∫ T

0
HudS

H
u )

E[U ′(x−
∫ T

0
HudSH

u )]
=

exp{γ
∫ T

0
HudS

H
u }

E[exp{γ
∫ T

0
HudSH

u }]

=
exp{γθ(SH

T − SH
0 )}

E[exp{γθ(SH
T − SH

0 )}]
,

(3.6)

where the last equality follows from the fact that H = θ is a constant. We
notice that since SH

T = f = ζBT , and SH
0 is a constant, (3.6) can be written

as

dPH

dP
=

exp{γθ(f − SH
0 )}

E[exp{γθ(f − SH
0 )}]

= exp

{

γθζBT −
1

2
(γθζ)2T

}

.

Girsanov’s Theorem implies that under the probability measure P
H there

exists a Brownian Motion BH such that

BH
t = Bt − γθζt,

and therefore since SH is the price process of ζBT under demand θ, Definition
2.1 implies that

SH
t = E

H [f |Ft] = E
H [ζBT |Ft] = E

H [ζ(BH
T + γθζT )|Ft] = ζBH

t + γθζ2Tr

= ζBt + γθζ2(T − t) = S0
t + γ

∫ T

t

Huζ
2du, t ∈ [0, T ],

(3.7)

where
S0
t = ζBt = E [f | Ft] .
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Theorem 3.1 provides a unique price process SH of the contingent claim
f under demand H . Unfortunately, SH is computed in a recursive form,
which makes its practical use rather limited. The following theorem gives
a convenient asymptotic expansion for SH in the case of a “small” simple
demand ǫH .

Theorem 3.2. Assume that conditions of Theorem 3.1 hold true. Then for

ǫ > 0 we have

(3.8) SǫH
t = S0

t + ǫE

[
∫ T

t

Hud〈S
0〉u

∣

∣

∣

∣

Ft

]

+ ξt(ǫ), t ∈ [0, T ],

where

(3.9) S0
t = E[f |Ft], t ∈ [0, T ],

and

(3.10) lim
ǫ→0

ξt(ǫ)

ǫ
= 0 for any t ∈ [0, T ],

where the convergence is in probability.

Remark 3.2. Theorem 3.2 is qualitatively rather similar to Theorem 3 in
[GPP09], but it offers the convenience of not being recursive, unlike Theorem
3 in [GPP09].

Proof. We will proceed by backward induction. According to Theorem 3.1,
the price process SǫH under demand ǫH , it is equal to

SǫH
t =

E

[

f exp

{

ǫγ

(

θkSǫH
tk+1

+
N−1
∑

i=k+1

θi(SǫH
ti+1

− SǫH
ti

)

)}
∣

∣

∣

∣

∣

Ft

]

E

[

exp

{

ǫγ

(

θkSǫH
tk+1

+

N−1
∑

i=k+1

θi(SǫH
ti+1

− SǫH
ti

)

)}
∣

∣

∣

∣

∣

Ft

] ,

for t ∈ [tk, tk+1].

In particular, for t ∈ [tN−1, T ]

SǫH
t =

E

[

feǫγθ
N−1f

∣

∣

∣
Ft

]

E
[

eǫγθ
N−1f

∣

∣Ft

] ,(3.11)
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and therefore

SǫH
t

∣

∣

ǫ=0
= E [f | Ft] = S0

t .(3.12)

Expression (3.12) gives economical meaning to the process S0. It is a price
process under zero demand, which is a P-martingale.

Notice that since f and θN−1 are bounded, the Dominated Convergence
Theorem implies that

∂

∂ǫ
E

[

eǫγθ
N−1f

∣

∣

∣
Ft

]

= lim
δ→0

E

[

e(ǫ+δ)γθN−1f − eǫγθ
N−1f

∣

∣

∣
Ft

]

δ
= E

[

γθN−1eǫγθf
∣

∣Ft

]

,

as well as

∂

∂ǫ
E

[

feǫγθ
N−1f

∣

∣

∣
Ft

]

= E

[

γθN−1feǫγθ
N−1f

∣

∣

∣
Ft

]

.

Hence

∂

∂ǫ
SǫH
t =

∂

∂ǫ

E

[

feǫγθ
N−1f

∣

∣

∣
Ft

]

E
[

eǫγθ
N−1f

∣

∣Ft

]

=
E

[

γθN−1f 2eǫγθ
N−1f

∣

∣

∣
Ft

]

E

[

eǫγθ
N−1f

∣

∣

∣
Ft

]

E
[

eǫγθ
N−1f

∣

∣Ft

]2

−
E

[

γθN−1feǫγθ
N−1f

∣

∣

∣
Ft

]

E

[

feǫγθ
N−1f

∣

∣

∣
Ft

]

E
[

eǫγθ
N−1f

∣

∣Ft

]2 , t ∈ [tN−1, T ].(3.13)

We notice that for every ǫ, (3.13) is a finite random variable. It follows from
(3.13) that

∂

∂ǫ
SǫH
t

∣

∣

∣

∣

ǫ=0

= γθN−1(E
[

f 2
∣

∣Ft

]

− E [f | Ft]
2) = E

[

γ

∫ T

t

Hud〈S
0〉u

∣

∣

∣

∣

Ft

]

,

for t ∈ [tN−1, T ]. Therefore we can compute Taylor’s expansion of SǫH around
zero on [tN−1, T ]:

SǫH
t =

E

[

feǫγθ
N−1f

∣

∣

∣
Ft

]

E
[

eǫγθ
N−1f

∣

∣Ft

] = E [f | Ft] + ǫE

[

γ

∫ T

t

Hud〈S
0〉u

∣

∣

∣

∣

Ft

]

+ ξt(ǫ),
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where ξt(ǫ)
ǫ

converges to 0 in probability as ǫ → 0. This proves the assertion
of the Theorem on the interval [tN−1, T ].

Now let us assume that for t ∈ [tm+1, T ]

(3.14) SǫH
t = S0

t + ǫE

[

γ

∫ T

t

Hud〈S
0〉u

∣

∣

∣

∣

Ft

]

+ ξt(ǫ).

Then for t ∈ [tm, T ]

∂

∂ǫ
SǫH
t =

∂

∂ǫ

E

[

f exp

{

ǫγ

(

θmSǫH
tm+1

+
N−1
∑

i=m+1

θi(SǫH
ti+1

− SǫH
ti

)

)}
∣

∣

∣

∣

∣

Ft

]

E

[

exp

{

ǫγ

(

θmSǫH
tm+1

+
N−1
∑

i=m+1

θi(SǫH
ti+1

− SǫH
ti

)

)}
∣

∣

∣

∣

∣

Ft

]

=
∂

∂ǫ

E [fLm| Ft]

E [Lm| Ft]

where

Lm = exp

{

ǫγ

(

θmSǫH
tm+1

+
N−1
∑

i=m+1

θi(SǫH
ti+1

− SǫH
ti

)

)}

.

We have
Lm|ǫ=0 = 1

and
∂

∂ǫ
Lm|ǫ=0 = γ

(

θmS0
tm+1

+

N−1
∑

i=m+1

θi(S0
ti+1

− S0
ti
)

)

.
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It follows that

∂

∂ǫ
SǫH
t

∣

∣

∣

∣

ǫ=0

= γE

[

f

(

θmS0
tm+1

+

N−1
∑

i=m+1

θi(S0
ti+1

− S0
ti
)

)
∣

∣

∣

∣

∣

Ft

]

− γE

[

θmS0
tm+1

+
N−1
∑

i=m+1

θi(S0
ti+1

− S0
ti
)

∣

∣

∣

∣

∣

Ft

]

E [f | Ft]

= γE

[

f

(
∫ T

tm

HudS
0
u + θmS0

tm

)
∣

∣

∣

∣

Ft

]

− γE

[
∫ T

tm

HudS
0
u + θmS0

tm

∣

∣

∣

∣

Ft

]

E [f | Ft]

= γ

(
∫ t

0

dS0
u

∫ t

0

HudS
0
u + E

[
∫ T

t

Hud〈S
0〉u

∣

∣

∣

∣

Ft

]

+ S0
0

∫ t

0

HudS
0
u

− S0
t

∫ tm

0

HudS
0
u − S0

t

∫ t

0

HudS
0
u + S0

t

∫ tm

0

HudS
0
u

)

= γE

[
∫ T

t

Hud〈S
0〉u

∣

∣

∣

∣

Ft

]

, t ∈ [tm, T ].

Hence, Taylor’s expansion on the time interval [tm, T ] is given by

SǫH
t = E [f | Ft] + ǫE

[

γ

∫ T

t

Hud〈S
0〉u

∣

∣

∣

∣

Ft

]

+ ξt(ǫ), t ∈ [tm, T ]

where ξt(ǫ)
ǫ

converges to 0 in probability as ǫ → 0.

Remark 3.3. Note that in the framework of Example 3.1 the first order
expansion (3.8) is exact, that is, in this case the “error” term ξt(ǫ) = 0.

4 Conclusion

We studied the problem of pricing of an illiquid asset in the model with price
impact. We derived a recursive unique pricing rule for the illiquid asset under
the conditions that the market maker’s utility function is exponential, the
asset is bounded, and the demand is piece-wise constant. The result was
proved by construction.

We also derived the asymptotic expansion (3.8), which gives a very con-
venient expression for the price process under a “small” simple demand. Its

13



generalization to continuous demand processes presents an interesting future
research project.
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[GPP09] Nicolae Gârleanu, Lasse Heje Pedersen, and Allen Poteshman.
Demand-based option pricing. Review of Financial Studies,
22(10):4259–4299, 2009.

15



[Hua03] Ming Huang. Liquidity shocks and equilibrium liquidity premia.
Journal of Economic Theory, 109:104–129, 2003.

[Sto78] Hans R. Stoll. The supply of dealer services in securities markets.
The Journal of Finance, 33(4):1133–1151, 1978.

16


