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Abstract. Controllable quantum systems are heralding a quantum technology

revolution. By coupling controllable quantum systems into larger structures we

introduce the concept of a quantum metamaterial. Conventional metamaterials

represent one the most important frontiers in optical design, with applications in

diverse fields ranging frommedicine to aerospace. Up until now however, metamaterials

have themselves been classical structures and interact only with the classical properties

of light. Here we describe a class of dynamic metamaterials, based on the quantum

properties of coupled atom-cavity arrays, which are intrinsically lossless, reconfigurable,

and operate fundamentally at the quantum level. We show how this new class of

metamaterial could be used to create a reconfigurable quantum superlens possessing

a negative index gradient for single photon imaging. With the inherent features

of quantum superposition and entanglement of metamaterial properties, this new

class of dynamic quantum metamaterial, opens a new vista for quantum science and

technology.
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Figure 1. A reconfigurable quantum superlens built from a cavity-array

metamaterial. By allowing all-angle negative refraction and evanescent wave

amplification, the superlens surpasses the diffraction limitation of conventional lenses.

Inset: Electrostatic tuning of the intracavity atoms (solid circles) in the cavity lattice

provides dynamic control over the light guiding and resonance properties of the lens.

By offering material properties beyond that which occurs in nature, artificially

engineered metamaterials are of intense interest. Typically fabricated with periodic

features spaced closer than the operating wavelength, the system acts as a homogenous

material. The earliest introductions were in the area of magnetic resonance imaging

where conducting elements were used to produce artificial magnetism [1, 2, 3, 4,

5]. Negative index materials (NIMs) with simultaneous negative permittivity and

permeability have also been engineered. A remarkable property of such negative

index materials (NIMs) is negative refraction [6], which has been demonstrated in the

microwave regime in structures that consists of interlocking metal strips and conducting

split-ring resonators [7, 8, 9, 10]. By applying transformation optics, metamaterials

become a rich platform for the fine control of electromagnetic waves. A striking

consequence of such control has been the realization of an invisibility cloak [11]. Apart

from electromagnetic metamaterials, acoustic [12, 13] and seismic [14] metamaterials

are also areas of intense research.

Here we introduce a new class of metamaterials which operates in the quantum

regime and is easily reconfigurable. The medium comprises of a network of coupled
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atom-optical cavities known as the Jaynes-Cummings Hubbard (JCH) system [15, 16,

17, 18, 19, 20, 21, 22]. The application of these arrays to many-body physics has been

recently reviewed [23]. It exhibits novel electromagnetic properties such as negative

refraction. Importantly, by electrical control of the atomic resonances, the metamaterial

properties can be dynamically varied, a significant development compared to the

more usual static implementations. This inherently quantum platform goes beyond

classical electromagnetic properties, opening a vista into quantum metamaterials, which

themselves may have quantum plurality of metamaterial properties. We will design

from the cavity array metamaterial (CAM) a reconfigurable quantum superlens as an

illustration. We envisage a configuration depicted schematically in Fig. where the JCH

system is manipulated to produce a perfect image using single photons.

To form a perfect image requires the lossless convergence of the propagating and

evanescent light components. Conventional lenses only focus the propagating fields,

and so the resolution of the image is fundamentally limited to features greater than the

optical wavelength. Subwavelength features are carried by the high spatial-frequency

components encoded by the evanescent fields. The loss of the evanescent components

lead to the diffraction limit. Near-field scanning optical microscopy overcomes this

problem by scanning a probe in close proximity to the object, but this is often

undesirable for applications such as optical lithography and sensing. It has been

proposed that a lens built from NIMs can produce perfect far field imaging, exhibiting

all-angle negative refraction (AANR) and evanescent wave amplification (EWA) [33].

Because of their ability to overcome the diffraction limit, and the lack of optical axis and

curved surfaces that AANR affords, such a lens is termed superlens [33, 34]. However,

in practice, the fabrication of NIMs for optical frequencies is technically challenging as

implementing negative permeability often introduces significant loss that is detrimental

to subwavelength imaging.

Negative indexing however is not a prerequisite for superlensing. A different class

of metamaterial from that of NIM, is formed by photonic crystals (PhCs) which uses

Bragg scattering. PhCs have also been shown to exhibit AANR and EWA [35, 36, 37],

and have the advantage of low loss. The disadvantage of PhCs as a superlens is that not

all the evanescent components can be uniformly amplified. In relation to the PhC as a

metamaterial, it is of note that since the size and periodicity of the scattering elements

in PhCs are on the order of the operating wavelength, the medium cannot be considered

as homogeneous, which is a necessary condition to identify a meaningful permeability

and permittivity.

The theoretical developments of superlenses have also been matched by

experimental efforts. Superlensing has been demonstrated with microwaves in both

NIMs [38] and PhCs [39, 40], as well as other platforms such as silver films in

visible light [41]. More recently, near-field microscopy using a SiC-based superlens at

mid-infrared frequency has successfully imaged features smaller than the illumination

wavelength [42].

We will for the first time discuss cavity arrays as a metamaterial. The inter-cavity
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hopping mechanism of the CAM are markedly distinguished from NIM and Bragg

scattering, which have been the hallmark of metamaterials until now, and therefore

represent another class of metamaterial. In particular we will discuss the JCH system as

a CAM and investigate it as a medium for a quantum-based reconfigurable superlensing

device. The tunability of the system enables dynamical (post fabrication and temporal)

control over the focal point of the lens, and by scanning over resonances, importantly

allows uniform amplification of evanescent modes, which is not possible with passive

PhC-based devices. We further show a gradient negative index lens which minimizes

reflection from the device.

We consider a uniform two-dimensional periodic array of coupled optical cavities,

embedded with single two-level atomic systems. The cavity array is a series of quantum

oscillators coupled through the overlapping of the photonic modes of adjacent cavities,

such that it leads to a tight-binding Hubbard-like model. Each cavity couples to its

atom via the Jaynes-Cummings (JC) interaction. In terms of the atomic (photonic)

raising and lowering operators σ+
r , σ

−
r (a†r, ar) at site r, the total JCH Hamiltonian

reads (~ = 1),

H =
∑

r

ǫσ+
r σ

−
r + ωa†rar + β(σ†

rar + a†rσ
−
r )−

∑

〈r,s〉

κa†ras, (1)

where
∑

〈r,s〉 is the sum over all nearest-neighbor cavities, κ > 0 is the hopping

frequency ‡, ǫ is the atomic transition energy, ω is the cavity resonance frequency, β is

the single-photon Rabi frequency, and the rotating wave approximation is assumed. The

onsite terms can be diagonalized in a basis of mixed photonic and atomic excitations

called dressed states or polaritons, |±, n〉r = sinΘn|g, n〉r+cosΘn|e, n−1〉r, with energy

E±
n = nω−∆/2±

√

nβ2 + (∆/2)2, and mixing angle Θn = 1

2
arctan[−2

√
nβ/∆], where

∆ ≡ ω − ǫ.

Using a Bloch state analysis (see appendix) the band structure in the one-

excitation manifold is given by,

E± =
1

2
(ω + ǫ−K)± 1

2

√

(∆−K)2 + 4β2 . (2)

For the rotated lattice (depicted in inset of Fig. a), K ≡ 4κ cos(kxd) cos(kyd) and for the

unrotated lattice (inset of Fig. b) K ≡ 2κ[cos(kxd) + cos(kyd)], where d ≡ |~ds− ~dr|/
√
2.

Eq. (2) is an exact solution for a periodic lattice. Physical systems are not periodic at

the boundaries, however we will show by comparison with exact numerical simulations,

that the boundary effects are negligible. Notably, the orientation of the lattice relative

to the interface is of importance for superlensing, and will be explained below.

In the following sections we will demonstrate how traditional metamaterial

techniques can be applied to the JCH Hamiltonian, to show that the CAM can exhibit

the hallmarks of a superlens, namely all-angle negative refraction and evanescent wave

amplification.

‡ Requiring that the ground eigenstate to be symmetric and the first excited eigenstate to be anti-

symmetric also means that κ > 0.
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Figure 2. Energy band structure of a JCH lattice with air-lattice isoenergy

contours in the first Brillouin zone. Bold lines are the isoenergy contours for

an operating frequency in free space (white) and in the lattice (black). White arrows

denote the wavevectors ~k parallel to the phase velocity and colored arrows the group

velocity ~v. At the interface, the ky component is conserved. a, In the rotated lattice

there is all-angle negative refraction (yellow arrow denotes the incident group velocity,

blue arrow the refraction group velocity). b, In the unrotated lattice, there are no

operating frequency propagating modes where ky is conserved at the interface, and the

photon is reflected (green arrow).

1. All-Angle Negative refraction

A useful tool for analyzing light refraction at an interface is the isoenergy map plotted in

k-space. Given a dispersion relation E(kx, ky), an isoenergy contour defines the curves

over which the energy is constant. In this representation the gradient of the energy

surface is the vector field of group velocities, which points normal to the isoenergy

contour as illustrated by the colored arrows in Fig. a. Using Eq. (2), the group velocity

~v±g ≡ ∇~k
E± is expressed as,

~v±g = [−1∓ ∆−K
√

(∆−K)2 + 4β2
]∇~kK/2. (3)

AANR of single photons can take place at the interface between free-space and a

JCH lattice. Consider the band structure of a rotated lattice shown in Fig. a which is

superimposed with the lattice and free-space isoenergy contours of matching energy. The

contours associated with free-space are circles with radius equal to its energy (in natural

units). By requiring that the surface parallel wave vector ky is conserved at the interface,

the group velocities associated with these contours determine the refraction angle. In

the illustration, an incident photon with wavevector ~k1 = (k1,x, k1,y) and velocity ~v1 will

couple to an allowed mode of the lattice, and propagate with ~k2 = (k2,x, k2,y) and ~v2.

The refraction angle is

θR = arctan(tan k1,y cot k2,x) , (4)
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where k2,x is given by Eq. (.3). Since the isoenergy contours of the lattice are convex,

we have negative refraction (θR < 0), and since the lattice contour is larger than the air

contour, this occurs for all incident angles.

To converge the light the isoenergy contour needs to be as circular as possible. This

occurs at the energy band extrema, and so for a sharp focus it is preferable to work as

close to these frequencies as possible.

Refraction is not invariant under lattice rotation. This is because there is a change

in the air-lattice interface under rotation. From the conservation of the ky condition,

Fig. b shows that the unrotated lattice does not exhibit AANR.

When AANR does occur, the propagating modes in free space can be brought into

a focus to form an image on the other side of the lattice even with a planar lattice

slab. Such a device therefore satisfies the first criterion of a superlens. In contrast,

conventional lenses that rely on positive refraction must have curvatures to converge

light.

An exact numerical simulation to test the predicted negative refraction [Eq. (3,4)]

for an air-lattice interface requires knowledge of, and is dependent on, the specific

light-cavity coupling mechanism at the interface of a physical implementation. To

demonstrate the underlying principles discussed above without recourse to a specific

coupling mechanism, we conduct our numerical simulation at an interface between two

JCH lattices, with no loss in generality.

We use a segmented lattice as our platform (depicted in Fig. 1a), where our single

photon source is initialized in the ‘source’ region, and there is an identical ‘image’

region which acts as the image plane. The sandwiched ‘lens’ region negatively refracts

the excitation and brings it to focus in the image plane. The band structures for the

source and lens region are shown in Figs. 1b and c respetively. For the chosen operating

frequency, indicated by the bold isoenergy contours, the system exhibits AANR.

Due to the dielectric mismatch of the interface, there must be a finite probability of

reflection. At the interface, the discrete scattering eigenequation can be used to derive

the reflection coefficient (see appendix),

R =
1− cos(k1,x − k2,x)

1− cos(k1,x + k2,x)
(5)

and transmission coefficient T ≡ 1 − R. Comparing Eq. (4) and Eq. (5), there is a

trade-off between refraction and reflection, i.e, large negative refraction is accompanied

by large reflection. A comparison plot of refraction angle and reflection co-efficient for

different incident angles and varying detuning can be found in the online supplementary

material.

The propagation of the field in the lattice is governed by the Schrödinger equation

|ψ(t)〉 = eiHt|ψ(0)〉. We consider the case when the source is initialized in an equal

superposition of atomic and photonic modes. It is instructive to use a directional pulse

by specifying an initial state with a normalized Gaussian momentum distribution around
~k1 = (π/4,±π/4) so that it is incident on the lens at ±45◦, as shown in Fig. 4a. The
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Figure 3. Energy band structure with lattice-lattice isoenergy contours. a,

Lattice configuration for numerical simulations. Band structures for b source and

image, and c the lens. The regions are distinguished by their respective atomic

detuning ∆, and negative refraction is predicted at the lens interfaces. The parameters

are ∆1 = 0, β = 100κ,∆2 = −5.27κ.

superposition of the two ~k modes manifests in a coherent interference pattern in the

y-direction.

The lens atomic detuning is set to −5.27κ, which by Eq. (4), predicts a refraction

angle of θR = −25◦. Superimposing different time instances, the incident, reflected

and refracted pulses in Fig. 4a follow the predicted refraction angle and the trajectory

predicted by Eq. (3), to converge at a location on the image plane. The reflection

and transmission co-efficients are also found to be in good agreement with Eq. (.10).

The incident and reflected polariton (±π/4, π/4) coherently interfere near the interface

to give an interference pattern along the x-direction. Note that there is considerable

reflection, so that the population density has been multiplied by a factorM in Fig. 4a,b

for clearer representation.

An important property of our system, distinct from the existing PhC superlens

implementations, is the ability to tune the atomic transition energy, ǫ, after fabrication.

Such manipulations can be achieved dynamically by, for example, a controlled external

electric field via Stark shift. This control allows one to tailor the dispersion relation,

and hence the light guiding properties and focal point of the lens. The effect of changing

ǫ is demonstrated in Fig. 4b, where decreasing ∆2 by 0.73κ shifts the focus 56 sites to

the right.
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To show how a point-like source would converge with AANR onto the image plane,

we specify a source with an initial superposition of Gaussian momentum distribution

summed over ~k in Fig. 4c. Taking a snapshot of the propagation at time, t = 300/κ,

it shows that as the point source propagates into the planar lens, all components are

negatively refracted, so that an image of the point source is successfully formed on the

image plane. As with Fig. 4a,b there is considerable reflection at the lens’ interfaces.
In our examples so far, the lenses are homogenous and there is an abrupt change at

the interface. As a result, there is considerable reflection such that the total transmission
through the lens is less than 25%. As expressed by Eq. (5), reflection increases with
the greater the change in kx. This can be minimized if we provide an adiabatic spatial
change of the atomic transition energy within the lens, in effect producing a gradient-
index (GRIN) structure. In Fig. 4d the detuning distribution follows the form,

∆(x′) =























(∆2 −∆1) sin
2(
πx′

2w
) + ∆1 if 0 < x′ ≤ w,

∆2 if w < x′ ≤ W − w,

(∆2 −∆1) cos
2(
π(x′ +W − w)

2w
) + ∆1 if W − w < x′ ≤ W .

(6)

where x′ is the number of sites from the interface, w is the width of the GRIN region

and W is the total width of the lens. By fine tuning the GRIN region, the level of

reflection can be made arbitrarily small, although the physical trade-off is a larger lens.

The removal of reflection losses is an important development, demonstrating fine control

of propagation possible in our system.

2. Evanescent wave amplification

The ability of lenses to resolve images is limited by the wavelength of the light source

because the high-spatial-frequency modes that describe the subwavelength features are

non-propagating and do not reach the image plane. To see this, the dispersion relation

in free space, kx =
√

ω2 − k2y, implies that the modes with ky > ω exponentially decay

away from the source along the x-axis. Existing superlens proposals overcome this

diffraction limit by amplifying the evanescent wave (EW) components.

PhC-based evanescent wave amplification (EWA) devices can be regarded as a type

of resonator. At resonance, the transmission of the evanescent components is divergent.

The total transmission across a lens of width W , derived from taking the summation of

the multiple scattering events at the left and right interfaces is,

T =
T12T23R23

exp(−2ik2,xW )− R2
23

, (7)

where Tij (Rij) is the transmission (reflection) amplitude at the interface between region

i and j. At the resonance condition exp(−2ik2,xW )−R2
23 = 0, transmission is divergent.

The resonant condition is just the condition for total internal reflection where the

accumulated phase shift in a round trip is a multiple of 2π.

The resonant bound modes [36] allow a build-up of these bound states to produce

an amplified evanescent tail on the image side of the lens. These resonant modes are
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Figure 4. Negative refraction of Gaussian polaritonic pulses. The pulse

is initialized with a coherent superposition of two momenta ~k1 = (π/4,±π/4). We

superimposed different time instances t of system evolution with each instance labeled

with (κt,M) where the population is multiplied with M for a clearer presentation.

a, The atomic transition energy in the lens is ∆2 = −5.27κ. b, ∆2 = −6κ.

Predicted trajectories are indicated by the arrows. The polariton follows the predicted

trajectories for incidence, reflection and refraction. Changing ǫ2 changes the focal

point. c, A snapshot at time, t = 300/κ, of the imaging of a point-like source by

negative refraction. d, The lattice implements a gradient-index lens by employing

adiabatic variations in ∆2(x), reducing reflection. The other parameters follow Fig. 1.

Animation of c, d over time is available in the online supplementary material.

discrete, therefore they will not amplify all evanescent modes. NIM-based superlenses do

not have this limitation, but because their fabrication is based on conducting elements

they suffer the problem of loss.

Since JCH-based superlenses can dynamically shift the resonant points, they can

overcome the limitation of PhC-based superlenses and amplify a contiguous range of

evanescent modes (but not simultaneously).

Resonant bound modes can either exist along the interface (surface bound modes)

or in the bulk (bulk bound modes). As both mechanisms follow the same underlying

resonance principle, we demonstrate only the latter.

A quantum equivalent of an EW is the evanescent tail of a stationary state. We

prepare our system such that the detuning in regions 1 and 3, ∆1 and ∆3 respectively,

are sufficiently different from the detuning in region 2, ∆2 (see Fig. 2a), so that we

can setup an eigenstate where evanescent tails exists in region 1 and 3. This setup is
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Figure 5. EWA by tuning atomic transition energy. a, Lattice schematics

for demonstrating EWA. The evanescent wave (EW) is initialized in the region 3 by

preparing an eigenstate of energy E − ω ∼ 100κ in the region 1–3. The lens serves to

amplify the field via resonant coupling. b, Population buildup in the lens (P4) occurs at

the quasi-resonances (peaks). c,d,e, Population profile taken along the x-axis and time

evolution of population P4 for selected ∆4 values. Dashed blue line shows the rapid

drop-off of the EW without the lens, such that the incident population or probability

would be 10−12. The lens provides the amplification on resonance seen in c, d. The

parameters are ∆1,3,5 = 0, ∆2 = 0 and β = 100κ.

analogous to that of a square well. Region 4 is the lens, and region 5 our image plane.

The resonant condition for EWA can be achieved by tuning the atomic transition

energy of the atoms in the lens region or the width of the lens. We will only consider the

former here, as it is more appropriate to the idea of a reconfigurable device. We solve
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for the time evolution of the system and observe in Fig. 2b that significant coupling

to the lens occurs at distinct values of the atomic detuning, ∆4, where the resonance

condition is met.

When the lens is exactly on resonance, as demonstrated in Fig. 2c where ∆2 = ∆4 =

0, the population exchange occurs between the source and the lens is that of coupled

homogenous resonators, i.e., P4(t) = sin2(Ωt), where Ω is the characteristic mutual

coupling. Following the increase in P4, the EW incident on the lens is transmitted

amplified by 6 orders of magnitude after a time t = 104κ−1.

When the lens is only quasi-resonant (Fig. 2d), the population exchange between

the coupled resonators (source and lens) can be approximated by,

P4(t) =
2Ω2

η2 + 4Ω2

[

1− cos(
√

η2 + 4Ω2t)
]

, (8)

where η is the difference in the eigenenergy of the source and lens. By fitting P4(t) to

numerical results, we find that for ∆4 = 0.305κ, η ∼ 10−3κ. This is in good agreement

with the minimum energy difference between source and lens obtained by solving the

lens Hamiltonian H directly.

Fig. 2c shows that at t = 103κ−1 the incident EW is amplified by a third of the

exact resonance case. Thus, although exact resonance is an optimal condition for EWA

it is not a necessary condition for amplification. When the lens is tuned away from

resonance, the degree of EWA can quickly diminish as seen in Fig 2e.

The diffraction limit restricts the resolution of conventional lenses to the operating

wavelength, λ0. Our lens’ resolution, δ = 2π/kmax, is determined by the maximum

k that still satisfies the resonant condition. However we would also like to resolve all

the k-components leading up to kmax. This implies minimizing the bulk energy band

spectrum so that the deviation from the resonant energy is always small. The drawback

of this is a reduction in sharpness of focus. A better solution is to introduce surface

mode resonance. This can be achieved by having a different ǫ at the lens surfaces from

that of the bulk. As shown in Fig. 2, the flatter surface mode band (see appendix)

provides the necessary minimal deviation from resonance to maximize kmax, leaving the

bulk mode to provide the AANR and focal sharpness.

Fig. 2 shows that kmax = 2π/d − ω0, because beyond this the evanescent modes

fold back into the light cone and the associated bound modes become leaky states [36].

Thus the maximum resolution of our lens is,

δ =
d

1− d/λ0
, (9)

so that for sufficiently small inter-cavity spacing, d < λ0/2, the resolution exceeds that

of conventional lenses.

Inter-cavity spacing is however limited by the size of the cavity. This means that

to beat the diffraction limit, one at the very least needs the cavity size to be less than

λ0. Typically cavity resonant wavelength is twice the cavity size, so the subwavelength

resolution condition becomes, ω > ω0. The non-linear interaction introduced by the
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Figure 6. Surface and bulk energy band structures for evanescent wave

amplification. There are regions in the bulk energy spectrum which deviate from

the frequency, ω0. In these gaps, EWA via bound bulk mode resonance can not occur.

By having surface mode resonance, these gaps can be filled. The thin surface energy

spectrum around the operating energy, ω0, maximizes the range of k for which EWA

can occur, whilst the broad bulk energy spectrum provides AANR and focal sharpness.

Surface modes can be achieved by independently tuning the lens surfaces from the bulk

(as depicted in the inset).

cavity atom allows, beyond that which is available through just inter-cavity hopping,

the cavity resonance frequency to be greater than the operating frequency.

Using Eq. (2) where E± = ω0, the relative resolution of our lens can be

approximated by,

δ0
δ±

≈ ω ∓ β

ω ± β
, (10)

where we have assumed small detuning and that the minimum possible spacing between

sites is half the resonant wavelength. Eq. (10) gives the factor by which our lens beats the

diffraction limit. Since δ0/δ
+ < 1, only the resolution from the negative energy branch,

δ−, can better the diffraction limit. Conventionally β/ω, restricted by the so-called

fine structure constant limit, is of the order 0.01 (although larger values are possible

for unconventional coupling mechanisms [43]), so the improvement over the diffraction

limit is typically small.

3. Experimental feasibility and outlook

The lead time from theoretical inception to experimental realization can be long.

NIMs were originally proposed in 1968 [6], but it was not physically realised until
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2000 [7]. The case for the experimental feasibility of CAMs is fortunately alot clearer.

Optical microcavities have been created with whispering gallery modes (WGM) [24],

fabry-perot microcavities [25, 26], photonic bandgap (PBG) defects [27], and in slot

waveguides [28]. The coupling of PBG nanocavities into a one-dimensional array has

also been achieved [29]. Recently the coupling of Nitrogen-vacancy (NV) centers to

PBG cavities [30] and WGM microdisks [31] have been experimentally verified. With

the astonishing advancement in microcavities and arrays of microcavities, and their

coupling to multi-level quantum systems, it is feasible that the next advancement in

experimental development would be that of arrays of microcavities coupled to multi-

level quantum systems, in other words, quantum CAMs.

The development of microcavities can be characterized by their size and

quality factor, Q. WGM microcavities have experimentally produced Q ∼ 109 in

microspheres [32] and 108 in microtoroids [44, 45]. However their sizes are relatively

large: 103 µm3 and 180 µm3 respectively. PBG microcavities have achieved Q ∼ 107

with cavity mode volume, V ∼ (λ/2)3, where λ is the operating wavelength [46]. NV

couplings in PBG microcavities have been calculated as β ∼ 1010 Hz [47]. Assuming

that photon hopping limits Q, we can approximate the inter-cavity tunneling frequency

as κ = ω/Q. For the superlensing properties presented in this work, β = 100κ, requiring

in the visible light regime Q ∼ 107, which is at current experimental limits. In PBG

arrays with over 100 microcavities however, as yet only Q ∼ 106 has been experimentally

verified [29].

We have combined the previously unrelated fields of quantum mechanics and

metamaterials, by proposing cavity arrays as a new class of dynamic metamaterial.

Operating at the quantum level, it opens up new possibilities for quantum optical

devices. By applying traditional metamaterial techniques we showed that the CAM

can exhibit the features of a superlens. In a more general sense, this work lays

down the framework for local manipulation of photons, the quantum superposition

of metamaterial properties, the preservation and interaction with entangled fields,

and other non-local effects, in cavity array metamaterials, creating a new area of

investigation in quantum transformation optical phenomena. This invites quantum

technology into the realm of metamaterials.
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Appendix

1. The method described here for the derivation of the band structure solution in Eq. (2)

follows Ref. [22]. In the presence of intercavity coupling, the onsite energies Er are no
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longer the polaritonic energies E±
n and in general, satisfy the relation,

∑

s

Hrs|φ, s〉 = Er|φ, r〉, (.1)

where Hrs is the Hamiltonian that relates site r to site s. Employing Bloch’s theorem

for periodic structures,

|φ, s〉 = |φ, r〉 exp[i~k · (~ds − ~dr)], (.2)

where ~dr is the displacement to site r, and ~k ≡ (kx, ky) is the wavevector associated with

the crystal momentum, Eq. (.1) becomes an energy eigenequation whose eigenvalues are

the energy band structure or the dispersion relation of the medium.

2. For an incident field of energy E1 and wavevector ~k1 = (k1,x, k1,y) with transmitted

field of E2 and ~k2 = (k2,x, k2,y) at the interface, energy conservation (E1 = E2) and

phase matching (k1,y = k2,y = ky) requires that k2,x satisfies the condition,

K = ω2 − E1 + β2
2/(E1 − ǫ2) , (.3)

where K ≡ 4κ cos(k2,xd) cos(k1,yd) for the rotated lattice.

3. For the derivation of the reflection coefficient (Eq. (5)), the state vector can be

expanded in the bare atom-photon basis,

|ψ〉 =
∑

r

(cr|g, 1〉r + dr|e, 0〉r)
⊗

s 6=r

|g, 0〉s (.4)

where |g, n〉r and |e, n〉r denote the ground and excited state respectively, with n

photonic excitations at site r. Given the symmetry, we consider a 5-site unit cell in X-

configuration that is translational-invariant along the y-direction. Using the standard

eigenenergy equation H|ψ〉 = E|ψ〉, one arrives at a discrete scattering equation for

each region of the lattice and the interfaces. In particular in region j with associated

parameters (ωj, ǫj, βj , κj), we have

κj(cp,q−1 + cp,q+1 + cp+1,q + cp−1,q) =
(

ωj +
β2
j

E − ǫj
− E

)

cp,q, (.5)

where a given site at coordinate (p, q) is surrounded by four nearest-neighboring sites

at coordinates (p ± 1, q ± 1) and the conservation of energy requires Ej = E. At the

interface centered at the origin (0,0),

κ1(c0,−1 + c1,0) + κ2(c0,1 + c−1,0) =
(

ω2 +
β2
2

E2 − ǫ2
− E

)

c0,0 . (.6)

We make the typical assumption that region 1 consists of an incident and a reflected

wave component,

cp,q = eik1,ppeik1,qq + re−ik1,ppe−ik1,qq , (.7)

where kj,p = kj,x − ky and kj,q = kj,x + ky. In region 2, the transmitted wave has the

form,

cp,q = teik2,ppeik2,qq , (.8)
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where r and t are used here to denote reflection and transmission amplitudes respectively.

Substituting these solutions in to the interface equation (Eq. (.6)) and applying

continuity condition t = 1 + r, we arrive at the reflection coefficient R ≡ |r|2,

R =
κ21 + κ22 − 2κ1κ2 cos(k1,x − k2,x)

κ21 + κ22 − 2κ1κ2 cos(k1,x + k2,x)
. (.9)

Assuming uniform coupling κj = κ, we retrieve the required expression. Finally since

a polaritonic pulse has a momentum distribution G(~k), we define an effective reflection

coefficient,

Reff =

∫ π

−π

∫ π

−π

G(~k)R(~k)d~k. (.10)

4. To calculate the surface mode energy band, we need to take two adjacent sites along

the surface as the primitive cell. After applying Bloch’s theorem the Hamiltonian is,

H =









ω β −κ[1 + exp(iky
√
2d)] 0

β ǫs 0 0

−κ[1 + exp(−iky
√
2d)] 0 ω β

0 0 β ǫb









, (.11)

where ǫs and ǫb are the surface and bulk atomic transition energies respectively. We

solve for the eigenvalues to get the surface mode energy bands.
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