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Abstract. We present a constructive control scheme for solving quantum state
engineering problems based on a parametrization of the state vector in terms
of complex hyperspherical coordinates. Unlike many control schemes based on
factorization of unitary operators the scheme gives explicit expressions for all
the Euler angles in terms of the hyperspherical coordinates of the initial and
final state. The factorization, when applicable, has added benefits that phase
rotations can be combined and performed concurrently. The control procedure can
be realized using a simple bang-bang or square-wave-function controls. Optimal
time-energy control is considered to find the optimal control amplitudes.
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1. Introduction

Control of quantum phenomena has been recognized as a crucial task for many
years [1]. From early beginning in the 1980s [2, 3, 4], there has been considerable
recent progress in both theory and experiment of quantum control [5, 6, 7].
Various techniques including feedback control [8, 9, 10, 11, 12, 13, 14], optimal
control [15, 16, 17], Transfer Functions [18, 19], constructive control based Lie-group
docompositions [20, 21, 22], Lyapunov control [23, 24, 25], and other methods [26, 27,
28, 29, 30, 31], have been proposed to control quantum systems.

Although optimal control using shaped pulses is a very important area that
holds considerable promise of enabling global control of complex systems with only
a few local actuators, improving control performance for imperfect systems, etc,
the implementation of complex control pulses remains challenging in many cases.
Controls with complex temporal and spectral profiles may be difficult to implement,
for instance, in solid-state quantum dot systems controlled by voltages applied to gate
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electrodes. For these reasons constructive control schemes that rely on simple pulses
such as approximately piecewise-constant functions remain useful and popular.

In this article we revisit the problem of bang-bang-type control for state-transfer
tasks. We show that parametrization of the initial and target states in hyperspherical
coordinates [32] yields a simple constructive control scheme for state-transfer tasks
that requires no complex calculations of the control parameters, i.e., all control
parameters are given in terms of simple functions of the initial and final state
coordinates. The scheme has some additional advantages over alternative geometric
schemes in that many operations can be performed either sequentially or in parallel.
We further explore the trade-off between time and energy optimal control using time-
energy performance index J =

∫ tf
0

[λ+E(t)]dt where E(t) is energy cost of Bang-Bang
control at t, tf is terminal time, and λ is the ratio factor of time and energy. It is
shown that the product of the terminal time t∗f and the energy cost E∗ for optimal
bounded or unbounded piecewise constant controls only depends on the geometric
parameters of the initial and target states and is independent of λ but λ determines
the optimal field strength of the controls, L∗ =

√
λ.

2. Pure-state Transfer by Bang-Bang Control

Pure-states |ψ〉 of a quantum system defined on a complex Hilbert space H with
dimH = N < ∞ can be represented by complex vectors ~c ∈ CN by choosing a
suitable basis {|n〉}Nn=1 for H,

|ψ〉 =

N∑
n=1

cn|n〉. (1)

The modulus squared |cn|2 of the coordinates can be interpreted in terms of
probabilities provided ~c is a unit vector. For most applications the global phase
of the state is irrelevant, i.e., we can further identify |ψ〉 ∼ eiφ|ψ〉. Given these
considerations, physically distinguishable pure states can be uniquely identified with
elements in the complex projective space CPN−1 = S2N−1/S1, and we can uniquely
represent pure states by unit vectors in CN if we fix the complex phase of one
coordinate.

Pure-state transfer, also known as quantum state engineering, is the task of
transforming a given pure quantum state |ψ(0)〉 to a desired pure quantum state |ψ(s)〉.
It is one of the most fundamental tasks in control of quantum systems. Many of the
control strategies mentioned in the introduction have been applied to this problem,
including constructive control schemes based on Lie group decompositions. Indeed,
it is quite straightforward to see how to solve the state transfer problem for an N -
level system in principle, if we are able to implement unitary gates on a sequence
of connected two-level subspaces [36]. Assume, e.g., that we can implement SU(2)
operations on the subspaces spanned by {|1〉, |2〉}, {|2〉, |3〉}, . . . , {|N − 1〉, |N〉}. We
can decompose any unitary operator in SU(N) into a sequence of SU(2) rotations
on these two-dimensional (2D) subspaces. We can further decompose any unitary
operator in SU(2) into a sequence of three rotations about two orthogonal axes using
the Euler decomposition. It therefore suffices if we can implement rotations about two
fixed orthogonal axes on each of the 2D subspaces. Applied to the problem of quantum
state transfer, it is not difficult to see that we can transform any complex unit vector
~c(0) into any other complex unit vector ~c(s) by a sequence of N − 1 rotations on the
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2D subspaces defined above

~c(s) = U (N−1,N) . . . U (2,3)U (1,2)~c(0) (2)

where U (n,n+1) indicates a complex rotation on the subspace spanned by {|n〉, |n+1〉}.
Decomposing each U (n,n+1) further into three rotations about two fixed orthogonal

axes, U
(n,n+1)
1 (α) and U

(n,n+1)
2 (β), by suitable angles γk,

U (n,n+1) = U
(n,n+1)
1 (γ3)U

(n,n+1)
2 (γ2)U

(n,n+1)
1 (γ1), (3)

shows that in general 3(N − 1) such rotations are required to transform a given initial
state to a target state using a sequence of elementary unitary transformations,

~c(s) = U
(N−1,N)
1 (γ3N−3)U

(N−1,N)
2 (γ3N−4)U

(N−1,N)
1 (γ3N−5)× . . .

× U (1,2)
1 (γ3)U

(1,2)
2 (γ2)U

(1,2)
1 (γ1)~c(0). (4)

Thus it easy to see how to transform pure states in principle, but it is not obvious
how to derive the correct rotation angles γk in the sequence, which is what matters
in practice. Although it is possible to constructively compute the γk, the dependence
of γk on the state vectors ~c(0) and ~c(s) is complicated.

3. Bang-Bang Control Scheme based on Hyperspherical Parametrization

3.1. Complex hyperspherical coordinates

We now show that the problem of obtaining a geometric control sequence with explicit
expression for the rotation angles γk can easily be solved by parametrizing the initial
and target states in terms of complex hyperspherical coordinates. Any complex unit
vector ~c can be parametrized in terms of complex hyperspherical coordinates (~θ, ~φ),

c1
c2
...

cN−1
cN

 = eiφ0


cos θ1
eiφ1 sin θ1 cos θ2
...
eiφN−2 sin θ1 . . . sin θN−2 cos θN−1
eiφN−1 sin θ1 . . . sin θN−1

 (5)

where ~θ and ~φ are vectors in RN−1 with 0 ≤ θn ≤ π
2 and −π ≤ φn ≤ π, and eiφ0

is a global phase factor, which is usually negligible. Thus, assuming normalization
and neglecting global phases, any pure state is uniquely determined by its complex
hyperspherical coordinates (~θ, ~φ). Calculating hyperspherical coordinates is very easy
as shown in Algorithm 1.

Although there are many equivalent parameterizations of pure state vectors, the
beauty of complex hyperspherical coordinates is that we can easily give an explicit
constructive bang-bang control scheme for state transfer |ψ0〉 7→ |ψs〉 such that all
control pulses are determined directly by the coordinates of the initial and final state
(~θ(0), ~φ(0), ~θ(s), ~φ(s)).



Bang-Bang Control Design for Quantum State Transfer 4

(θ, φ) ← HyperCoord (c)
Compute complex hyperspherical coordinates

In: c complex vector/pure state

Out: θ, φ hyper-spherical coordinates

1: N ← length(c)
2: c ← c/norm(c)
3: c ← exp(−i * angle(c1)) ∗ c
4: φ ← angle(c2:N )
5: a ← abs(c)
6: θ1 ← arccos(a1)
7: s1 ← sin(θ1)
8: for n ← 2, . . . , N − 1
9: θn ← arccos(an/sn−1)

10: sn ← sn−1 sin(θn)

Algorithm 1: Computation of complex hyperspherical coordinates

3.2. Control Assumptions

The following scheme is based on the assumption that (a) we can neglect free evolution,
H0 = 0; (b) we have local phase control, i.e., can implement control operators that
introduce a local phase shift,

Zn = Πn, n = 2, . . . , N (6)

where IN is the identity on H and Πn is the projector onto the subspace of H spanned
by the basis state |n〉, and (c) can individually control transitions between adjacent
energy levels, i.e., that we can realize control Hamiltonians of the form Xn or Yn,

Xn = (|n+ 1〉〈n|+ |n〉〈n+ 1|), n = 1, . . . , N − 1.

Yn = i(|n+ 1〉〈n| − |n〉〈n+ 1|), n = 1, . . . , N − 1.

The evolution of the system under any Hamiltonian H is governed by the Schrodinger
equation

i~U̇(t) = HU(t), U(0) = IN , (8)

and we choose units such that the Planck constant ~ = 1. This shows that the
evolution under the control Hamiltonian H ∈ {LXn, LYn, LZn} is given by the one-
parameter groups exp(−iLtXn), exp(−iLtYn) and exp(−iLtZn), respectively. The
evolution is unitary as the operators Xn, Zn and Yn are Hermitian. In particular, this
means that we can implement the complex rotations

UXn (α) = exp(−iαXn), UYn (α) = exp(−iαYn), UZn (α) = exp(−iαZn), (9)

by applying the control Hamiltonians LXn, LYn or LZn for some time t = α/L. In
the following we only require two types of control operations {Xn, Zn} or {Yn, Zn}.

The assumptions on the control Hamiltonian are somewhat demanding, although
no more so than the control requirements for the standard geometric decomposition
(4). While these requirements cannot always be satisfied, there are systems for which
these control operations are quite natural such as a charge trapped in a multi-well
potential created and controlled by surface control electrodes as shown in Fig. 1.
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Figure 1. Charged particle trapped in a multi-well potential created by control
electrodes. Red electrodes allow control of potential barriers and thus tunnelling
rates, while blue electrodes control depths of the wells, and thus energy levels.
We can choose default voltage settings such that all wells have the same depth
and there is no tunnelling, so that we effectively have H0 = 0.

3.3. Explicit Control Sequence

To illustrate the constructive procedure, let us consider the case N = 3 with Y, Z
controls. In this case the control operators take the explicit form

Z2 =

0 0 0
0 1 0
0 0 0

 , Z3 =

0 0 0
0 0 0
0 0 1

 , Y1 =

0 −i 0
i 0 0
0 0 0

 , Y2 =

0 0 0
0 0 −i
0 i 0

 .

and the corresponding evolution operators are

UZ2 (α) =

1 0 0
0 e−iα 0
0 0 1

 , UZ2 (α) =

1 0 0
0 1 0
0 0 e−iα

 ,

UY1 (α) =

cosα − sinα 0
sinα cosα 0

0 0 1

 , UY2 (α) =

1 0 0
0 cosα − sinα
0 sinα cosα

 ,

etc. Given these control operators and the hyperspherical coordinate representation
of the initial and target states, it is now very easy to see how to steer an arbitrary
initial state to an arbitrary target state in the following seven steps:

Step 1. (θ
(0)
1 , θ

(0)
2 ;φ

(0)
1 , φ

(0)
2 )→ (θ

(0)
1 , θ

(0)
2 ;φ

(0)
1 , 0): Apply phase rotation UZ3 (φ

(0)
2 )1 0 0

0 1 0

0 0 e−iφ
(0)
2


 cos θ

(0)
1

eiφ
(0)
1 sin θ

(0)
1 cos θ

(0)
2

eiφ
(0)
2 sin θ

(0)
1 sin θ

(0)
2

 =

 cos θ
(0)
1

eiφ
(0)
1 sin θ

(0)
1 cos θ

(0)
2

sin θ
(0)
1 sin θ

(0)
2

 .

Step 2. (θ
(0)
1 , θ

(0)
2 ;φ

(0)
1 , 0)→ (θ

(0)
1 , θ

(0)
2 ; 0, 0): Apply phase rotation UZ2 (φ

(0)
1 ) 1 0 0

0 e−iφ
(0)
1 0

0 0 1


 cos θ

(0)
1

eiφ
(0)
1 sin θ

(0)
1 cos θ

(0)
2

sin θ
(0)
1 sin θ

(0)
2

 =

 cos θ
(0)
1

sin θ
(0)
1 cos θ

(0)
2

sin θ
(0)
1 sin θ

(0)
2


Step 3. (θ

(0)
1 , θ

(0)
2 ; 0, 0)→ (θ

(0)
1 , 0; 0, 0): Apply population rotation UY2 (−θ(0)2 ) 1 0 0

0 cos θ
(0)
2 sin θ

(0)
2

0 − sin θ
(0)
2 cos θ

(0)
2


 cos θ

(0)
1

sin θ
(0)
1 cos θ

(0)
2

sin θ
(0)
1 sin θ

(0)
2

 =

 cos θ
(0)
1

sin θ
(0)
1

0
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Step 4. (θ
(0)
1 , 0; 0, 0)→ (θ

(s)
1 , , 0; 0, 0): Apply population rotation UY1 (θ

(s)
1 − θ

(0)
1 ) cos(θ

(s)
1 − θ

(0)
1 ) − sin(θ

(s)
1 − θ

(0)
1 ) 0

sin(θ
(s)
1 − θ

(0)
1 ) cos(θ

(s)
1 − θ

(0)
1 ) 0

0 0 1


 cos θ

(0)
1

sin θ
(0)
1

0

 =

 cos θ
(s)
1

sin θ
(s)
1

0


Step 5. (θ

(s)
1 , 0; 0, 0)→ (θ

(s)
1 , θ

(s)
2 ; 0, 0): Apply population rotation UY2 (θ

(s)
2 ) 1 0 0

0 cos θ
(s)
2 − sin θ

(s)
2

0 sin θ
(s)
2 cos θ

(s)
2


 cos θ

(s)
1

sin θ
(s)
1

0

 =

 cos θ
(s)
1

sin θ
(s)
1 cos θ

(s)
2

sin θ
(s)
1 sin θ

(s)
2


Step 6. (θ

(s)
1 , θ

(s)
2 ; 0, 0)→ (θ

(s)
1 , θ

(s)
2 ;φ

(s)
1 , 0): Apply phase rotation UZ2 (−φ(s)1 ) 1 0 0

0 eiφ
(s)
1 0

0 0 1


 cos θ

(s)
1

sin θ
(s)
1 cos θ

(s)
2

sin θ
(s)
1 sin θ

(s)
2

 =

 cos θ
(s)
1

eiφ
(s)
1 sin θ

(s)
1 cos θ

(s)
2

sin θ
(s)
1 sin θ

(s)
2


Step 7. (θ

(s)
1 , θ

(s)
2 ;φ

(s)
1 , 0)→ (θ

(s)
1 , θ

(s)
2 ;φ

(s)
1 , φ

(s)
2 ): Apply phase rotation UZ1 (−φ(s)2 ) 1 0 0

0 1 0

0 0 eiφ
(s)
2


 cos θ

(s)
1

eiφ
(s)
1 sin θ

(s)
1 cos θ

(s)
2

sin θ
(s)
1 sin θ

(s)
2

 =

 cos θ
(s)
1

eiφ
(s)
1 sin θ

(s)
1 cos θ

(s)
2

eiφ
(s)
2 sin θ

(s)
1 sin θ

(s)
2


The generalization to N > 3 is straightforward, as shown in algorithm 2. Given

a Hamiltonian of the form

H =

2N−1∑
m=1

um(t)Hm (10)

with H2n−1 = Zn+1 and H2n = Yn, where um(t) are controls (e.g., voltages) we can
implement the bang-bang control sequence given by Algorithm 2 in a straightforward
manner by applying 4N − 5 control pulses. At the kth step we apply a constant
control field uS(k) = Lk for time tk = γk/Lk, while all other controls at set to 0 (or
the voltages are set to their default values). Notice that in practice we cannot apply
fields for negative times, thus the sign of Lk must match that of γk. However, if γk is
negative and Lk > 0, we can also apply a field fS(k) = Lk for time tk = (γk + 2π)/Lk
as γk + 2π > 0 and effects the same rotation.

If we have Xn control Hamiltonians instead of Yn control Hamiltonians the
algorithm needs to be slightly modified to correct for phase factors of in−1 being
created in the nth coordinate by the population rotations. We can achieve this by
adding π

2 (n mod 4) from the phase angles φn, noting that eiπ/2(n mod 4) = in and
the phase factor of the nth coordinate is eiφn−1 .

Besides giving explicit expressions for the rotation angles in the decomposition,
the scheme has an additional advantage compared the the standard decomposition (4)
considered earlier: While the rotations in the standard factorization do not commute,
the first N −1 and final N −1 phase rotations in the decomposition based on complex
hyperspherical coordinates are represented by diagonal matrices which commute. This
means that these operations can be applied concurrently rather than sequentially,
leading to a potentially considerable reduction in the total length of the control
sequence.
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(S, γ) ← StateTransfer (c(0), c(s))
Compute sequence of rotations required for state transfer

In: c(0), c(s) initial and target state vectors

Out: S, γ Bang-bang control sequence

1: (θ(0), φ(0)) ← HyperCoord(c(0))

2: (θ(s), φ(s)) ← HyperCoord(c(s))
3: for n ← N − 1, . . . , 1

4: Append S by 2n− 1, γ by φ
(0)
n // Apply Phase Rotation UZn+1(φ

(0)
n )

5: for n ← N − 1, . . . , 2

6: Append S by 2n, γ by −θ(0)n // Apply Population Rotation UYn (−θ(0)n )

7: Append S by 2, γ by θ
(s)
1 − θ

(0)
1 // Apply Population Rotation UY1 (θ

(s)
1 − θ

(0)
1 )

8: for n ← 2, . . . , N − 1

9: Append S by 2n, γ by θ
(s)
n // Apply Population Rotation UYn (θ

(s)
n )

10: for n ← 1, . . . , N − 1

11: Append S by 2n− 1, γ by −φ(s)n // Apply Phase Rotation UZn+1(−φ(s)n )

Algorithm 2: Control Scheme to achieve state transfer ~c(0) 7→ ~c(s) in 4N − 5 steps
using bang-bang control, based on hyperspherical coordinate parametrization. ~S and
~γ are vectors of length 4N−5, whose elements are integer labels indicating the control
Hamiltonian (m = 1, . . . , 2N − 2) and rotation angle γk, respectively.

4. Optimal piecewise-constant Control and Time-energy Performance

The bang-bang control sequence given by algorithm 2 leaves us considerable freedom
of choice for the controls. Choosing large control amplitudes will result in short pulse
durations, thus optimizing the transfer time tf . However, large control amplitudes
may not be feasible and have undesirable side effects in terms of transfering too much
energy to the system. We can try to optimize the field amplitude by stipulating that
the state transfer is to be achieved while minimizing a time-energy performance index

J =

∫ tf

0

[λ+

2N−2∑
m=1

|um(t)|2] dt (11)

with the ratio factor of time and energy λ > 0. Larger values of λ indicate a stronger
emphasis on time-cost, while smaller values of λ give more weight to the energy cost
of the controls.

If the controls can take values fm(t) ∈ {0,±L} and the pulses are applied strictly
sequentially then the total length tf of the control sequence is

tf =
1

L

[
N−1∑
n=1

|φ(0)n |+ |φ(s)n |+
N−1∑
n=2

(θ(0)n + θ(s)n ) + |θ(s)1 − θ
(0)
1 |

]

≤ 1

L

[
2(N − 1)π + 2(N − 2)

π

2
+
π

2

]
=

(6N − 7)π

2L

(12)

noting that 0 ≤ θn ≤ π
2 and 0 ≤ |φn| ≤ π. Noting that a2 + b2 ≥ 2ab, with equality



Bang-Bang Control Design for Quantum State Transfer 8

exactly if a = b, we have

J =

K∑
k=1

(λ+ L2
k)tk ≤

K∑
k=1

2
√
λLktk ≤ 2

√
λtf max

k
Lk (13)

with equality if and only if Lk =
√
λ. This shows that the optimal choice of the field

amplitudes is Lk =
√
λ, for which we have

t∗f ≤
(6N − 7)π

2
√
λ

, J∗ = min J = 2λt∗f ≤
√
λ(6N − 7)π (14)

and the corresponding optimal energy cost is E∗ = J∗ − λt∗f ≤ 1
2

√
λ(6N − 7)π. As

expected, as λ goes to 0, t∗f becomes infinite and E∗ goes to 0, but their product
remains constant

t∗f · E∗ =
[∑N−1

n=1 |φ
(0)
n |+ |φ(s)n |+

∑N−1
n=2 (θ

(0)
n + θ

(s)
n ) + |θ(s)1 − θ

(0)
1 |

]2
≤ (6N−7)2π2

4

(15)
and depends only on the geometric parameters of the initial state and target states.

If first and last N − 1 phase rotations are applied concurrently the transfer time
is reduced

t′f =
1

L

[
max
n
|φ(0)n |+ max

n
|φ(s)n |+

N−1∑
n=2

(θ(0)n + θ(s)n ) + |θ(s)1 − θ
(0)
1 |

]

≤ 1

L

[
2π + 2(N − 2)

π

2
+
π

2

]
=

(2N + 3)π

2L
.

(16)

Setting φ
(0)
max = maxn |φ(0)n | and φ

(s)
max = maxn |φ(s)n |, shows that we have t1 = φ

(0)
max/L

and tK = φ
(s)
max/L, and thus we must choose Ln ≥ φ

(0)
n /t1 and Ln = φ

(s)
n /tK ,

respectively for the control amplitude of the first and last N−1 concurrent pulses to be
able to implement all N−1 phase rotations concurrently in time t1 or tK , respectively.
Furthermore the performance index changes

J ≤ 2t′f
√
λ max
N≤k≤K+1−N

Lk +

N−1∑
k=1

L2
k +

K∑
k=K−N+2

L2
k, (17)

which suggests that we can improve the performance index and reduce the energy
cost by choosing the amplitudes of the first and last N − 1 concurrent pulses to be

as small as possible, i.e., Ln = φ
(0)
n /t1 and Ln = φ

(s)
n /tK , and Lk =

√
λ for all other

amplitudes.

5. Discussions and Conclusion

We have presented an explicit geometric control scheme for quantum state transfer
problems based on a parametrization of the pure state vectors in terms of complex
hyperspherical coordinates. Although it is not difficult to find constructive control
schemes for state transfer based on Lie group decompositions, most schemes do not
give explicit expressions for the rotation angles (“generalized Euler angles”) in the
factorization, and thus the rotation angles usually have to computed numerically. By
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parametrizing the initial and the target state in terms of hyperspherical coordinates,
we obtain a factorization where all generalized Euler angles are given explicitly in terms
of the hyperspherical coordinates of the initial and target states, eliminating the need
for numerical calculation of the generalized Euler angles, aside from computation of
the hyperspherical coordinates, which is trivial in terms of computational overhead.

The factorization is applicable given controls capable of implementing phase
rotations and population rotations (of either X or Y type) on a collection of two-
dimensional subspaces, similar to the general requirements for constructive geometric
control schemes. Compared to control schemes based on the standard factorization,
the factorization based on hyperpherical coordinates has the additional advantage
that all initial and final phase rotations can be combined in a single step and executed
concurrently, reducing the time required to achieve the state transfer. As with all
bang-bang control schemes based on Lie group decompositions, the factorization only
determines the sequence in which the controls are applied and the pulse area (rotation
angle) of the control pulses, leaving us with considerable freedom to choose the pulse
shapes and amplitudes, which can be used to further optimize a performance index.
Here we have considered optimization of the pulse amplitudes for piecewise constant
controls such as to minimize a time-energy performance index that takes into account
the competing goals of trying to minimize the transfer time and energy cost of the
controls.
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