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Abstract

Nano-mechanical resonators have a large potential as sensors of very small adsorbed masses,

down to the atomic level and beyond. Here I establish the fundamental lower bound on the mass

that can be measured with a nano-mechanical oscillator in a given quantum state based on the

quantum Cramér–Rao bound, limited only by the laws of quantum mechanics, and identify the

quantum states which will allow the largest sensitivity for a given maximum energy.
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High-quality nano-mechanical resonators can act as extremely sensitive sensors of ad-

sorbed material. Impressive progress has been made in this direction over the last few years:

In 2004, experiments reached a level of sensitivity of femto-grams [1], atto-grams [2], and

two years later already zepto-grams [3]. Gas chromatography at the single molecular level

was achieved a year ago [4], and brought a vast range of chemical and biological applications

in reach. A mass sensitivity as small as half a gold atom has been demonstrated using a

nano-mechanical resonator based on a carbon nano-tube [5]. At the same time, large ef-

forts have been spent to cool down (at least one mode of) a nano-mechanical resonator to its

ground state, with the ultimate goal of engineering arbitrary quantum states (see e.g. [6, 7]).

Preparing an oscillator in a Fock state was demonstrated in [8]. The ground state was finally

reached very recently for a piezo-electrical device, with no more than 0.07 vibrational quanta

remaining [9]. It is therefore natural to ask whether the sensitivity of mass measurements

could be increased further by engineering the quantum state of a nano-mechanical harmonic

oscillator, and what would be the truly fundamental lower bound on the mass that can be

measured based only on the laws of quantum mechanics. Early on, theoretical investigations

tried to find the limitations of mass measurements with a nano-mechanical resonator [10–

12]. But the bounds which were derived so far assume that one measures the linear response

of the oscillator driven at its resonance frequency [10–13]. In the experiments, a variety

of different read-out and/or cooling techniques (e.g. optical [14–20], through electrostatic

effects [2, 21–23], mechanical [24], or even field emission in the case of a nano-tube [25])

were used, and it is not clear what would be the optimal measurement procedure.

The truly fundamental lowest (but achievable) bound on the mass sensitivity is a func-

tion of the quantum state of the oscillator, and optimized over all possible measurement

procedures. It will be calculated below using quantum parameter estimation theory, which

leads to the ultimate limit of sensitivity, the quantum Cramér-Rao bound [26]. It becomes

relevant once all other limitations such as technical noise, adsorption-desorption noise, mo-

mentum exchange noise, etc. have been eliminated [13]. I will even assume a harmonic

oscillator without any dissipation (and thus decoherence effects), as mixed states can only

decrease the ultimate sensitivity compared to the pure states from which they are mixed

[27]. Nevertheless, the bounds I calculate are attainable in principle if the idealized con-

ditions are met, and therefore set an important benchmark to which the performance of

existing sensors should be compared to. As a guide to further improving the sensitivity of
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mass-sensing using quantum-engineered states of a nano-oscillator, I determine the optimal

quantum state for a given maximum number of excitation quanta in the oscillator.

Quantum parameter estimation theory

For small enough excitation amplitudes, the nano-mechanical oscillator can be modelled

as a harmonic oscillator with massM and effective spring constantD [5], resonance frequency

ω =
√

D/M , and hamiltonian

H = ~ω(a†ωaω +
1

2
) , (1)

with the usual raising (lowering) operators a†ω (aω). If a small mass δM is added to the

oscillator, its frequency changes to ω̃ = ω(1 − ǫ) with ǫ = (1/2)δM/M , and we obtain

the new hamiltonian Hω̃ from (1) by replacing ω → ω̃ everywhere. An arbitrary initial

quantum state ρ0 is thus propagated to ρ(ω, t) = U(ω, t)ρ0U
†(ω, t) (or ρ(ω̃, t), respectively),

if no mass (or the mass δM) is adsorbed at t = 0, where U(ω, t) = exp(−iHωt/~). Note

that this assumes that the energy of the oscillator is conserved in the adsorption process,

i.e. the additional mass is deposited with zero differential speed onto the oscillator. The

distinguishability of the two states ρ(ω, t) and ρ(ω̃, t) determines the smallest δM that can

be measured. In general, for any density matrix ρ(x) that depends on some parameter x,

the smallest δx that can be resolved from N measurements of an observable A (starting

always from an identically prepared state) is given by [26]

δx =
〈δA2〉1/2x√
N | ∂

∂x
〈A〉x|

. (2)

It has the interpretation of the uncertainty of A in state ρ(x) as judged by N measurements,

renormalized by the “speed” by which the mean value of A changes as function of x. In

other words, x has to change by an amount that moves the average value of A by at least its

uncertainty. Optimizing (2) over all possible measurements leads to the quantum Cramér-

Rao bound [26],

δx ≥ δxmin ≡ 1

2
√
N dBures(ρ(x),ρ(x+dx))

dx

, (3)

where dBures(ρ(x), ρ(x + dx)) is the Bures distance between ρ(x) and ρ(x+ dx) (also called

Fisher information), defined as dBures(ρ1, ρ2) =
√
2
√

1−
√

F (ρ1, ρ2) through the fidelity

F (ρ1, ρ2) = tr((ρ
1/2
1 ρ2ρ

1/2
1 )1/2). Thus, in our case, we obtain the minimal measurable mass

3



δMmin by evaluating the Bures distance between ρ(ω, t) and ρ(ω̃, t) in the limit ǫ→ 0. It is

important to note that (3) is, in the limit of large N , an achievable lower bound [26].

I. PURE STATES

In the case of two pure states, we have simply F (|ψ〉〈ψ|, |φ〉〈φ|)1/2 = |〈ψ|φ〉|. Start-

ing from an initial state |ψ(0)〉 =
∑∞

n=0 cn|n〉ω, expressed in the energy eigenbasis of the

unperturbed oscillator, we have the overlap at time t,

|〈ψ(t)|ψ̃(t)〉| =
∣

∣

∣

∣

∣

∑

n,m,k

c∗ncke
−i(Ẽm−En)t/~Rω̃ω(m, k)Rω̃ω(m,n)

∣

∣

∣

∣

∣

, (4)

where Rω̃ω(m,n) = ω̃〈m|n〉ω = Rωω̃(n,m) denotes the overlap matrix element between

energy eigenstates of the two oscillators with frequency ω̃ and ω. They are given by [28]

Rω̃ω(m,n) = (2−(m+n)qm!n!)1/2
[m,n]
∑

r=0,1

(2q)r

r!

y(m+n−2r)/2(−1)(m−r)/2

(1
2
(n− r))!(1

2
(m− r))!

, (5)

if m,n are both even or both odd (otherwise Rω̃ω(m,n) = 0), and [m,n] denotes the smaller

of the two integers m,n. The sum over r runs over even (odd) integers for [m,n] even (odd),

respectively, and y = (ω − ω̃)/(ω + ω̃), q = 2(ωω̃)1/2/(ω + ω̃). We need |〈ψ(t)|ψ̃(t)〉| to
second order in ǫ. A somewhat tedious calculation yields F = 1 + ǫ2f({cm}, t) with

f({cm}, t) =
[

∞
∑

m=0

{1

2

√

(m+ 1)(m+ 2)ℑ(cmc∗m+2(e
2iτ − 1)) + τm|cm|2

}

]2

+

∞
∑

m=0

{

−
(

1

2
(m2 +m+ 1) sin2 τ +m2τ 2

)

|cm|2

+
√

(m+ 1)3(m+ 2)τ ℑ((1− e2iτ )c∗m+2cm)

+
1

8

√

(m+ 1)(m+ 2)(m+ 3)(m+ 4)ℜ((1− e2iτ )2cmc
∗
m+4)

}

(6)

and τ = ωt. Inserting (6) in F , we find immediately dBures(|ψ(t)〉〈ψ(t)|, |ψ̃(t)〉〈ψ̃(t)|) =

ǫ|f({cm}, t)|1/2, and thus
δMmin

M
=

1√
N |f({cm}, t)|1/2

. (7)

Eq.(7) together with (6) constitutes the central result of this report which we now explore

for a few particular cases.
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A. Fock state

For |ψ(0)〉 = |n〉, we have f = −(1/2)(n2+n+1) sin2 τ ≡ fFock
n for all n ≥ 0. The largest

absolute value is achieved for τ = π/2( mod 2π), and leads to

δMmin

M
=

√

2

N

1√
n2 + n+ 1

∼
√

2

N

1

n
for n≫ 1 . (8)

Thus, one can measure, at least in principle, arbitrarily small masses within the same fixed

time interval by increasing the excitation of the harmonic oscillator. In reality, of course,

non-harmonicities will start to arise at some level of excitation and the present analysis will

then have to be extended to a more complicated hamiltonian. The ground state n = 0 of

the harmonic oscillator allows to measure a mass which, for a single readout, can be of the

order of the mass of the oscillator itself, δM/M ≥
√

2/N/| sin τ |. Increasing τ does not help

beyond τ = π/2, as fFock
n is periodic in τ .

B. Little Schrödinger cat states

Given that (7) depends on coherences between states |n〉 and |n + 2〉 and |n + 4〉, one
might wonder whether the precision could be increased further by using superpositions of

these states. The state |ψ(0)〉 = (|n〉+ |n+ 2〉)/
√
2 ≡ |ψS1〉 leads to

f =
1

16

(

(n + 1)(n+ 2) sin2(2τ)− 8(n2 + 3n+ 4) sin2 τ
)

− τ 2 . (9)

The maximum of the periodic term is again achieved for τ = π/2 ( mod 2π). For fixed

τ 6= kπ (k ∈ N) and n ≫ τ , this term dominates and leads to δMmin/M ≃
√

2/N/n,

just as for the Fock state. However, for fixed n, we can get an arbitrarily small δM/M by

increasing τ , as the last term in (9) leads to δMmin/M ≃
√

2/N/τ for τ ≫ n. Note that

this improvement is beyond the usual factor 1/
√
t from increasing the measurement time.

Indeed, the sensitivity δM
√
t in (g/

√
Hz) still improves as ∝ 1/

√
t.

The state |ψ(0)〉 = (|n〉+ |n+ 4〉)/
√
2 ≡ |ψS2〉 gives

f = −1

4

(

2(n2 + 5n+ 11) sin2 τ +
√

(n + 1)(n+ 2)(n+ 3)(n+ 4) cos(2τ) sin2 τ
)

− 4τ 2 .

(10)

The maximum of the periodic terms (relevant for fixed τ and n≫ τ & 1) is close to τ = π/3

with |f | ≃ 9n2/32, which gives a δMmin 33% larger than for a Fock state with n excitations.
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For fixed n and τ ≫ n, the factor 4 in front of τ 2 in (10) reduces δMmin/M by a factor 2

compared to |ψS1〉.

C. Coherent state

For a coherent state |α〉 = exp(−|α|2/2)∑∞

n=0(α
n/
√
n!)|n〉, and α ∈ R, we have

f = −
(

1

2
+ α2 + α4 cos2 τ

)

sin2 τ − α2τ (τ + sin(2τ)) . (11)

For fixed τ and α2 ≫ τ, τ 2, we find f ≃ −α4 sin2(2τ)/4, and hence δMmin/M ≃ 2/α2 = 2/〈n〉
for τ = π/4. Thus, also with a coherent state, the sensitivity scales inversely with the

(average) number of excitations in the oscillator, and one can, at least in principle, resolve

arbitrarily small masses. Compared to a Fock state with n = α2, there is a factor
√
2

penalty. For α = 0 we find f = − sin2 τ/2 which leads back to the result for the Fock state

n = 0. For α fixed and τ ≫ |α| we obtain δMmin/M ≃ 1/(
√
Nατ). We see again that the

minimal reduces faster than 1/
√
t with measurement time.

II. OPTIMAL STATE

While it is good news that the sensitivity can be improved by exciting the oscillator with

a large number of quanta, one might wonder what would be the best sensitivity that can be

achieved for a given maximum number L of excitations (i.e. L + 1 basis states) and fixed

measurement time. From (6) we see that for τ ≫ 1, the terms quadratic in t dominate and

give simply |f | = τ 2(〈n2〉−〈n〉2). Hence, in this case the optimal pure state is the one which

maximizes the excitation number fluctuations. One easily shows that this state has the form

of an “ON” state (half a “NOON” state [29]), |ψON〉 = (|0〉 + eiϕ|L〉)/
√
2, where ϕ is an

irrelevant phase which we will choose equal zero. It leads to |fON| ≡ |f(ψON, τ)| ≃ τ 2L2/4,

and thus a minimal mass δMmin/M = 2/(
√
NτL). Fig.1 shows a comparison of the (inverse)

minimal mass for ψON with the true minimal mass for given τ and the same L, obtained by

numerically maximizing |f |, for L = 3. We see that |fON| approximates the best possible

|f | very well, even for τ ∼ 1. For τ = kπ, k ∈ N, |fON| gives in fact the exact result, as

is obvious from (6). Fig.1 also shows the result for a coherent state with the same average

number of excitations as the ON state, 〈n〉 = 3/2. It leads to comparable, sometimes even
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better sensitivity than the optimal state with L = 3. This is, of course, no contradiction,

as the number of excitations in |ψcoh〉 is unbound. At τ = π/2, the optimal pure state with

L = 3 allows still a reduction of δMmin/M by 14% compared to the ON state, and by 27%

compared to the Fock state with the same L.

Fig.2 shows the Wigner function, defined for a pure state |ψ〉 by [30]

W (x, p) =
1

π

∫ ∞

−∞

dyψ∗(x− y)ψ(x+ y)e−2iyp , (12)

(with all lengths in units of the oscillator length x0 =
√

~/DM and p in units of ~/x0),

for |ψON〉 and the optimal state |ψopt〉, and L = 4. The optimal state is given explicitly by

|ψopt〉 ≃ (0.4037 − 0.1283i)|0〉 + (−0.1269 + 0.3994i)|2〉 + (0.7653 + 0.2432i)|4〉. |ψON〉 and

|ψopt〉 have very similar Wigner functions, characterized by four lobes in azimuthal direction

which guarantee minimal phase uncertainty, as is to be expected from the requirement of

minimal noise and maximum uncertainty in the number of excitations. Rotations of |ψopt〉
through evolution with the unperturbed hamiltonian before the adsorption of mass clearly

leave δMmin invariant.

Among the pure states considered, the coherent states certainly come closest to the typical

experimental situation, where the oscillator is cooled to low temperature and driven on res-

onance. Inserting typical numbers for micromachined resonators, M = 10−16g, ω =1GHz, a

detection bandwidth of kHz that translates into an evolution time τ = 106, and an excitation

with 〈n〉 ∼ 1010 quanta (driving energy Ed = 10−15J in [12]), we find δMmin ≃ 10−27g/
√
N ,

or roughly the mass of an electron for a single readout, N = 1. This agrees with the pre-

diction of [12], but the agreement appears to be a coincidence: The result in [12], based

purely on noise considerations, still decreases as 1/
√
Q with the quality Q of the resonator,

whereas (11) is independent of Q, taken as infinity in the present analysis. Also, while in

the regime τ ≫ α relevant for the above numbers (α = 105) both δMmin/M and the result

in [12] scale as 1/
√

〈n〉, [12] predicts a proportionality to 1/
√
τ if one identifies the inverse

bandwidth 1/∆f with t, instead of the 1/τ behavior that follows from (11).

Carbon nanotube resonators have typically much smaller masses than micro-engineered

ones (of order M ≃ 10−18g [5]) with comparable resonance frequency (ω = 2π × 328.5MHz

in [5]), and can therefore resolve in principle even smaller masses. Assuming a coherent

state with oscillation amplitude of about 10nm for the carbon nanotube oscillator in [5] and

a sampling time of 100ms, δMmin according to (11) is of the order of a thousandth of an
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electron mass.

III. MIXED STATES

In general, due to the joint-convexity of the Bures distance, mixed states do not allow

better sensitivities than the pure states from which they are mixed, as long as the weights

are independent of the parameter to be measured and the evolution is linear in the state

[27], but their study is justified by their practical relevance. For example, a finite quality of

the resonator generates dissipation and thus decoherence and a mixed state, deteriorating

therefore typically the fundamentally possible sensitivity. Evaluating the Bures distance

between two mixed states is much more difficult than for pure states. Nevertheless, one can

use upper and lower bounds on dBures [31] to get lower and upper bounds for δMmin/M .

Alternatively, one can evaluate the Bures distance numerically for a given initial state. One

may also obtain an upper bound on dBures using the joint-convexity of dBures [27, 31], which

leads to a (typically non-achievable) lower bound on δMmin. An achievable upper bound on

δMmin can be found by considering a particular measurement A in (2).

As an example, consider the thermal state ρ =
∑∞

n=0 pn|n〉〈n|, with pn = e−nz(1 − e−z),

z = β~ω, β = 1/kBT the inverse temperature, and kB the Boltzmann constant. Us-

ing the invariance of the thermal state under the time evolution governed by Hω and

the joint convexity of dBures(ρ1, ρ2), one shows easily that dBures/dx ≤ ∑

n pn|fFock
n |1/2 ≤

| sin τ |/(
√
2(1 − exp(−z)). For z → ∞, this bound coincides with the exact result for the

groundstate n = 0. We may choose a measurement of the width A = x2 as a way of

measuring the change of mass. Thermal average 〈x2〉 = (~/(2Mω)) coth(z) and fluctua-

tions 〈δ(x2)〉 = (〈x4〉 − 〈x2〉2)1/2 = (~/
√
2DM) coth(z/2) give an achievable upper bound

δMmin/M ≤ 2
√

2/N sinh z/(sinh z − z). For z → ∞ this bound is only a factor 2 above the

best possible value
√

2/N for the groundstate n = 0, whereas for z → 0 the bound diverges.

Fig.3 shows the exact M/δMmin obtained by evaluating the Bures distance numerically. We

see that δMmin/M is periodic in τ , just as for the ground state. Increasing the temperature

helps, as higher Fock states start to contribute, but at most a factor
√
2 can be gained,

and the minimal resolvable mass remains bounded by the mass of the oscillator itself for all

temperatures. A driving of the oscillator is in principle not necessary.

In summary, I have calculated the smallest measurable adsorbed mass δMmin on a nano-
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mechanical harmonic oscillator for an arbitrary pure state of the oscillator, based on the

fundamental quantum Cramér-Rao bound. The analysis shows that a coherent state allows

to achieve a δMmin/M that scales as the inverse of the average number of excitations. For

a given maximum number n of excitations, I found the optimal quantum state, which for

large τ is an “ON” state |ψON〉 = (|0〉+ |n〉)/
√
2, with a sensitivity that scales as 1/n. For

τ different from integer multiples of π, the sensitivity can be further enhanced. Even with

a coherent state with realistic experimental parameters for a carbon nano-tube resonator

[5], the smallest resolvable mass should be of the order of a thousandth of an electron mass.

If two more orders of magnitude could be gained (say by increasing τ and the number of

excitations), in principle the regime could be reached where one can weigh the relativistic

mass change due to the formation of a chemical bond or the absorption of a photon (energies

of order 1 eV).
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FIG. 1: Inverse minimal measurable mass M/δMmin (for N = 1) as function of τ for pure states

with at most L = 3 quanta in the oscillator. Green line: Fock state |n = 3〉; Full black line:

ON state |ψON〉 = (|0〉 + |3〉)/
√

2; Dashed black line: asymptotic behavior 3τ/2 for |ψON〉; Red

line: optimal state |ψopt〉 (see text). For comparison, the result for a coherent state with the same

average number of excitations as the ON state (〈n〉 = 3/2) is shown as dashed blue line.
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|ψON(n = 4)〉 = (|0〉 + |4〉)/
√
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FIG. 3: Inverse minimal measurable mass M/δMmin in a thermal state as function of dimensionless

time τ = ωt for inverse dimensionless temperatures z = ~ω/(kBT ) = 0.2, 0.5, 1.0, 2.0, 5.0 and 10.0

(red, orange, yellow, green, blue, and dashed purple line, respectively). Inset: M/δMmin as function

of z for τ = π/2.
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