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The fractional volatility model: No-arbitrage,

leverage and risk measures

R. Vilela Mendes∗† and Maria João Oliveira∗‡

Abstract

Based on a criterium of mathematical simplicity and consistency
with empirical market data, a stochastic volatility model has been ob-
tained with the volatility process driven by fractional noise. Depend-
ing on whether the stochasticity generators of log-price and volatility
are independent or are the same, two versions of the model are ob-
tained with different leverage behavior. Here, the no-arbitrage and
incompleteness properties of the model are studied. Some risk mea-
sures are also discussed in this framework.

Keywords: Fractional noise, Arbitrage, Incomplete market, Risk mea-
sures

1 Introduction

In liquid markets the autocorrelation of price changes decays to negligible
values in a few minutes, consistent with the absence of long term statistical
arbitrage. Because innovations of a martingale are uncorrelated, there is a
strong suggestion that it is a process of this type that should be used to model
the stochastic part of the returns process. Classical Mathematical Finance
has, for a long time, been based on the assumption that the price process of
market securities may be approximated by geometric Brownian motion

dSt = µStdt+ σStdB (t) (1)
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Geometric Brownian motion (GBM) models the absence of linear correla-
tions, but otherwise has some serious shortcomings. It does not reproduce
the empirical leptokurtosis nor does it explain why nonlinear functions of
the returns exhibit significant positive autocorrelation. For example, there
is volatility clustering, with large returns expected to be followed by large
returns and small returns by small returns (of either sign). This, together
with the fact that autocorrelations of volatility measures decline very slowly
[1], [2], [3] has the clear implication that long memory effects should some-
how be represented in the process and this is not included in the geometric
Brownian motion hypothesis. The existence of an essential memory compo-
nent is also clear from the failure of reconstruction of a Gibbs measure and
the need to use chains with complete connections in the phenomenological
reconstruction of the market process [4].

As pointed out by Engle [5], when the future is uncertain investors are less
likely to invest. Therefore uncertainty (volatility) would have to be changing
over time. The conclusion is that a dynamical model for volatility is needed
and σ in Eq.(1), rather than being a constant, becomes itself a process. This
idea led to many deterministic and stochastic models for the volatility ([6],
[7] and references therein).

The stochastic volatility models that were proposed described some par-
tial features of the market data. For example leptokurtosis is easy to fit but
the long memory effects are much harder. On the other hand, and in contrast
with GBM, some of the phenomenological fittings of historical volatility lack
the kind of nice mathematical properties needed to develop the tools of math-
ematical finance. In an attempt to obtain a model that is both consistent
with the data and mathematically sound, a new approach was developed in
[8]. Starting only with some criteria of mathematical simplicity, the basic
idea was to let the data itself tell us what the processes should be.

The basic hypothesis for the model construction were:
(H1) The log-price process log St belongs to a probability product space

(Ω1×Ω2, P1×P2) of which the (Ω1, P1) is theWiener space and the second one,
(Ω2, P2), is a probability space to be reconstructed from the data. Denote
by ω1 ∈ Ω1 and ω2 ∈ Ω2 the elements (sample paths) in Ω1 and Ω2 and by
F1,t and F2,t the σ-algebras in Ω1 and Ω2 generated by the processes up to
t. Then, a particular realization of the log-price process is denoted

log St (ω1, ω2)

This first hypothesis is really not limitative. Even if none of the non-trivial
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stochastic features of the log-price were to be captured by Brownian motion,
that would simply mean that St was a trivial function in Ω1.

(H2) The second hypothesis is stronger, although natural. It is assumed
that for each fixed ω2, log St (·, ω2) is a square integrable random variable in
Ω1.

These principles and a careful analysis of the market data led, in an
essentially unique way1, to the following model:

dSt = µSt dt + σtSt dB (t)
log σt = β + k

δ
{BH (t)− BH (t− δ)} (2)

the data suggesting values of H in the range 0.8 − 0.9. In this coupled
stochastic system, in addition to a mean value, volatility is driven by frac-
tional noise. Notice that this empirically based model is different from the
usual stochastic volatility models which assume the volatility to follow an
arithmetic or geometric Brownian process. Also in Comte and Renault [9]
and Hu [10], it is fractional Brownian motion that drives the volatility, not
its derivative (fractional noise). δ is the observation scale of the process. In
the δ → 0 limit the driving process would be the distribution-valued process
WH

WH = lim
δ→0

1

δ
(BH (t)−BH (t− δ)) (3)

The second equation in (2) leads to

σ (t) = θe
k

δ
{BH (t)−BH (t−δ)}− 1

2(
k

δ )
2

δ2H (4)

with E [σ (t)] = θ > 0.
The model has been shown [8] to describe well the statistics of price re-

turns for a large δ-range and a new option pricing formula, with ”smile”
deviations from Black-Scholes, was also obtained. Here we will be concerned
with general consistency questions for the model, namely arbitrage and mar-
ket completeness. Also, in Section 3, some new results on risk measures will
be presented.

1Essentially unique in the sense that the empiricaly reconstructed volatility process is
the simplest one, consistent with the scaling properties of the data.
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2 No-arbitrage and market incompleteness

It had been clear for a long time that the slow decline of the volatility au-
tocorrelations implied the existence of some kind of long memory effect in
the market. Several authors tried to describe this effect by replacing in the
price process Brownian motion by fractional Brownian motion with H > 1/2.
However it was soon realized [11], [12], [13], [14] that this replacement im-
plied the existence of arbitrage. These results might be avoided either by
restricting the class of trading strategies [15], introducing transaction costs
[16] or replacing pathwise integration by a different type of integration [17]
[18]. However this is not free of problems because the Skorohod integral
approach requires the use of a Wick product either on the portfolio or on
the self-financing condition, leading to unreasonable situations from the eco-
nomic point of view (for example positive portfolio with negative Wick value,
etc.) [19].

The fractional volatility model in (2) is not affected by these considera-
tions, because it is the volatility process that is driven by fractional noise,
not the price process. In fact a no-arbitrage result may be proven. This is no
surprise because our requirement (H2) that, for each sample path ω2 ∈ Ω2,
logSt (·, ω2) is a square integrable random variable in Ω1 already implies that
∫

σtdBt is a martingale. The square integrability is also essential to guaran-
tee the possibility of reconstruction of the σ process from the data, because
it implies [20]

dSt

St
(·, ω2) = µt (·, ω2) dt+ σt (·, ω2) dBt (5)

We now consider a market with an asset obeying the stochastic equations (2)
and a risk-free asset At

dAt = rAt dt (6)

with r > 0 constant.
Proposition 1: The market defined by (2) and (6) is free of arbitrages

The proofs of this and the next proposition follow the same steps as in
[21]. Technically, the similarity of the proofs follows from the properties of
volatility process (4).

Lemma: For σ given by (4) one has:

i) For any integer number n,
∫ T

0
E (σn

t ) dt < ∞, where the expectation is with
respect to the probability measure P2;
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ii) Assuming that µ ∈ L∞ ([0, T ] , P1 × P2)
2, for any t ∈ [0, T ] there is a

constant C > 0 such that P1 × P2-a.e.

∫ t

0

(r − µs)
2

σ2
s

ds ≤ C

Proof: The first property follows from

E
(

eλ(BH (t)−BH (t−δ))
)

= e
λ
2

2
δ2H

for any complex number λ, while the second one from the Hölder continuity
of the fractional Brownian motion BH of order less than H (cf. [22]). More
precisely, for each α ∈ (0, H) there is a constant Cα > 0 such that P2-a.e.

|BH(t)− BH(s)| ≤ Cα |t− s|α

and thus P1 × P2-a.e.

∫ t

0

(r − µs)
2

σ2
s

ds ≤ (r + ‖µ‖∞)2

θ2
e(

k

δ )
2

δ2H
∫ t

0

e
2k

δ
|BH (s)−BH (s−δ)| ds

≤ T (r + ‖µ‖∞)2

θ2
e(

k

δ )
2

δ2H+2kCαδ
α−1

�

Proof of Proposition 1: Let P := P1 × P2 be the probability product
measure and define the process

Zt =
St

At

(7)

in the interval 0 ≤ t ≤ T , which obeys the equation

dZt = (µt − r)Zt dt+ σtZt dBt (8)

Now let

ηt = exp

(

∫ t

0

r − µs

σs

dBs −
1

2

∫ t

0

|r − µs|2
σ2
s

ds

)

(9)

2Since this assumption is quite natural, one assumes it throughout this work. In addi-
tion, we also assume that µt is adapted to the product filtration F1,t ×F2,t.
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which by the Lemma fulfills the Novikov condition and thus it is a P -
martingale. Moreover, it yields a probability measure P ′ equivalent to P
by

dP
′

dP
= ηT (10)

By the Girsanov theorem

B∗
t = Bt −

∫ t

0

r − µs

σs

ds (11)

is a P ′−Brownian motion and

Zt = Z0 +

∫ t

0

σsZs dB
∗
s (12)

is a P ′-martingale. By the fundamental theorem of asset pricing, the exis-
tence of an equivalent martingale measure for Zt implies that there are no
arbitrages, that is, EP ′ [Zt|F1,s × F2,s] = Zs for 0 ≤ s < t ≤ T . �

Proposition 2: The market defined by (2) and (6) is incomplete

Proof: Here we use an integral representation for the fractional Brownian
motion [22], [23]

BH (t) = C

∫ t

0

K (t, s) dWs (13)

Wt being a Brownian motion independent from Bt and K the square inte-
grable kernel

K (t, s) = CHs
1

2
−H

∫ t

s

(u− s)H− 3

2uH− 1

2 du, s < t

(H > 1/2). Let (Bt,Wt) be a bi-dimensional Brownian motion on P . Given
the P2-martingale

η′t = exp

(

Wt −
1

2
t

)

(14)

we now use the product ηtη
′
t. Due to the Lemma, the Novikov condition is

fulfilled insuring that ηtη
′
t is a P -martingale and

dP ′′

dP
= ηTη

′
T (15)
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a probability measure. As before, the Girsanov theorem implies that the
Zt process is still a P ′′-martingale. The equivalent martingale measure not
being unique the market is, by definition, incomplete. �

Incompleteness of the market is a reflection of the fact that in stochastic
volatility models there are two different sources of risk and only one of the
risky assets is traded. In this case a choice of measure is how one fixes the
volatility risk premium.

3 Leverage and the identification of the stochas-

tic generators

The following nonlinear correlation of the returns

L (τ) =
〈

|r (t+ τ)|2 r (t)
〉

−
〈

|r (t+ τ)|2
〉

〈r (t)〉 (16)

is called leverage and the leverage effect is the fact that, for τ > 0, L (τ)
starts from a negative value whose modulus decays to zero whereas for τ < 0
it has almost negligible values. In the form of Eqs. (2) the volatility process
σt affects the log-price, but is not affected by it. Therefore, in its simplest
form the fractional volatility model contains no leverage effect.

Leverage may, however, be implemented in the model in a simple way [24]
if one identifies the Brownian processes Bt andWt in (2) and (13). Identifying
the random generator of the log-price process with the stochastic integrator
of the volatility, at least a part of the leverage effect is taken into account.

The identification of the two Brownian processes means that now, instead
of two, there is only one source of risk. Hence it is probable that in this
case completeness of the market might be achieved. However questions like
mathematical consistency and arbitrage properties of the new model are to
be checked.

Let us now consider the market (2) and (6) with Bt appearing in (2)
replaced by the standard Brownian motion Wt which appears in the integral
representation (13).
Proposition 3: This new market is free of arbitrages

Proof: In this case P1 = P2. Since the item ii) in the Lemma still holds for
the product measure P1 × P2 replaced by the probability measure P2, with
this change of probability measure the proof of this result follows as in the
proof of Proposition 1. �
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4 Some risk measures

Let δS = St+∆ − St and

r (∆) = logSt+∆ − log St (17)

be the return corresponding to a time lag ∆.
The value at risk (VaR) Λ∗ and the expected shortfall E∗ are

∫ −Λ∗

−S

P∆ (δS) d (δS) = P ∗ (18)

E∗ =
1

P ∗

∫ −Λ∗

−S

(−δS)P∆ (δS) d (δS) (19)

S being the capital at time zero, P ∗ the probability of a loss Λ∗ and P∆ (δS)
the probability of a price variation δS in the time interval ∆. In terms of the
returns these quantities are

∫ log(1−Λ
∗

S )

−∞

P (r (∆)) d (r (∆)) = P ∗ (20)

E∗ =
S

P ∗

∫ log(1−Λ
∗

S )

−∞

(

1− er(∆)
)

P (r (∆)) d (r (∆)) (21)

For the fractional volatility model the probability distribution of the returns
in a time interval ∆, is obtained [8] from

P (r (∆)) =

∫ ∞

0

pδ (σ) pσ (r (∆)) dσ (22)

with

pδ (σ) =
1√

2πσkδH−1
exp

{

−(log σ − β)2

2k2δ2H−2

}

(23)

pσ (r (∆)) =
1√

2πσ2∆
exp











−

(

r (∆)−
(

µ− σ2

2

)

∆
)2

2σ2∆











(24)
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Using (22)–(24) Λ∗ and E∗ are computed from (20) and (21). As an illus-
tration in the figures 1 and 2 one shows the results for P ∗ = 0.01 (99%VaR)
and time lags from 1 to 30 days, using the following parameters

H = 0.83; k = 0.59, β = −5, δ = 1

These values are obtained from typical market daily data (δ = 1 day). The
results are also compared with those obtained from a simple lognormal price
distribution with the same averaged volatility.
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Figure 1: VaR in the fractional volatility model compared with the lognormal
with the same average volatility
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Figure 2: Expected shortfall in the fractional volatility model compared with
the lognormal with the same average volatility

One sees that both for VaR and the expected shortfall, the fractional
volatility model predicts much larger values than the lognormal. This results
mostly from the fatter tails in the model (as well as in the market data).
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5 Remarks and conclusions

1) Being partially reconstructed from empirical data, it is no surprise that
the fractional volatility model describes well the statistics of returns. The
fact that, once the parameters are adjusted by the data for a particular
observation time scale δ, it describes well very different time lags seems to
be related to the fact that the volatility is driven not by fractional Brownian
motion but its increments.

2) What at first seemed surprising was the fact that the same set of pa-
rameters would describe very different markets [8]. This motivated a search
for the kind of behavior of the market agents which would be consistent with
the statistical properties observed in the model (and also on the empirical
data). Two stylized models were considered. In the first the traders strate-
gies play a determinant role. In the second the determinant effect is the
limit-order book dynamics, the agents having a random nature. The con-
clusion was that the market statistical behavior (in normal days) seems to
be more influenced by the nature of the financial institutions (the double
auction process) than by the traders strategies [25]. Specific trader strate-
gies and psychology should however play a role on market crisis and bubbles.
Therefore some kind of universality of the statistical behavior of the bulk
data throughout different markets would not be surprising.

3) As pointed out in Section 3, the identification of the Brownian process
of the log-price with the one that generates the fractional noise driving the
volatility, introduces an asymmetric coupling between σt and St that is also
exhibited by the market data. It is natural to expect that in this case, because
there is only one generator of stochastic risk, the market will be complete. A
rigorous mathematical proof of this result, which would be akin to the proof
of uniqueness of a constrained Girsanov construction, is still lacking.
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