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ABSTRACT 
 
Numerical solution procedures occupy an extremely important part in many areas of science 

and engineering. The subjects in these fields are of continued research interest. A variety of 

numerical methods are available today for solving the initial- and/or boundary value problems in 

physical science and engineering. In recent years, the differential quadrature (DQ) method has 

become an increasingly popular numerical technique for the rapid and efficient solution of a 

variety of science and engineering problems. Some shortcomings in the conventional numerical 

techniques are not inherent in the method. Due to its rather recent origin, the DQ method may 

be not well known to the engineering community. In this paper, we study the DQ method and its 

applications, and introduce two kinds of special matrix product into nonlinear computations and 

analysis of the DQ method as well as other numerical methods. Our work is a step forward in 

nearly all important basic aspects of the method and its applications. In the following we will 

briefly state our main contributions. 

 

First, the conventional formulas of the truncation error in the DQ method do not involve the 

practical grid interval and are too imprecise for many practical applications. We have obtained 

new truncation error formulas, which can more accurately estimate the truncation error at any 

grid point than before. Through the numerical trial and error, we propose seven general rules for 

choosing grid spacings. Since the DQ method is in fact equivalent to the collocation and 

pseudo-spectral methods, the truncation error formulas and rules for choice of  sampling points 

are also applicable for these two methods. We also give the simplified formulas for computing 

the DQ weighting coefficients under equally spaced grid points and the zeros of the Chebyshev 

polynomials or Legendre polynomials, and overcome the difficulty that the conventional 

applications of zeros of orthogonal polynomials can not encompass the boundary points. 

Second, we give the DQ approximate formulas in matrix form for boundary value problems 

instead of traditional polynomial ones. By using these formulas, the fast algorithms in the 

solution of Lyapunov matrix equation are introduced to the DQ calculations of multi-dimensional 

problems of the second order with three orders of magnitude less computing time. The efficiency 

and simplicity of the presented technique were demonstrated in the DQ solution of the Poisson 

equation and steady convection-diffusion equations. We also notice the fact that the rank of  the 

DQ weighting coefficient matrices for the ith order derivative is M-i, where M is the number of  

grid points. Moreover, the coefficient matrix is in fact power zero matrix. Based on this fact, we 

proposed a new approach in implementing the multiple boundary conditions in the DQ solution 

of boundary value problems of more than two order, which are often encountered in structural 

engineering analysis. We also solve the difficulty applying the boundary conditions at corner 
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points for this approach. Compared with the other existing approaches, the presented approach 

shows easy use, good stability, wide applicability and high accuracy. 

 

Third, we first applied the DQ method to the initial value problems and pointed out that the 

method is A-stable. Therefore, the DQ method is always stable for stiff problems. Also, the DQ 

method is unconditionally stable for structural dynamic analysis. We presented the DQ 

approximate formulas in matrix form for initial value problems. Thus, the formulations of initial 

value problems can be expressed as Lyapunov algebraic matrix equation. Several fast 

algorithms in the solution of the Lyapunov matrix equations are successfully applied to reduce 

the computing effort and storage requirements by an order of N3 and N2, respectively, where N 

is the number of interior grid points. Consequently, the DQ method requires nearly the same 

computational effort in the solution of linear stiff problems as the existing single step methods 

such as Newmark and Gear methods, etc. while its high computational efficiency is maintained. 

Fourth, we proved that the weighting coefficient matrices of the DQ and HDQ methods are 

centrosymmetric or skew centrosymmetric matrices if using symmetric grid spacing. The 

centrosymmetric matrices can be factorized into tow smaller size matrices in the evaluation of its 

inverse, determinant, eigenvectors and eigenvalues. Therefore, the computational effort and 

storage requirements in applying the DQ method for certain problems can be reduced by 75 per 

cent and 50 per cent, respectively. 

 

Finally, it may be our most important contributions that the Hadamard product and SJT1 product 

are introduced to the nonlinear computations of the DQ method as well as other numerical 

methods, including finite element, finite difference, boundary element, spectral, pseudo-spectral, 

Runge-Kutta, Newmark, Wilson θ and Gear methods, etc. Due to the application of the concept 

of Hadamard product and SJT product, the nonlinear formulation efforts are greatly reduced and 

programming task is simplified, and we obtain the formulation-H and -S as two kinds of the 

unified formulation form for general nonlinear computation. The simple iteration method 

becomes a very competitive technique to the Newton-Raphson method in the solution of general 

nonlinear algebraic equations. We also derived explicit formulas to describe the relation 

between the condition number and perturbed error bound for the nonlinear formulation. The SJT 

product is first defined by us to provide a very simple and highly efficient approach to compute 

the Jacobian derivative matrix in the Newton-Raphson method for the solution of the nonlinear 

formulations. Due to the utility of the Jacobian matrix in a wide range of science and engineering 

areas, the SJT product may have high potential for many theory and applied analysis. Also, the 

coupling formulations for the corresponding coupling nonlinear partial differential equations can 

be easily decoupled by means of the Hadmard product and SJT product. For example, the 

                                                           
1 The SJT is abbreviate of Shanghai Jiao Tong University. 
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computational effort and storage requirements in the DQ analysis of geometrically nonlinear 

bending of orthotropic plates are reduced to about only one twenty-seventh and one-ninth, 

respectively, as much as those by Bert et al. due to the decoupling computations. 

 

Matrix computations is of extreme importance to nonlinear analysis and computations. However, 

it is noted that the conventional linear algebra is based on the linear transformation. In fact, the 

ordinary matrix product computation seems not to undertake the task of nonlinear analysis and 

computations very well. We need seek an alternate route to handle nonlinear problems. The 

Hadamard product and SJT product provide nonlinear computations and analysis with a new 

framework. Compared with the standard matrix approach applied in the nonlinear computation 

and analysis, they greatly simplify the work. Due to the extreme importance of nonlinear 

computation and analysis, the present researches have substantial significance in theoretical 

and applied areas. 

 

We also give a new approximate formula for directly computing the inverse of the Jacobian 

matrix in the Newton-Raphson method. The formulas involves only the ordinary matrix 

multiplications and, thus, can avoid the affect of the possible ill-conditioning of the Jacobian 

matrix on the convergence of the Newton-Raphson method. We also give a simple approach to 

eliminating or reducing the cross nonlinear algebraic terms in the resulting DQ formulations for 

some differential operators and, thus, the computational efficiency of the DQ and DC methods 

can be improved significantly. We discuss some essential problems for further developing the 

DQ method and Hadamard product and SJT product approaches into engineering numerical 

techniques. 

 

In the appendices, we discuss algebraic and analysis properties of the Hadamard product. It is 

also proved that the weighting coefficient matrices of the quadrature method based on Fourier-

type trigonometric functions are circulant matrices. 

 

KEY WORDS: numerical method, differential quadrature method, Hadamard product, SJT 

product, Jacobian matrix, centrosymmetric matrix, Lyapunov matrix equation, truncation error, 

differential cubature method, stiff differential equations, simple iteration method, grid spacing. 
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博 士 论 文 扩 展 摘 要 
 

微分求积法及其工程应用 
−特殊矩阵乘积在一般的非线性计算中的应用 

 
陈文   

 
指导教授：钟廷修 

 
数值计算在广泛的科学和工程领域中很重要。虽然计算机硬件最近几年有了迅速的发展，但科学家和

工程师对数值算法的发展抱有更高的期望。这是因为算法的改进和提高对计算和仿真的规模，精度和

可靠性有更深刻的影响。微分求积法(Differential Quadrature Method, 英文简称DQ法)是最近几年引 
起广泛注意的一种数值计算方法。这个算法具有数学原理简单，使用方便，计算精度高，计算量和内 
存需求量少，不依赖泛函和变分原理，边界条件不必另外考虑，适合于微型机等优点，是瑞利－里兹

法，迦辽金法，配点法和拟谱法的一种有竞争力的替代方法，有很好的发展前景。对规则域问题和分

布式参数系统，这个方法比有限元，有限差分和边界元法有高得多的效率。最近，谱单元法中的多域

法和坐标映射技术被用于DQ法计算不规域问题和钢架结构的分析，并取得了初步的成功。但这方面 
还有很多的工作要做。DQ法也被成功地用于计算有很大变化梯度的问题。此外，这个方法对非线性 
问题非常有效。在本文中我们研究了这个算法和它的一些工程应用，并将两种特殊矩阵乘积应用于 
DQ法和其他数值算法的非线性计算和分析。下面简述我们的主要工作。 

 
第一，Bellman基于Rolle定理所给的DQ法截断误差公式和实际使用的节点位置无关，太不精确，不 
适合于实际应用。我们基于多项式插值公式导出了新的精确的DQ法截断误差公式。由我们的公式， 
可精确地计算DQ法在每个节点的截断误差，并发现DQ法是高阶收敛的算法(n-2阶，n是所用节点个 
数)。我们通过数值试验发现以切比雪夫多项式的根为节点并不是对所有问题都是最优的，虽然可能 
是目前已知节点分布中对很多问题最好的一种。从截断误差分析看，这是因为DQ法用该种节点分布 
在靠近端点的内节点的截断误差较在其他内点处大，等分点和勒让德点也有类似形式的截断误差分 
布。这不符合最优逼近所要求的截断误差的极大极小原则，即不同节点的截断误差的绝对值应该尽可

能地一致。实际上，切比雪夫多项式是由函数的多项式最佳逼近导出的，并不是针对函数的导数逼 
近。通过一些数值试验，我们给出了七个选择DQ法节点分布的一般规则。应该强调的是问题的边界 
条件类型对DQ法用不同节点分布的稳定性和收敛速度有很大的影响。由于DQ法与配点法和拟谱法在

本质上是相同的，因而，我们给出的DQ法截断误差公式和选择法节点分布的规则也适用于这两种算 
法。我们也给出了在标准变量域下简化的直接计算等分节点，切比雪夫和勒让德节点DQ法权系数的 
公式。由此公式，切比雪夫和勒让德节点自动包含了标准变量域的边界端点，克服了以往DQ法应用 
这两种节点分布时所遇到的一个主要困难。 

 
第二，DQ法已被用于计算各种工程边值问题，并取得了很大成功。我们给出了DQ法解边值问题的矩

阵形式的逼近公式以替代传统的多项式逼近公式，极大简化了Formulation工作量，并由此公式将求 
解Lyapunov代数矩阵方程的快速算法引进到DQ法解多维二阶偏微分方程中，使计算工作量和内存需

要量大约减少了三个数量级。实际应用于Poisson方程和稳态热传导/扩散对流问题的计算也证实了我

们的方法的简单和高效率。此外，我们发现DQ法的权系数矩阵为幂零矩阵，并据此提出了一种能够 
精确满足所有边界条件用于DQ法解4阶边界值问题(结构工程中经常遇到此类问题)的有效方法。我们
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也克服了该方法解决多维问题时遇到的运用角点边界条件的困难。将我们的应用于结构元件的静态弯

曲，振动和屈曲的计算分析显示，同已有的其他方法相比，该方法使用方便，适用面广，灵活，稳定

性和精度较高。是一个非常有竞争力的方法。 

 
第三，刚性问题在自动控制，电子 网 络，生物学，物理及化学动力学过程中经常遇到。传统的常微 
分方程的数值积分方法在解决这类问题时遇到极大困难，算法的计算稳定性是求解这类问题时主要考

虑的因素，有关这方面的算法的研究目前非常活跃。另一方面，结构动力问题则在建筑，地质，海洋

平台及机械设计与制造等许多领域有广泛的应用。这类问题一般也是刚性的。我们首次将DQ法用于 
初值问题(结构动力问题和刚性问题)的计算。我们指出DQ法是A稳定算法。因而，DQ法对刚性问题 
求解总是稳定的。这一点也被数值算例所证实。对于一般的结构动力分析问题，因为阻尼矩阵产生负

的实特征根，所以DQ法也是无条件稳定的。我们对初值问题提出了DQ法的矩阵形式的逼近公式。因

而，对线性问题最后得到的是Lyapunov代数矩阵方程。由此，我们将有关Lyapunov代数矩阵方程的 
快速求解算法引入到DQ算法初值问题的计算中，极大地减少了计算工作量(大约N3倍，N为DQ法节点

个数)，使得DQ法对线性问题的计算工作量大致等同于常用的其他算法的计算工作量。而DQ法是高 
阶收敛的，因而，DQ法在线性结构动力问题和刚性问题计算中远优于目 前常用的Newmark, Wilson 
θ, Houblt, Rung-Kutta和Gear等方法。对非线性问题则计算工作量要大于一般的单步法，但由于DQ 
法有高得多的精度和收敛速度，因而，计算成本并不高。这方面DQ法的计算效率可能还可以提高很 
多，如使用简单迭代法解非线性方程组等，还有大量的工作要做。DQ法计算边值问题，对复杂的不 
规则域问题还有一定的困难。但是对初值问题不存在这个问题，因而，这是DQ法很有意义的一个研 
究和应用方向。 

 
第四，微分求积法和调和微分求积法(Harmonic Differential Quadrature Method, 英文简称HDQ法, 不
同于微分求积法在于使用了三角函数为基函数)在实际应用中常用等分点和正交多项式（如切比雪 夫
多项式和勒让德多项式)的根为节点。如此形式的节点为对称分布节点。我们证明了在此种情况下, DQ
法和HDQ法权系数矩阵为中心对称矩阵。在求解中心对称矩阵的逆，特征值和特征向量时可将该矩阵

分解成两个约为原矩阵一半规模的较小矩阵。因而，DQ和HDQ法对某些问题，特别是对带有对称边

界条件的问题计算工作量可减少75%，内存需求量减少一半。对板的静态弯曲，振动分析和稳态热传

导/扩散对流问题的计 算表明运用DQ法的权系数矩阵中心对称性质，可以减少计算工作量并扩大 
解题规模。 

 
第五，最后，也是我们最重要的工作是将特殊矩阵乘积－Hadamard积引入到DQ法和HDQ法以及一 
般的非线性数值计算(包括有限元，有限差分，边界元，配点法，谱方法，拟谱法，Newmark, Wilson 
θ, Runge-Kutta, Gear法等)。利用Hadamard积，我们得到了两种清晰的矩阵形式的非线性数值逼近 
公式，这极大地减少了Formulation工作量，并方便了计算机编程。非线性数值计算的稳定性分析一 
直不是一个容易的任务。运用Hadamard矩阵积，我们导出了一般的非线性计算摄动误差的估计公式. 
稳定性问题和摄动误差分析有密切的联系。因而，我们公式为进一步分析非线性计算的稳定性问题提

供了基础。应用简单迭代法(Simple Iteration Method)计算非线性代数方程组有一个很大困难是构造 
高效率的迭代方程。标准的迭代格式效率往往不高。这是简单迭代法应用不如Newton-Raphson法广 
泛的一个重要原因。应用Hadamard矩阵积，我们能够象用简单迭代法求解一维标量非线性方程那样 
方便地对多维非线性方程组构造多种迭代方程，并确定最有效的迭代格式, 从而极大地改进了简单迭 
代法的使用效率使其成为与Newton-Raphson法相比有竞争力的算法。实际算例也证实了这一点。本 
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文的研究表明Hadamard积是描述非线性计算和分析问题强有力的工具。此外，大量有关Hadamard 
积的已有工作可以在非线性计算和分析中加以充分利用，无疑，进一步的研究工作是必须的。 

 
我们也首次定义了一种新的特殊矩阵乘机－SJT∗矩阵积. 运用SJT积, 我们获得了计算Newton-Raphs 
on法中Jacobi导数矩阵精确解的简单，高效率的计算公式。鉴于Jacobi矩阵在许多问题中有重 要的应 
用, 因而, SJT积法有广泛的理论和应用价值. Hadamard积和SJT积法能够用于一般的耦合非线性微分 
方程的数值解耦计算, 即把相应的耦合数值逼近方程解耦, 这个解耦过程类似于耦合的标量方程的解耦 
计算, 非常简单容易。因而，计算工作量和内存需求量可以大大地减少。Hadamard积和SJT积法已被 
用于DQ法计算各向异性板的大桡度非线性弯曲问题和非线性结构动力和流体动力问题，并获得很大 
的成功，对各项异性板的非线性大桡度弯曲问题，由于解耦计算，计算工作量和内存需求量分别减少

到  Bert等所用的二十七分之一和九分之一 . 一个审稿人(关于投稿论文”The Study on Nonlinear 

Computations of the DQ and DC methods” by Chen and Zhong, in press in Inter. J. of “Numer. 
Methods for P. D. E.”, 1996)评价Hadamard积和SJT积技术，”which may revolutionize the practical 
implementation of the DQ and DC methods敗Ｎ颐侨衔狧adamard积和SJT积技术对其他的数值技术 
的非线性计算也将有重要的意义。 

 
矩阵方法在许多领域（特别是在与计算机有关的领域〕发挥着非常重要的作用。目前常用的一般矩阵

乘积是基于线性代数变换，因而从本质上讲不适合于非线性计算和分析。实际上，标准的线性代数和

矩阵分析技术在非线性计算和分析中已显得力不从心。Hadamard积和SJT积是两种非常简单的特殊 
矩阵运算, 与目前非线性计算和分析中常用的其他 方法相比，极大地简化了所需的 工作。由于非线性 
计算和分析是广泛关心的课题，因而，这些工作有重要的理论和应用价值。 

 
我们给出了直接计算Newton-Raphson法中Jacobi矩阵的逆矩阵的一个新的简单的近似公式。该公式 
仅需要做两次矩阵乘法运算， 不需要通常的Gauss消去法和Gauss-Jordan法求逆计算。因而，可以 
克服大的非线性系统迭代求解中常出现的病态Jacobi矩阵使Newton-Raphson法无法收敛的困难。通 
过将一个较复杂的非线性微分算子转化为一个线性算子和较简单的非线性算子的耦合算子方法，我们

能够消除或减少该非线性算子的DQ逼近方程中的耦合代数项。从而极大地减少了计算工作量和内存 
需要量。最后，我们也讨论了将DQ法和Hadamard积与SJT积技术发展成一种实用算法有待解决的一

些重要问题和相关的研究方向。在附录中，我们对Hadamard积的分析和代数性质做了广泛的讨论。 
我们也证明了以富利叶型的三角函数系为基函数的微分求积法的系数矩阵为循环矩阵。基于其他研究

者和我们的最近的工作，我们相信DQ法在不久的将来能被发展成为一种实用的工程算法。 

 

                                                           
∗ SJT是Shanghai Jiao Tong University的英文缩写。 
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CHAPTER 1.  
INTRODUCTION 

 
1.1. General Problem Statement 
The numerical computations have been playing a prominent role in many science and engineering areas. 
The rapid advance in the design of computer has a profound affect on this research field, but scientists and 
engineers have more expectations for improvements in numerical methods than in computers. The 
development of computational methods may be of vital importance to increase the scale, accuracy and 
reliability of computations, since an inordinate amount of computing time and storage required often 
prohibits the calculation. On the other hand, the advances in microelectronics have also spurred 
remarkable expansion of engineering methodology and software. The lower cost of simulation has helped 
integrate numerical modeling more completely into the analysis and design sequence. An effective 
simulation capability is often the main factor in bringing a new engineering product to market in a timely 
manner or redesigning a system to meet desired objectives. Numerical simulation can also be an effective 
aid to physical experiments and theoretical analysis and is used to guide the development of new 
constitutive models and physical theories. In addition, the study of numerical computation itself can lead 
us to some of the deepest portions of pure and applied analysis. Therefore, the research in this field will 
be very significant and full of challenge.  
 
A variety of numerical methods are available today for solving the initial- and/or boundary value 
problems in physical and engineering science, for example, finite difference (FD), finite element (FE), 
boundary element (BE), least square, Rayleigh-Ritz, Galerkin, pseudo-spectral, collocation, spectral, 
Newmark, Wilson θ, Houblot, Runge-Kutta, semi-implicit Runge-Kutta, implicit Runge-Kutta, and Gear 
methods, etc. These methods, however, have respective drawbacks in that they may be too complex 
mathematically for routine engineering analysis, be relatively easy to used but limited to special cases, 
need initial trial functions, or require large amounts of computational effort and consequently high cost. 
For instance, in a large number of problems, reasonably approximate solutions are desired at only a few 
specific points in the physical domain. However, in order to get results even at or around a point of 
interest with acceptable accuracy, traditional FE and FD methods still require the use of a large number of 
grid points. Consequently, the requirements for CPU time and storage are often unnecessarily large in 
such cases. On the other hand, the Rayleigh-Ritz and Galerkin  methods require less computational effort 
as compared with the FE and FD methods. However, these methods require one to select initial trial 
functions satisfying boundary conditions for problems considered, while this is not an easy task in 
practice. In addition, these methods also need more strenuous formulation effort. Recently, the spectral 
and pseudo-spectral methods have been extensively used in engineering analysis especially for the 
numerical solutions of fluid dynamic problems. The spectral and pseudo-spectral methods belong to 
global numerical techniques and are efficient for many linear and nonlinear problems, but the desired 
spectral coefficients usually have no physical significance and thus assumed initial values in the solution 
of nonlinear problems are inherently poor guess, so the computational effort for the nonlinear analysis is 
aggravated. The BE method has definite intrinsic advantages for some kinds of engineering problems in 
comparison over other numerical techniques, but it is not well suited for highly nonlinear and 
inhomogeneous problems. For initial value problems, the Newmark, Wilson θ, and Houblot methods are 
unconditionally stable, but the accuracy of these methods are only of two order. The Runge-Kutta method 
is simple and efficient but only conditionally stable and, thus, limited to non-stiff systems. The Gear 
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method is high order accurate and stiffly stable for many engineering computations. However, the method 
is not suitable for structural dynamic problems with very high frequency because it is not A-stable. 
 
The above-mentioned shortcomings are not inherent in the differential quadrature (DQ) method. Due to its 
rather recent origin, the DQ method may be not well known to the computational mechanics community. 
The DQ method can yield highly accurate solutions with relatively little computational effort and storage 
requirements and, thus, are very suitable for recently popular personal computers. The method can easily 
and exactly satisfy a variety of boundary conditions and require much less formulation and programming 
effort. It have been pointed out that the DQ-type methods are basically equivalent to the collocation 
(pseudo-spectral) methods. But the DQ and DC methods directly compute function values at grid points 
rather than spectral variables. Thus, they are more explicit and simple for some practical applications and 
especially advantageous for nonlinear problems. Moreover, the mathematical techniques involved in the 
method are not sophisticated. So the DQ method is easily learned and used. The DQ method has been 
shown in many studies to be a very competitive alternative to the Rayleigh-Ritz, Galerkin, collocation and 
pseudo-spectral methods for general purpose. In general, the method is also much more efficient than the 
FE and FD methods for models of distributed-parameter systems and problems with regular geometries. 
The theoretical analysis and numerical experiments also show that the DQ method is especially efficient 
for highly nonlinear problems. Recently, the DQ method has be extended to handle irregular shaped 
problems as well as truss and frame structures, and achieved an early success. By employing the proper 
functions as basic functions, the method has been applied successfully to deal with problems involving 
steep gradients. Due to the above striking merits of the DQ method, in recent years the method has 
become increasingly popular in the numerical solution of problems in engineering and physical science. 
 
However, some essential problems in the DQ method have been not involved or fully studied in the 
existing literature, for example, computational stability, truncation error, application for initial value 
problems and numerical properties of its weighting coefficient matrices. The applications of the method 
have so far been limited to smaller scale problems. The problems involved with nonlinearity have been 
seldom analyzed by the DQ methods yet. 
 
On the other hand, the nonlinear numerical computations and analysis become more important in recent 
years. The subject in this field is another major purpose of this study. The traditional linear algebraic 
approach, which is very successful for linear numerical computations, has been extended to handle the 
nonlinear problems. However, since nonlinear problems have actually different from linear ones, linear 
algebraic and the relative matrix approaches, which are based on the concept of linear transformation, can 
not provide a unified powerful tool for nonlinear computational and analysis task. It is expected to 
introduce new matrix techniques to this field. 
 
1.2. Introduction to the DQ, HDQ and DC Methods 
The DQ method was introduced by the late Richard Bellman and his associates (Bellman et al., 1971, 
1972) in the early 70s. and, since then, the technique has been applied in biosciences (Bellman et al., 
1974b; Kashef et al., 1974), system identification (Bellman et al., 1974a, b, 1979; Hu et al, 1974), 
diffusion (Mingle, 1977), transport process (Civan et al., 1983a), fluid dynamics (Shu et al., 1992a, b, 
1994a, b; Civan, 1993), chemical engineering (Quan et al., 1989; Wang, 1982; Chang, 1993; Civan, 
1994b), lubrication (Malik et al., 1994), acoustics (Gutierrez et al., 1994) and Contact problems (Malik et 
al., 1993), etc. Recently, the differential quadrature method are extensively used to analyze deflection, 
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vibration and buckling of linear and nonlinear structural components by Bert’s group (Bert et al., 1988a, 
1989, 1993, 1994a, b, c, 1996a; Jang et al., 1989; Striz et al., 1988; Farsa et al., 1991; Kukretic et al., 
1992; Kang et al., 1995, 1996; Malik, 1996) and other researchers (Laura et al., 1993, 1994a, b, 1996; 
Pandy et al., 1991; Sherbourne, 1991; Du, 1994; Liew, 1994; Lin, 1994). Many scholars have made 
important contributions to this method and its applications. Mingle (1973)  proposed a linear 
transformations in the DQ method to simplify the computing effort of the evaluation of the DQ weighting 
coefficients for high order derivatives. Civan et. al (1984b) extended this method to multi-dimensional 
problems and integro-differential equations. Bert et. al (1988) first applied this method successfully to 
structural component analysis. Qian et. al (1989a) gave the explicit formulas to compute accurately and 
efficiently the DQ weighting coefficients for the 1st and 2nd order derivative, and pointed out that the DQ 
method is actually equal to the collocation method. Shu et al. (1992b) applied the DQ method to fluid 
dynamic problems using parallel computation based on the multi-domain technique and gave a general 
recursion formulas for computing the DQ weighting coefficients. Wang and Bert (1993a) proposed a new 
and efficient approach in applying the DQ method to high order boundary value problems. Chang et al. 
(1993) employed the proper functions as basic functions instead of polynomial functions in the DQ 
method for dealing with problems involving steep gradients successfully, while Bert et al. (1993) and 
Striz et al. (1995) developed the harmonic differential quadrature (HDQ) method, which uses harmonic 
functions instead of polynomial as test function in the quadrature method to handle with periodic 
problems efficiently, and also circumvented the limitation for the number of grid point in the conventional 
DQ method based on polynomial test function. Their study showed that the proper test functions are 
essential for the computational efficiency and reliability of the DQ method. Striz et. al. (1994a) gave a 
domain decomposition technique in applying the DQ method to truss and frame structures successfully. 
Based on the cubature rule for multidimensional numerical integration (Engels, 1980), Civan (1989, 
1994a) developed the DQ method to propose the differential cubature (DC) method as an competitive 
numerical technique for the solution of multi-dimensional differential and integro-differential equations. 
At present the studies on the DC method are few. But this method is very attractive to practical 
engineering computations. The DQ method has been also included in some books (Bellman et al., 1973, 
1985, 1986, Zwillinger, 1992) 
 
Though the differential quadrature method has been applied in many areas, the method does  not yet 
attract extensive attentions in proportional to its simplicity and high efficiency. The ensuing section 
introduces the notation of the differential quadrature, harmonic differential quadrature and differential 
cubature methods. 
 
1.2.1. Differential Quadrature and Harmonic Differential Methods 
The essence of the DQ method is that the partial derivative of a function with respect to a variable is 
approximated by a weighted sum of function values at all discrete points in that direction. Its weighting 
coefficients do not relate to any special problem and only depend on the grid spacing. Thus, any partial 
differential equation can be easily reduced to a set of algebraic equations using these coefficients.  
Considering a function f(x) with N discrete grid points (Civan et al., 1984b), we have 

( ) ( ) ( )∂
∂

m

m x i i j
m

j

N

j

f x
x

w f x i N= ∑ =
= 1

1 2, , , . . . , .                                         (1.2-1) 

where xj ’s are the discrete points in the variable domain. f(xj) and wij
(m) are the function values at these 

points and the related weighting coefficients, respectively. In order to determine the weighting 
coefficients wij

(m), equation (1.2-1) must be exact for all polynomials  of degree less than or equal to (N-1). 
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To avoid the ill-conditioning the Vandermonde matrix in the calculation of the weighting coefficients, the 
Lagrange interpolation basis functions (Quan et al., 1989a; Shu et al., 1992a, b; Bert et al., 1993; Chen et 
al., 1993a) are used as the test functions, namely,  

( )k
i

k ii k

N

f x
x x
x x

=
−
−≠

∏ .                                                                                                               (1.2-2) 

Substituting Eq. (1.2-2) into Eq. (1.2-1) yields the following two formulae to compute directly the 
weighting coefficient of the 1st order derivative (Quan and Chang, 1989a), i.e., 
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For higher order derivatives, the weighting coefficients can be generated by one recursion formula (Shu 
and Richards, 1992b) 
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and 
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N

w w+ +

≠

= −∑1 1 ,                                                                                                        (1.2-5) 

where the superscript (m) and (m+1) denote the order of the derivative. 
 
The harmonic differential quadrature method is a new development of the differential quadrature method, 
which has been used successfully to solve a variety of problems. The HDQ method chooses harmonic 
functions as its test functions instead of polynomials in the DQ method, i.e., 
 
f(x) = {1, sinπx, cosπx, sin2πx, cos2πx, ... , sin(N-1)πx/2, cos(N-1)πx/2 },                             (1.2-6) 
 
where N is an odd number. Substituting Eq. (1.2-6) into Eq. (1.2-1), we obtain N sets of N order algebraic 
equations. Solving these linear algebraic equations, we can obtain the weighting coefficients of the HDQ 
method. Using the same idea for obtaining the formulas (1.2-4) and (1.2-5), Wang (1995) gave the direct 
computing formulas for computing weighting coefficients of the HDQ method. The HDQ method has 
been found especially efficient for problems with  periodic behaviors (Bert et al., 1993; Striz et al., 1995). 
 
The weighting coefficients for high order derivatives in the DQ and HDQ methods can also be obtained 
by matrix multiplication (Mingle, 1973; Civan, 1984b). For example, considering the DQ weighting 
coefficients Aij,  Bij ,  Cij  and Dij  which are corresponding to the first, second, third and fourth order 
derivatives, respectively,  we have 

B A A C A B D B B

i j N
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1.2.2. Differential Cubature Method 
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The DC method is different from the DQ method in that a partial derivative of the function with respect to 
a coordinate direction is expressed as a weighted sum of the function values at all discrete points in the 
entire multi-dimensional solution domain rather than simply in that coordinate direction. Considering a 
two-variable function f(x, y) (Civan; 1989, 1994a), we obtains the partial derivatives with respect to x and 
y expressed as 

m

m i i j
x m

j

N

j

f x y
x

w f i N
∂

∂
( , )

, , , . . . , .( )= ∑ =
=1

1 2                                      (1.2-8) 
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1 2                                     (1.2-9)  

where j (or i, k) denotes the one-dimensional indexing of the two-dimensional grid points and fj  is the 
function value at the corresponding grid point. wij

(xm) and wij
(yp)  are the DC weighting coefficients for the 

related partial derivatives. Note that the number of grid points N in the Eqs. (1.2-8) and (1.2-9) is in the 
entire multi-dimensional domain rather than only in a coordinate direction as in Eq. (1.2-1) of the DQ 
method. The DC method degenerates into the DQ method in one dimensional problems. Similar to Eq. 
(1.2-7) of the DQ method,  it is straightforward that there exists the following formulas for the DC 
weighting coefficient matrix Ex, Ey, Fx, Fx and Fxy for the 1st and 2nd order derivatives, i.e.,  
F E F E F E E F Ex x y y x y x y y x= = = =2 2, , .                                   (1.2-10) 

For higher order derivatives, similar formulas exist. As was pointed out by Malik and Civan (1994a), the 
major time-consuming calculations in the DC method are to compute the weighting coefficients. The 
present formulas can effectively reduce these efforts.  
 
More detailed descriptions on the DQ-type methods see Bellman, Kashef and Casti (1972), Civan and 
Sliepcevich (1984b), Qian and Chang (1989a), Shu and Richards (1992b), Malik and Civan (1994a), Bert 
and Malik (1996d), etc. 
 
 
1.3.  Thesis Overview 
This paper focuses on the differential quadrature method and relative nonlinear computations. Our work is 
a step forward in nearly all important basic aspects, including the truncation error, the choice of sampling 
points, the algebraic structures of the weighting coefficient matrices, numerical stability, and new 
approximate formulas in matrix form for applying the DQ method to the initial- or/and boundary value 
problems. The paper is the first authentic attempt to use the DQ method for initial value problem. We also 
introduce two kinds of special matrix product to nonlinear computations and analysis of the DQ method 
as well as other numerical methods. We hope to present a new framework for nonlinear computation and 
analysis of general purpose. In the following we briefly state our main contributions. 
 
First, the conventional formulas of the truncation error in the DQ method, derived by Bellman et al. 
(1972) by using Rolle’s theorem, do not involve the practical grid interval and are too imprecise for many 
practical purpose. We gave new truncation error formulas based on the polynomial interpolation 
technique. Applying our formulas, the truncation error at any grid point can be estimated much more 
accurately, and it was also found that the DQ method is high order accurate numerical method. It is also 
noted that the Chebyshev grid points are not optimal grid spacings although it may be the most efficient in 
all existing grid spacings for some cases. It is known that the Chebyshev polynomials are derived from the 
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optimal polynomial approximation of a function rather than of the derivatives of a function. The DQ 
truncation error constants around the ends using such grid spacing are obviously larger than at other grid 
points nearby the center region. Therefore, such approximation do not satisfy the optimal minimax 
approximation principle. Similar situations also occur in the DQ method using the equally spaced grid 
points or zeros of Legendre polynomials. Through the numerical trial and error, we propose seven general 
rules for choosing grid spacings. The numerical experiments have also demonstrated that the DQ method 
using the grid spacings which satisfies these rules has faster rate of convergence than using the zeros of 
the Chebyshev polynomials. Since the DQ method is in fact equivalent to the collocation and pseudo-
spectral methods, the presented truncation error formulas and rules for choosing sampling points are also 
applicable for these two methods. We also give the simplified formulas for computing the DQ weighting 
coefficients under equally spaced grid points and the zeros of the Chebyshev polynomials or Legendre 
polynomials and overcome the difficulty that the conventional applications of zeros of orthogonal 
polynomials can not include the boundary points. 
 
Second, we gave the DQ approximate formulas in matrix form for boundary value problems instead of 
traditional polynomial ones. By using these formulas, the formulation effort is greatly reduced and the fast 
algorithms in the solution of Lyapunov matrix equation are introduced to the DQ calculations of multi-
dimensional boundary value problems of the second order, and the computational effort is reduced by 
about N3 times. The high efficiency and simplicity of the presented reduction computation were 
demonstrated in the DQ solution of the Poisson equation and steady convection-diffusion equations. We 
notice the fact that the rank of  the DQ weighting coefficient matrices for the ith order derivative is M-i, 
where M is the number of  grid points. Moreover, the coefficient matrix is in fact power zero matrix, 
namely the weighting coefficient matrix is zero matrix when M=i. Therefore, the coefficient matrices in 
the DQ method must be modified into full rank matrices before practical computation. Based on these 
facts, we proposed a new approach in applying the multiple boundary conditions in the DQ solution of 
boundary value problems of more than two order, which are often encountered in structural engineering 
analysis. The approach is employed to analyze the static bending, vibration and buckling of plates and 
beams. Compared with the other existing approaches, the presented approach shows easy use, good 
stability, wide applicability and high accuracy. 
 
Third, the stiff ordinary differential equations are often encountered in automatic control, electronic 
network, biosciences, physics and chemical kinetics. The traditional numerical integration methods are 
not applicable for such problems. The key to handle stiff problems is the numerical stability of methods. 
On the other hand, the structural dynamic analysis is a fundamental task in civil engineering, 
geomechanics, ocean platform and mechanical design and production. The problems of such type are also 
in general “stiff”. We first applied the DQ method to the initial value problems and pointed out that the 
method is A-stable. Therefore, the DQ method is always stable for stiff problems. Since the damping 
yields the negative real eigenvalues in general structural dynamic analysis, the DQ method is 
unconditionally stable for such problems. We presented the DQ approximate formulas in matrix form for 
initial value problems. Thus, the resulting formulations are Lyapunov algebraic matrix equation. Several 
fast algorithms for the solution of the Lyapunov matrix equations are successfully applied for the present 
purpose, and the computational effort and storage requirements are alleviated by an order of N3 and N2, 
respectively, where N is the number of interior grid points. Therefore, the DQ method requires nearly the 
same computational effort as the other single step methods such as Newmark, Wilson θ, Houblot, Runge-
Kutta and Gear methods, etc. while maintaining its high computational efficiency. Some obstacles need be 
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overcome to apply the DQ method for boundary value problems with complex geometries. However, the 
difficulties are not inherent in applying the DQ method to the initial value problems. So the initial value 
problems may be a very significant application of the DQ method in practice. 
 
Fourth, the symmetric grid spacings such as equally spaced grid points and the zeros of orthogonal 
polynomial (for example, the Chebyshev polynomial and Legendre polynomial, etc.) are often employed 
in the DQ and HDQ methods. We proved that in such situations the weighting coefficient matrices of the 
DQ and HDQ methods are centrosymmetric or skew centrosymmetric ones. The centrosymmetric matrix 
can be factorized into tow smaller size matrices in the evaluation of its inverse, determinant, eigenvectors 
and eigenvalues. Therefore, the computational effort and storage requirements in applying the DQ method 
for certain problems (especially for problems with symmetric boundary conditions) can be reduced by 75 
per cent and 50 per cent, respectively. The skew centrosymmetric matrix is first studied and found to have 
the similar factorization properties of the centrosymmetric matrix. The practical applications in the DQ 
solutions of steady-state convection-diffusion problems and static deflection, vibration, buckling of beams 
and plates also showed that the computational effort and storage requirements are greatly reduced and the 
scale of computed problems is enlarged. 
 
Fifth, it may be our most important contributions that the special matrix products are introduced to the 
nonlinear computations of the DQ methods as well as other numerical methods, including finite element, 
finite difference, boundary element, collocation, pseudo-spectral, spectral, Newmark, Wilson θ, Runge-
Kutta and Gear methods, etc. By using the Hadamard product, we obtained two new types of nonlinear 
formulation for nonlinear computations of general purpose, which are denoted as the formulation-S in the 
ordinary and Kronecker product form and the formulation-H in the Hadamard product form. The 
nonlinear formulation efforts are greatly reduced and programming task is simplified. It is known that the 
stability analysis of nonlinear computations is not an easy task. We derived explicit formulas to describe 
the relation between the condition number and perturbed error bound for the nonlinear formulation-S and 
formulation-H. The idea of instability and ill-conditioning are closely related in numerical computations. 
Therefore, the present formulas establish the basis for stability and error analysis of nonlinear 
computations. The computational efficiency of the standard iteration formula in the simple iteration 
method is usually not high. This is reason why the simple iteration method is not so popular as the 
Newton-Raphson method. Due to applying the Hadamard power and function concepts, the construction 
of the efficient iterative formulas in the simple iteration method becomes similar to handling nonlinear 
scalar function and very easy to be accomplished. Thus, the Hadamard product approach offers a 
compact, efficient and convenient procedure for use of the simple iteration method. The convergence 
speed is linear in the simple iteration method and, by contrast, quadratical in the Newton-Raphson 
method. However, the Newton-Raphson method requires computing the Jacobian derivative matrix and its 
inverse. The Newton-like iterative methods also suffer from the serious practical disadvantages in that 
these iterations will converge only if suitable initial values can be found. The simple iteration method 
does not require so stringent initial guess. For these reasons, the simple iteration method becomes very 
competitive to the popular Newton-Raphson methods as well as its variants. The conclusion is also 
demonstrated via numerical examples. The most important feature of the Hadamard product may be its 
ability to express the nonlinear relation in the problems of interest.  
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We first defined a new special product of matrix and vector, SJT* product. The SJT product provides a 
very simple and highly efficient approach to accurate calculation of the Jacobian derivative matrix in the 
Newton-Raphson method for the solution of the nonlinear formulations. Due to the utility of the Jacobian 
matrix in a wide range of science and engineering areas, the SJT product may have high potential for 
many theory and applied analysis. Also, the coupling nonlinear formulations for the corresponding 
coupling nonlinear partial differential equations can in general be decoupled by means of the Hadmard 
product and SJT product. Therefore, the computational effort and storage requirements are alleviated 
extremely. The Hadamard product and SJT product approach was successfully applied in the DQ analysis 
of geometrically nonlinear bending of orthotropic plates and nonlinear vibration of beams as well as fluid 
dynamics problems. For geometrically nonlinear bending analysis, the computational effort and storage 
requirements are reduced to about only one twenty-seventh and one-ninth, respectively, as much as those 
by Bert et al. due to decoupling computations. 
 
We also give a new approximate formula for directly computing the inverse of the Jacobian matrix in the 
Newton-Raphson method. The formulas only involves the ordinary matrix multiplications and does not 
require the conventional inversion computation as in the Gauss elimination method or the Gauss-Jordan 
method. Therefore, the possible ill-conditioning of the Jacobian matrix in the iteration process, which 
often occurs in the solution of large nonlinear systems, can not affect the convergence of the Newton-
Raphson method. By converting some nonlinear differential operators into a combination of a linear 
operator and a simpler nonlinear operator, the cross nonlinear algebraic terms in the DQ and DC 
formulation for problems of interest are eliminated or reduced and thus the requirements for virtual 
memory and computational effort are reduced greatly. Finally, several critical problems for further 
developing the DQ method and Hadamard product and SJT product techniques into a engineering 
approaches are also discussed. 
 
In appendix I, we discuss the algebraic and analysis properties of the Hadamard product. These properties 
may be valuable in a wide range of nonlinear computation and analysis. In appendix II, we also proved 
that the weighting coefficient matrices of the quadrature method based on Fourier-type trigonometric 
principle are circulant ones. 
 
It is stressed that the following chapters place their emphasis on our recent work. The details on the 
related work by other researchers can be found in an excellent survey provided by Bert and Malik 
(1996d), and not presented here in great detail for the sake of brevity. 
 
 
 
 
 
 
 
 
 
                                                           
* SJT is the abbreviate of Shanghai Jiao Tong University 
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CHAPTER 2.  
SOME BASIC ASPECTS ON NONLINEAR COMPUTATIONS 

 
2.1.  Introduction  
Matrix computations is of vital importance in nonlinear analysis and computations. The traditional linear 
algebraic approach, which is very successful for linear numerical computations, has been extended to 
handle the nonlinear problems. However, since nonlinear problems have actually different from linear 
ones, linear algebraic and the relative matrix approaches, which are based on the concept of linear 
transformation, can not provide a unified powerful tool for nonlinear computational and analysis task. In 
fact, the ordinary matrix product computation seems not to undertake the task of nonlinear analysis and 
computations very well. We need seek an alternate matrix approach to handle nonlinear problems. 
Recently, contributions was made by the present authors to solve this problem (Chen et al., 1996c,e,f). 
The Hadamard product of matrices was introduced to nonlinear numerical computations of the differential 
quadrature, differential cubature methods and other numerical techniques successfully. The Hadamard 
product is a kind of very simple special matrix computations and not well known to the numerical 
computation community. By using the Hadamard product, the nonlinear formulation effort of the DQ and 
DC methods are greatly reduced, and the formulations can be expressed in explicit and easily 
programmable matrix form. We also first defined the SJT product, a new kind of product of matrix and 
vector, to efficiently obtain analytical solution of the Jacobian derivative matrix in the Newton-Raphson 
method for the solution of the nonlinear formulations in the Hadamard product form (Chen and Zhong, 
1996c). 
 
The nonlinear formulation of the FD, collocation and pseudo-spectral methods can be concisely expressed 
in the Hadamard product form. The formulations in the Hadamard product form are denoted as 
formulation-H in this paper. By using the Hadamard product and SJT product, a new type of nonlinear 
formulation in the ordinary and Kronecker product form can be obtained in the FD, DQ, DC, pseudo-
spectral, finite element, boundary element, spectral, least square, Galerkin methods, Runge-Kutta, Wilson 
θ, Newmark, and Gear methods, etc. The formulation of such type is represented by the formulation-S in 
the latter discussion. 
 
We further develop the foregoing work in the following areas. First, the unified approaches are proposed 
to compute accurately and efficiently the Jacobian derivative matrix in the Newton-Raphson method for 
the solution of general formulation-S. It is worth pointing out that the Jacobian matrix of the formulation-
H can be efficiently computed by using the SJT product approach no matter what numerical methods are 
used. Second, for the linear equations, the condition number measures the effect of the round-off on the 
resulting solutions of equations. We extend the approach to the error analysis of the nonlinear 
formulation-S and formulation-H using the norm properties of the Hadamard product. The relation 
between the perturbed error bound and the condition number is clearly expressed in the presented 
formulas. Third, Chen et al. (1996c, f) found that the DQ formulation-H for nonlinear coupling 
differential equations can be easily decoupled by using Hadamard and SJT product. Therefore, the 
computational effort and complexity are reduced greatly. We introduce the relative Jacobian matrix 
concept to simplify the decoupling computation further. Geometrically nonlinear bending of beams and 
plates under a uniformly distributed loading is investigated and the decoupling computation is tested 
successfully. Finally, the simple iteration method is applied in the solution of the formulation-H. Due to 
applying the Hadamard power, the construction of the efficient iterative formulas in the simple iteration 
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method becomes very easy to be accomplished. Therefore, the simple iteration method become very 
competitive to the Newton-Raphson method. In addition, we give a new approximate formula for 
computing the inverse of the Jacobian matrix so as to circumvent the possible ill-conditioning of the 
Jacobian matrix. A simple approach is also presented to simplify the formulations of some nonlinear 
operators (Chen and Zhong, 1996c). 
 
2. 2.  Hadamard Product 
We introduce the notation of the Hadamard product of matrices and state its some properties first (Ni, 
1984; Horn, 1990). Based on the Hadamard product concept, the Hadamard power and function are also 
defined (Horn, 1990). Horn (1990) gave an excellent survey on the Hadamard product and its some 
applications.  
 
Definition 2.2.1 Let matrices A=[aij] and B=[bij]∈CN×M,  the Hadamard product of matrices is defined as 
A°B= [aij bij]∈CN×M. where CN×M denotes the set of N×M real matrices. 
 
Definition 2.2.2 If matrix A=[aij]∈CN×M, then A°q=[aij

q]∈CN×M  is defined as the Hadamard power of 
matrix A, where q is a real number. Especially, if aij ≠0, A°(-1)=[1/aij]∈CN×M is defined as the Hadamard 
inverse of matrix A. A°0=11 is defined as the Hadamard unit matrix in which all elements are equal to 
unity. 
 
Definition 2.2.3 If matrix A=[aij]∈CN×M, then the Hadamard matrix function ( )f AD   is defined as 

( ) ( )[ ]f A f aij
D = ∈ CN×M. 

 
Theorem 2.2.1: letting A, B and C∈CN×M,  then 
1> A°B=B°A                                                                                                                           (2-1a) 
2> k(A°B)=(kA)°B, where k is a scalar.                                                                                  (2-1b) 
3> (A+B)°C=A°C+B°C                                                                                                            (2-1c) 

4> A°B=EN
T(A⊗B)EM,  where matrix EN  (or EM) is defined as EN =[ e1⊗e1# "#eN⊗eN], ei=[0"0 1

i
 

0"0], i=1, ", N, EN
T  is the transpose matrix of EN. ⊗ denotes the Kronecker product of matrices.    

(2-1d) 
5> If A and B are non-negative, then                             

( ) { } ( ) ( ) { }λ λ λmin maxmin maxA b A B A bii j ii≤ ≤D , where λ is the eigenvalue.                 (2-1e) 

6> (detA)(detB)≤det(A°B), where det( ) denotes the determinant.                                         (2-1f) 
In appendix A we will further discuss the algebraic and analysis properties of the Hadamard product in 
greater detail 
 
In the following discussions, we assume that the related boundary conditions for all given examples have 
been applied to the DQ weighting coefficient matrices using the approach proposed by Wang and Bert 
(1993a) or these boundary conditions are substituted directly into the DQ and DC weighting coefficient 
matrices (Civan and Sliepcevich, 1984b) Therefore, the boundary conditions are no longer considered 
separately. It should be noted that the modified DQ weighting coefficient matrices Ax  , Ay , Bx  and B y  

for multi-dimensional problems here are different from the Ax  , Ay , Bx  and B y  defined in Wang et al. 

(1993a 1994a) in that the present ones are the resulting and stacked DQ weighting coefficient matrices in 
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a multi-dimensional domain, while the latter are the DQ weighting coefficient matrices only in one 
dimensional sense. 
 

Considering the quadratic nonlinear differential operator 
∂

∂
∂

∂
f x y

x
f x y

y
( , ) ( , )2

2
, its DQ formulation can 

be expressed in Hadamard product form as 

 ( ) ( )∂
∂

∂
∂

f x y
x

f x y
y

f B fy

( , ) ( , )2

2 = A x

K
D

K
                                                                                       (2.2-2) 

The formulation (2.2-2) has explicit matrix form. The DQ formulations in Hadamard product form for 
some nonlinear differential operators often encountered in practice can be expressed in a similar way: 

1. ( ) ( ){ } ( )c x y U c x y A Ux j j x, , ,= D
K

,                                                                               (2.2-3a) 

2. ( ) ( )q
x x

q
U A U, ,=

K D
 where q is a real number,                                                             (2.2-3b)  

3. ( ) ( )∂
∂

∂
∂

U
x

U
y

A U A U
m n

x
m

y
n=

K
D

K
D D ,                                                                         (2.2-3c) 

4. ( )s i n s i n,U A Ux x= D K
,                                                                                          (2.2-3d) 

5. ( ) ( )e x p e x p,U A Ux x= D K
,                                                                                       (2.2-3e) 

where B Ax y x,  and Ay  denote the DQ weighting coefficient matrices for the corresponding partial 

derivatives, modified by the related boundary conditions, respectively.  
 
Striz et al. (1994a) analyzed the driven cavity problem by the differential quadrature method. The DQ 
formulation was given in matrix form in Eq. (15) on p. 668 in Striz et al (1994a), namely 

( ){ } [ ]{ }[ ] [ ] [ ]( ){ } [ ]{ }[ ] [ ] [ ]( ){ }

[ ] [ ] [ ][ ] [ ] [ ]( ){ } { }

F A A B B A A B B

D B B B B D

y x x y x y x y

x x x y y y

ψ ψ ψ ψ ψ

ψ

= + − + −

+ + + + =
1

2 2 0
R e

                  (2.2-4) 

where [Dx], [Dy], [Bx], [By], [Ax] and [Ay] are the corresponding DQ weighting coefficient matrices for 
the first, second and fourth order derivative along the x- and y- directions, respectively.  The details see 
the reference. The nonlinear terms in the formulation are incorrectly stated, since the ordinary matrix 
product was used to formulate the nonlinear operator. It is impossible to express the nonlinear formulation 
of the DQ method in the matrix form without the Hadamard product. In fact, equation (2.2-4) can be not 
run because the operation conditions for the ordinary matrix multiplication are not satisfied obviously. 
 
The correct matrix formulation for the nonlinear differential equation must use the Hadamard product and 
is expressed as 

( ){ } [ ]{ }( ) [ ] [ ] [ ]( ){ }( ) [ ]{ }( ) [ ] [ ]((
[ ]){ }) [ ] [ ] [ ][ ] [ ] [ ]( ){ } { }

F A A B B A A B

B D B B B B D

y x x y x y x

y x x x y y y

ψ ψ ψ ψ

ψ ψ

= + − +

− + + + + =

D D

1
2 2 0

Re

       (2.2-5) 

 
Feng and Bert (1992) applied the differential quadrature method to analyze the geometrically nonlinear 
vibrations of beams. In the present study, due to applying the Hadamard product of matrices, the nonlinear 
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formulation is greatly simplified. A explicit matrix formulation is obtained. Therefore, programming 
effort is reduced. 
 
The governing equation for this case can be normalized as  

( )4

4

2

2

2

0

1 2

2
23

8
0d v

d
a
r

dv
d

d d v
d

v
ξ ξ

ξ
ξ

ϖ−
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ − =∫ ,                                                                       (2.2-6) 

where r I
A

2 = , I is centroidal moment of inertia of beam, A is area of beam cross section, a is 

amplitude, v is nonlinear normal mode; ξ =x/L,  L is length of beam, x is axial position coordinate; and 

ϖ2=ω2mL4/EI is the dimensionless frequency, ω is nonlinear frequency, m is mass per unit length, E is 
modulus of elasticity. For more details see Feng and Bert (1992).   
 
The formulation for equation (2.2-6) can be expressed in Hadamard product form as 

( ) ( )[ ]{ }DV a
r

G AV AV BV V
K K

D
K K

− − =
3
8

0
2

2
2~ ~

ϖ                                                                  (2.2-7) 

where B  and D  are the DQ weighting coefficient matrices, modified by the respective boundary 
conditions for the 2nd and 4th order derivatives, respectively. The order of matrices B  and D    varies 
for the various techniques in applying the multiple boundary conditions, namely, n-2 for Wang and Bert’s 
new technique and n-4 for the so-called δ technique (Jang et al. 1989; Bert et al., 1996d) or new technique 
proposed by Chen et al. (1993b, 1994) and Du et al. (1994). Here n is the number of grid points. Since the 
boundary conditions have been used in the formulation of B  and D ,  they are no longer considered. 

K
V  

is a (n-2)×1 mode vector at inner grid points. { }~ , ,V V T T
= 0 0

K
,  A is original n×n DQ weighting 

coefficient matrix for the 1st order derivative. Since the upper and lower bounds of the integral in Eq. 
(2.2-7) are constants, it is not necessary to utilizes the DQ method for numerical integration as in Feng 
and Bert (1992). We herein use the Newton-Cotes numerical integration approach for simplicity. 

K
G  is a 

1×n vector composed of the Cotes coefficients for numerical integration. It is observed that the DQ 
formulation equation (2.2-7) has an explicit, compact and simple matrix form, and is obviously easier for 
programming than the conventional one expressed in a polynomial form in Feng and Bert paper. Also, it 
is noted that there is an typographical errors in the nonlinear formulation equation (16) in Feng and Bert 
(1992), namely, the first operation in that equation should be minus rather than plus. 
 
2.3. SJT Product and its Some Properties and Applications 
The Newton-Raphson method is a standard numerical technique to solve the nonlinear equation set 
resulting from the DQ (or the other numerical methods) solution of the nonlinear differential or integro-
differential equations. One of the major time-consuming calculation in the Newton-Raphson method is to 
compute the Jacobian derivative matrix. In this section, we will provide an efficient and explicit procedure 
to compute the analytical solution of the Jacobian matrix of the nonlinear formulation in Hadamard 
product form. First, we herein present a new multiplication operation − SJT product of matrix and vector: 
 
Definition 2.3.1 If matrix A=[aij]∈CN×M, vector U={uj}∈CN×1, then  A◊U=[aij uj]∈CN×M is defined as the 
postmultiplying SJT product of matrix A and vector U, where ◊ represents the SJT product. If M=1, 
A◊B=A°B.   
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Definition 2.3.2 If matrix A=[aij]∈CN×M, vector V={vj}∈CM×1, then  VT◊A=[aij vi]∈CN×M is defined as the 
SJT premultiplying product of matrix A and vector V. 
 
2.3.1.  SJT product for the evaluation of Jacobian matrix of formulation-H 
The iteration formula of the Newton-Raphson method in solution of the nonlinear algebraic equations is 

( ) ( )
( )( ) ( )( )K K
K
K

K
U U

U
U

Uk k
k

k+

−

= −
⎡

⎣
⎢

⎤

⎦
⎥1

1
∂ϕ

∂
ϕ ,                                                                          (2.3-1) 

where 
∂
∂
K

U
 denotes the Jacobian derivative matrix operator, 

K
U  denotes the desired vector,  

{ }ϕ ϕ ϕ ϕ( ) ( ) ( ) ( )
K K K

…
K

U U U Um

T
= 1 2  is nonlinear algebraic equations. The corresponding 

Jacobian derivative matrix is defined as  

{ }∂ϕ
∂

∂ϕ
∂

∂ϕ
∂

∂ϕ
∂

∂ϕ
∂

∂ϕ
∂

∂ϕ
∂

∂ϕ
∂

∂ϕ
∂

∂ϕ
∂

K
K

"

"

# # # #
"

U
U

U U U

U U U

U U U

m

m

m m m

m

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

1

1

1

2

1

2

1

2

2

2

1 2

.                                                                               (2.3-2) 

Considering the nonlinear DQ formulation (2.2-2) in section 2.2, its Jacobian matrices can be obtained by 

( ) ( ){ } ( ) ( )∂
∂
K

K
D

K K K
U

A f B f A B f B A fx y x y y x= ◊ + ◊ .                                                      (2.3-3) 

Eq. (2.3-3) gives the accurate solutions for the Jacobian matrix of analog approximate term in Eq. (2.2-2) 
through simple algebraic computations, and computational effort is reduced greatly. The SJT 
premultiplying product are related to the Jacobian matrix for the DQ formulations such as 
dU
dx

AU
m

m=
K

, i.e., 

{ } ( )( )∂
∂
K

K K
D

U
A U m U Ax

m m T

x= ◊−1 .                                                                                     (2.3-4) 

In the following, we discuss some operation rules in applying the SJT product to compute the Jacobian 
matrix for the nonlinear formulation (2.2-3) given in section 2.2. 

1. ( ){ } ( ){ } ( ){ }∂
∂
K D

K
U

c x y A U A c x yj j x x j j, ,= ◊                                                               (2.3-5a) 

2. ( ){ } ( )∂
∂
K

K KD D

U
A U qA A Ux

q
x x

q
= ◊

−( )1
.                                                                            (2.3-5b) 

3. ( ) ( ){ } ( )( ){ } ( ) ( )( ){ } ( )∂
∂
K

K
D

K K K K K
D D D D D D

U
A U A U m U A A U n U A A Ux

m
y

n m
x y

n n
y x

m= ◊ ◊ + ◊ ◊− −1 1

 (2.3-5c) 

4. ( ){ } ( )∂
∂
K

K KD

U
A U A A Ux x xsin cos= ◊                                                                              (2.3-5d) 

5. ( ){ } ( )∂
∂
K

K KD D

U
A U A A Ux x xexp exp= ◊                                                                          (2.3-5e) 
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6. If ( ) ( )K K K KD Dy f g g U= =, ϕ ,  we have  
∂
∂

∂
∂

∂
∂

K
K

K
K

K
Ky

U
y
g

g
U

= .                               (2.3-5f) 

In the above equations ( ),x =∂( )/∂x,  
∂
∂ Kg

  and 
∂
∂
K

U
 represent the Jacobian derivative matrix of certain 

Hadamard function with respect to vectors 
Kg  and 

K
U , respectively. It is observed from these formulas 

that the Jacobian derivative matrix for the nonlinear formulation-H can be computed by using the SJT 
product in the chain rules similar to those in differentiation of a scalar function. The above computing 
formulas give the analytical solutions of the Jacobian matrix for the problems considered. The 
computational effort for a SJT product is only n2 scalar multiplications, namely, each entry in the Jacobian 
matrix is obtained by one scalar multiplication, which may be the minimal computing cost. It is 
emphasized that the SJT product approach can be efficiently implemented in a parallel treatment way. 
 
The finite difference method is usually employed to obtain the approximate solutions of the Jacobian 
matrix in practice and requires O(n2) scalar multiplications. Therefore, both the SJT product approach and 
the finite difference method are essentially comparable in computing effort. However, the numerical 
approximate Jacobian matrix yielded by the finite difference method often affects the accuracy and 
convergence rate of the Newton-Raphson method. In contrast, the SJT product produces the analytic 
solution of the Jacobian matrix. 
 
2.3.2. The algebraic properties of the SJT product 
We notice the following fact that the SJT product is closely related with the ordinary product of matrices, 
namely, 
If matrix A=[aij]∈CN×M, vector 

K
U ={uj}∈CN×1, then the postmultiplying SJT product of matrix A and 

vector 
K

U  satisfies  
A◊
K

U =diag{u1, u2, ....., uN}A,                                                                                                  (2.3-6) 
where matrix diag{u1, u2, ....., uN}∈CN×N is a diagonal matrix whose main diagonal entries are the 
respective entries of vector 

K
U . Similarly, for the SJT premultiplying product, we have K

V T◊A = Adiag{v1, v2, ....., vM},                                                                                              (2.3-7) 
where vector 

K
V ={vj}∈CM×1. 

 
Based on Eqs. (2.3-4) and (2.3-5),  we obtain the following properties of the SJT product, namely, if 
matrices A, B ∈CN×M, vector 

K
U =[uj]∈CN×1, 

K
V =[vj]∈CM×1, then 

1. k1k2(A◊
K

U )=(k1A)◊( k2
K

U )=( k2A)◊( k1
K

U ), where k1 and k2 are scalar.                            (2.3-8a) 
2. 
K

V T◊(A◊
K

U )=(
K

V T◊A)◊
K

U                                                                                                    (2.3-8b) 
3. (A+B)◊

K
U  =A◊

K
U +B◊

K
U                                                                                                    (2.3-8c) 

4. (A°B) ◊
K

U =A°(B◊
K

U )                                                                                                        (2.3-8d) 
5. (A◊

K
U )T= 

K
U T◊AT, if n=m.                                                                                                 (2.3-8e) 

6. (
K

V T ◊A)T=AT◊
K

V , if n=m.                                                                                                  (2.3-8f) 
7. (A◊

K
U )-1 =(

K
U °(-1))T◊A-1, if uj≠0 and A-1 exists.                                                                   (2.3-8g) 

8. (
K

V T◊A)-1=A-1◊
K

V °(-1), if vj≠0 and A-1 exists                                                                        (2.3-8h)  

9. det(A◊
K

U )=det(A) u j
j

N

=
∏

1
                                                                                                 (2.3-8i) 
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10. tr(A◊
K

U )= a uj j j
j

N

=
∑

1
,                                                                                                      (2.3-8j) 

11. A U A U◊ ≤
K K

μ μ μ ,                                                                                                (2.3-8k) 

where 
μ

denotes the vector norm and the corresponding consistent submultiplicative matrix norm. The 

proofs for the properties are straightforward and omitted here for brevity. 
 
2.4. Some Examples 
In order to demonstrate the simplicity and efficiency of the Hadamard product and SJT product approach, 
we provide the following three detailed numerical examples. 

Example 1: ( ) ( )′′ + +
′
= = =y

y
y
y

y y1 0 0 1 1 2
2

; , .                                                      (2.4-1) 

Considering the boundary conditions, the DQ formulation for the second order derivative of function y 
can be stated as 

′′
′′

′′
′′

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

+

+
+

+−

−

−

−

− − − −

− − − −

−

−

− −

−

y
y

y
y

B B B
B B B

B B B
B B B

y
y

y
y

B B
B B

B B
B

N

N

N

N

N N N N

N N N N

N

N

N

N

N N N

N

2

3

2

1

22 23 2 1

22 33 3 1

2 2 2 2 2 1

1 2 1 2 1 1

2

3

2

1

21 2

31 3

2 1 2

1

2
2

2
#

"
"

# # #
"

#

"

# #

,

,

, , ,

, , ,

,

,

, ,

, ,1 12+

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

= +
−B

By b
N N

K K

.       (2.4-2) 

Similarly, we have K K K K
′ = +y Ay a .                                                                                                               (2.4-3) 

The formulation for differential equation (2.4-1) in the Hadamard product form is stated as 

( ) ( ) ( )ψ K K D
KK K K K D

y y By b A y a= + + + + =1 0
2

.                                               (2.4-4) 

By using the SJT product, we have 
{ } ( ) ( )∂ψ
∂

K
K

K K K K Ky
y

I By b B y A Ay a= ◊ + + ◊ + ◊ +2 .                                                       (2.4-5) 

The solutions for the linear differential equation 
( ) ( )′′ = = =y y y0 0 1 1 2; ,                                                                                            (2.4-6) 

are adopted as the initial guess values of the present Newton-Raphson iterative scheme. We obtains the 
convergence results with four iterations. The convergence criteria is the maximum absolute residual of 
Eq. (2.4-4)  is less than or equal to 10-10.  The maximum relative error of the DQ results is less than 0.001 
when using six Chebyshev points. It is observed that Eqs. (2.4-4) and (2.4-5) give explicit matrix form for 
the nonlinear computation of this example. Thus, the application of the DQ method is simplified. It should 
be noticed that the computational effort for each SJT product in Eq. (2.4-5) is only 16 multiplications. 
 
Example 2. ( ) ( ) ( )′′ + ′ + = = =y y y ysin ; ,1 0 0 0 1 1                                                    (2.4-7) 

The DQ formulation for this differential equation can be expressed in the Hadamard matrix function form 
( ) ( )ψ K KK K K KDy By b A y a= + + + + =s i n 1 0,                                                      (2.4-8) 

where A B, , 
Ka  and 

K
b  are obtained in the way similar to the above example. The Jacobian derivative 

matrix can be computed by 
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( ) ( )∂ψ
∂

K
K

K K KDy
y

By A Ay a= + ◊ +cos .                                                                             (2.4-9)   

The solutions for linear differential equation 
( ) ( )′′ + = = =y y y1 0 0 0 1 1; ,                                                                                     (2.4-10)  

are chosen as the initial guess for the iteration. We obtain convergence results no more than four iterations 
when the maximum absolute residual of equations (2.4-8) is less than or equal to 10-10. The results in two 
successive iterates agree to six significant digits. 
 
As is shown in these two examples, the DQ method is very easy to be used for nonlinear problems by 
using the present Hadamard matrix function, Hadamard product, and SJT product approaches. 
 
Example 3. ′ − =−y e y 0;      y(0)=0,   0≤x≤1                                                             (2.4-11)  

The DQ formulation for this case is expressed as 
( ) ( )ϕ K K D K
y A y e y= − =− 0                                                                                          (2.4-12) 

The Jacobi matrix is given by 
{ } ( )ψ ϕ = + ◊ −A I e yD K

                                                                                                   (2.4-13) 

Fast convergence and excellent results are again achieved by using the Newton-Raphson method as in the 
examples 1 and 2. Six Chebyshev grid points is used as sampling points, the relative error is no more than 
0.001 with three iterations. In sections 4.5 and 5.6 there are several more complex examples using the 
Hadamard product and SJT product. 
 
2.5. Decoupling Computations 
It is a difficult task to compute the nonlinear coupling differential equations. Chen and Zhong (1996c) 
pointed out the decoupling computation in the DQ method by using the Hadamard product and SJT 
product. In this section we will introduce concept of the relative Jacobian derivative matrix among 
different dependent variables to simplify decoupling computations, and discussions are given on how to 
apply the Hadamard product and SJT product to decouple the nonlinear coupling formulation-H’s. The 
following example will help to illustrate and clarify the present technique. 
 
The example is geometrically nonlinear bending of the simply-supported beam under uniformly 
distributed loading. The normalized governing equations are given by 

d W
dX r l

dU
dX

dW
dX

d W
dX

qL
EI r

4

4

2 2

2

41 1
2

− +
⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ =                                                        (2.5-1a) 

1
0

2

2

2

2r L
d U
dX

dW
dX

d W
dX

+ = ,                                                                                                (2.5-1b) 

where A=area of beam cross section, E=modulus of elasticity, I=centroidal moment of inertia of beam 
cross section. The variables have been normalized in the form: 

X
x
L

r
I
A

W
w
r

U
u
r

= = = =, , ,2 .                                                               (2.5-2) 

In terms of the DQ method, we have the formulation-H: 

( ) ( )D W
rL

A U A W B W
qL
rEIw u w w

K K K
D

KD
+ −
⎡
⎣⎢

⎤
⎦⎥

=
1 1

2
2

4

                                                                 (2.5-3a) 
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( ) ( )1
0

r L
B U A W B Wu w w

K K
D

K
+ = ,                                                                                (2.5-3b) 

where Au and Bu denote the DQ weighting coefficient matrices for the 1st and 2nd order derivative of 
function U(x); Aw, Bw  and DW  for the 1st, 2nd and 4th order derivatives of function W(x). Note that the 
related boundary conditions have been applied to these weighting coefficient matrices by means of the 
technique proposed by Wang and Bert (1993a). The vector 

K
W   is chosen as the basic variable in the 

present computation. From  Eq. (2.5-3b), we have 
( ) ( )K K

D
K

U r LB A W B Wu w w= −                                                                                         (2.5-4a) 

( ) ( )( )∂
∂

K
K

K KU
W

r L A B W B A Wu w u w= − ◊ + ◊ ,                                                                        (2.5-4b) 

where 
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                                                                                        (2.5-5) 

is the Jacobian derivative matrix of vector 
K

U  with respect to vector 
K

W . The variable vector 
K

U  and its 
Jacobian derivative matrix can be obtained from variable vector 

K
W  by using the above equations. The 

introduction of the relative Jacobian derivative matrix 
∂
∂

K
KU

W
 is a key idea to simplify decoupling 

computations, especially for equations with many coupled dependent variables. We choose equation (2.5-
3a) as the basic equation, namely, 

( ) ( ) ( )φ
K K K K

D
KD

W D W
r L

A U A W B W
qL
r EIw u w w= + +

⎡
⎣⎢

⎤
⎦⎥

−
1 1

2
2

4

                                (2.5-6a) 

( ) ( ) ( )∂φ
∂

∂
∂

K
K
K

K K K K D

W
D

rL
A

U
W

A A W B W B
rL

A U A Ww u w w w w u w= + + ◊
⎡

⎣⎢
⎤

⎦⎥
◊ + ◊ +

⎡
⎣⎢

⎤
⎦⎥

1 1 2
.                  (2.5-6b) 

The Newton-Raphson iteration equation for this case is 

( ) ( )
( )

( )( )K K
K
K

K
W W

W
W

Wk k

k

k+

−

= −
⎡

⎣
⎢

⎤

⎦
⎥1

1

∂φ
∂

φ .                                                                         (2.5-7) 

The numerical results are obtained by using eleven Chebyshev grid points. The solutions for linear 
simply-supported beam are used as the iterative initial guess. Table 2-I displays the iteration number, 
linear and nonlinear solutions, and relative derivation for various loading q, where relative derivation is 
defined as (Nonlinear - Linear)/Nonlinear. 
 
As can be observed, the iterative times increases as the loading increases. Compared with the results of 
linear modeling, the deflection W is decreased due to the consideration of the nonlinearity under large 
deflection situation. The results agree well with the theoretical analysis for this problems (Wang, 1969; 
Houlden, 1973). But the analytical solutions for the governing equation (2.5-1a, b) are not available in the 
literature. Note that the number of nonlinear algebraic equations are reduced from 2N×2N to N×N by 
means of decoupling. Therefore, the computational effort and storage requirements for this case are 
reduced by about 87.5% and 75%, respectively. It is also observed that the Newton-Raphson method still 

批注 [JM1]:  
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converge even if the initial linear solutions diverge greatly from the resulting nonlinear results. It is 
concluded that the formulation-H for nonlinear simultaneous partial differential equations can be easily 
decoupled by using the Hadamard product and SJT product techniques. More complex problems can also 
be decoupled in the same way to achieve the computational reduction, for example, geometrically 
nonlinear bending of plates which will discussed in later section 4.5.  
 
Table 2-1. DQ solutions of a geometric nonlinear simply-supported beam under uniformly  

distributed loading 
Loading (qL4/EIr) Iterative number linear Nonlinear Relative deviation 

1 1 0.0130208 0.0130202 -4.29E-5 
5 2 0.06510 0.06503 -1.07E-3 

10 2 0.13021 0.1297 -4.25E-3 
30 3 0.3906 0.3771 -0.03596 
50 3 0.6510 0.5972 -0.09024 
100 4 1.302 1.027 -0.2675 
150 5 1.953 1.341 -0.4566 
200 5 2.604 1.587 -0.6408 
300 6 3.906 1.966 -0.9865 
500 7 6.510 2.501 -1.603 

1000 8 13.021 3.445 -2.893 
5000 12 65.104 6.0597 -9.744 

 
2.6. On Simple Iteration Method 
The Newton-Raphson method may be the most important numerical technique for the solution of 
nonlinear algebraic equations (Ortega and Rheinboldt, 1970), but sometimes the simple iteration method, 
which is also named as successive substitution method (Finlayson, 1980) or Picard method (Wright, 
1964), is a very useful technique for the same task due to its simplicity. The purpose is of this section to 
show its ease and efficiency in solving the nonlinear formulation-H by means of the simple iterative 
method. The concept of the Hadamard power, which is referred to in section 2.2, is used in the present 
work. 
 
Consider the set of nonlinear algebraic equations 
( )F x = 0                                                                                                                          (2.6-1) 

where x denotes the unknown vector. Generally, by adding x to the left side of equation (2.6-1), we can 
obtain the standard iterative scheme: 

( ) ( ) ( )( )x x F xk k k+ = +1 α                                                                                                  (2.6-2) 

where the superscript (k) means the iterate number. α is the iteration control parameter. After the initial 
guess x(0) is given, equation can be iterated repeatedly to obtain x(1), x(2) until x(n), which satisfies the 
required convergence accuracy. However, it is noted that α often is chosen to be very small value to 
assure the convergence, which leads to the low efficiency in the simple iteration method. Therefore, the 
utility of the simple iteration method is limited. The iteration equation (2.6-2) is named as the standard 
iteration equation in the simple iteration method in the later discussion, since this iteration equation is 
easily obtained and widely used in practice. In general, it is a very difficult task to construct iteration 
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equations of other forms in applying the simple iteration method. However, equation (2.6-2) may be not 
the most efficient iteration scheme for the problem of interest. So the construction of the iterative equation 
is a key to improve the efficiency of the simple iteration method. The present study focuses on this 
problem.  
 
The Hadamard power and function provide a simple and effective approach to construction of  the 
iteration formulas in the solution of the formulation-H. The following example can illustrate our idea 
more clearly. Considering differential equation  

( ) ( )′′ + ′ + = = =y y y y y2 1 0 0 1 1 2, , ,                                                (2.6-3) 

its formulation-H using the DQ method is 

( ) ( ) ( )φ K K D K K K K D
y y By b A y a= + + + + =

2
1 0.                                                             (2.6-4) 

where 
Ka , 
K

b , A  and 
K

B  are defined as in equations (2.4-2) and (2.4-3). We can construct six iteration 
equations for formulation (2.6-4). 

1. ( ) ( ) ( )K K K K K D K K K K D
y y y y y By b A y a= + = + + + + +αφ α

2
1                                 (2.6-5a) 

2. ( )[ ] ( ) ( )K K K D K KD D
y A y a By b= − − + +

−
1

2 1
                                                         (2.6-5b) 

3. ( )( ) ( )[ ]K K K D
KD Dy B A y a y b= − − + −− −1 2 11                                                           (2.6-5c) 

4. ( )( )[ ]K K D
KK K KD

y A y By b a= − − + −−1 0 5
1

.
                                                                     (2.6-5d) 

5. ( ) ( ) ( )( )[ ]K K D K D
KK K K KD D Dy A a y By b Ay a= − + − − −− −1

2
11 1 2 2                         (2.6-5e) 

6. ( ) ( )[ ]K K D
KK K K D K K D D

y A y By b Ay a a= − + − − −−1 2 0 5
1 2

.
                                  (2.6-5f) 

Equation (2.6-5a) is the standard iteration equation for this case, other five iteration equations apply the 
Hadamard power. It is noted that the present procedure is very simple and similar to handling nonlinear 
scalar function. The solutions of linear equation 

( ) ( )′′ = = =y y y0 0 1 1 2, ,                                                                           (2.6-6) 

are used as the initial guess. The iteration using equation (2.6-5d) and (2.6-5f) is terminated due to 
occurring square root of real negative. Eqs. (2.6-5b) and (2.6-5e) do not converge. Only Eqs. (2.6-5a) and 
(2.6-5c) is convergence, but it is noted that the equation (2.6-5a) converges only when α is less than 0.01. 
In order to compare, table 2-2 gives the number of iterations taken in the Newton-Raphson and the simple 
iteration method under the same convergence criterion. We choose here the maximum successive relative 
error as the convergence criterion, which is defined as 

( )
( ) ( )

( )err y
y y

yi
i

k
i

k

i
k=
−+

+

1

1 .                                                                                                      (2.6-7) 

The conventional relative error, which is defined as the ratio of the absolute error to the absolute 
analytical solutions, may be not a good convergence criterion for the present purpose, since the accuracies 
of the numerical results depend not only on the iteration solution procedures but on the DQ method itself. 
In fact, the conventional relative errors in this case are basically invariable when the successive relative 
error is no less than 10-5. Therefore, higher requirement for successive relative error is only to compare 
the convergence rate without other practical significance. Note that the solutions of equation (2.6-6) are 
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also employed as the initial guess in the Newton-Raphson method and six Chebyshev grid points are used 
as sampling points. 
 
As can be seen from table 2-2, there is not obvious difference in the convergence speed of the Newton-
Raphson method and iteration equation (2.6-5c) under lower convergence criterion. However, the 
difference becomes apparent when very small successive relative error are required. The reason is that the 
convergence is linear in the simple iteration method and, by contrast, quadratical in the Newton-Raphson 
method. Although the Newton-Raphson method has faster speed of convergence, the method requires 
computing the Jacobian derivative matrix and its inverse. Therefore, as was pointed out by Finlayson 
(1980), the simple iteration method may be preferred if the method is effective for the considered cases. 
Based on the tradeoff between computational effort and accuracy, at least in this case the simple iteration 
method proves more efficient. On the other hand, we can observe that iteration equation (2.6-5a) has very 
slow speed of convergence. Thus, it is not practical.  
 
The given example shows that, by using the Hadamard power, the construction of the iteration formulas in 
the simple iteration method becomes a very simple task for the solution of the formulation-H. The SJT 
product presented in section 2.3 can be applied to evaluate the Jacobian matrix of these iteration equations 
and determine which iteration equation may be the effective in the simple method in advance by using 
certain matrix norm.  
 
Finding good starting guess is a difficult task either in the simple iteration method or in the Newton-
Raphson method. However, the simple iteration method is semilocal convergence or even global 
convergence for convex function, while the Newton-like methods are always local convergence. Thus, the 
simple iteration methods has more large convergence domain than the latter, namely, the former is more 
easier to seek the initial guess. This is a very important factor considered in many practical uses. In 
addition, the Newton iteration equation in the Newton-Raphson method are sometimes ill-conditioning 
and thus affect the convergence of the solution procedure. For these reasons, the simple iteration method 
become very competitive to the Newton-Raphson method.  
 
Table 2-2. Comparison on iterative numbers between the Newton-Raphson and simple iteration 

methods 

Methods Maximum successive relative error∠ 
  10-3                   10-5                    10-7                    10-9             10-11 

Newton-Raphson 3 4 4 4 5 
Eq. (2.6-5c) 4 7 10 13 16 
Eq. (2.6-5a) 20 111 214 317 420 

 
2.7.  Approximate Formulas for Computing Inverse of Jacobian Matrix 
Systems of nonlinear algebraic equations are usually solved by the simple iteration and Newton-Raphson 
methods. In section 2.6 we reviewed these two methods in the solution of nonlinear formulations in 
Hadamard product form based on the criteria of computational efficiency, choice of starting guess and 
employing simplicity. The simple iteration method has the major advantage of simplicity in that no 
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Jacobian derivative matrix need be calculated and no matrix need be inverted. In section 2.3 the 
computing effort in the Jacobian evaluations has been minimized to O(n2) multiplications by using the 
SJT product. On the other hand, the matrix inversion may take considerable computation time for large 
problem (e.g. n3/3 multiplications and divisions) and even verge in some unfavorable situations towards 
impossibility due to ill-conditioning of large Newton iteration equations. To avoid the inversion 
computation, the simplified Newton-Raphson method and modified Newton-Raphson method have been 
well developed. However, the rate of convergence is affected in these variants of the Newton-Raphson 
method. The ill-conditioning of the Newton iteration equations is usually alleviated by introducing a 
damping factor, namely, so-called the Levenberg-Marguardt method. However, the choice of damping 
factor may not be an easy task. The trade-off among these Newton-like methods involves the number of 
iterations and the work per iteration. In this study, we hope to present a simple approximate formula for 
computing the inversion of the Jacobian matrix. Some numerical comparisons are also provided. The 
merits and drawbacks of the formula are discussed in the closing part.  
 
First, we give the following two theorems (Cheng, 1989): 
Theorem 2.7.1: If matrix A is convergence matrix, e.g. A ≺ 1,  then 

( )I A I A A A m− = + + + + +
−1 2 " ".                                                                     (2.7-1) 

where I is unite matrix,   represents certain norm of matrix. 

 
Theorem 2.7.2: If A ≺ 1, then   

( ) ( )I A I A A A
A

A
m

m

− − + + + + ≤
−

−
+

1 2

1

1
" ,                                                   (2.7-2) 

where m is non negative integral. The theorem describes the error for an approximation of        (I-A)-1. 
 
The Newton-Raphson iteration formula can be in general expressed as 

( )x x A f x
A A A

k k k k

k k k

+
−

+

= −
= +

⎧
⎨
⎩

1
1

1 δ
                                                                                                (2.7-3) 

where Ak is the Jacobian matrix, the superscript k denotes the iterative number, f(x) is the nonlinear 
algebraic equations, x is the desired vector.  
 
According to the above theorems 2.7.1 and 2.72, we have 

( )A A A A A A Ak k k k k k k+
− − − − −= + ≅ −1

1 1 1 1 1δ δ                                                                               (2.7-4) 

if A Ak k
−1δ < 1 and  

( ) ( )A A A A A A
A A A

A Ak k k k k k

k k k

k k

+ − − ≤
−

− − − −

− −

−
δ δ

δ

δ
1 1 1 1

1 1 2

11
.                                           (2.7-5) 

Applying the formula (2.7-4), we can directly computed inverse of the Jacobian matrix by using ordinary 
matrix product. In what follows we give several examples to demonstrate the effectiveness of the 
proposed formula.  
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Example 1. 
3 4 1

8 1

2 2

3 3

x y
y x

+ =
− =

⎧
⎨
⎩

                                                                                         (2.7-6) 

 

Example 2. 

x x x
x x x x x

x x x

1 2
2

3
2

1 2 1 3 1

2 3 1

5 7 12 0
3 11 0

2 40 0

− + + =
+ − =

+ =

⎧

⎨
⎪

⎩⎪
                                                                   (2.7-7) 

 
Example 3. ( ) ( )y y y y y′′ + ′ + = = =2 1 0 0 1 1 2; , .                            (2.7-8) 

 
Examples 1 and 2 are often used as numerical examples for the Newton-Raphson method in the standard 
numerical analysis or algorithms program textbooks, while example 3 is also used in section 2.4 and, thus, 
the detailed solution procedures are omitted here. These test problems are chosen just for simplicity and 
are not expected to be adequate in all circumstances. 
 
The initial guess for example 1 is chosen as {-0.5, 0.25}. Under the same convergence criteria of 
max{⎢fi(x, y)⎢}<10-7, only two iterations converge in the Newton-Raphson method using either the 
present approximate formula or not. The simplified Newton-Raphson method take four iterations to 
converge.  For example 2, the converge criteria requires the maximum residuals of equations less than 10-

8. The iteration number in the traditional, simplified, and present Newton-Raphson methods is 2, 4 and 7, 
respectively. Example 3 uses the same criteria as example 2 and six Chebyshev grid points are exploited 
as sampling points in the DQ method. The iteration number in three methods is 5, 6 and 11, respectively. 
According to these results, we can make the following conclusions.  
 
At least the proposed approximate formula is applicable for the above examples. the convergence speed 
and accuracies of the Newton-Raphson method using the present approximate formula are affected to 
some extent. The simplified Newton-Raphson method has the slowest rate of convergence due to the fact 
that the method repeats using the same Jacobian matrix and its inverse. The reasonable choice of these 
methods in practice must consider the convergence speed, stability, and computational effort. The 
computing effort using the approximate formula is fairly higher in comparison to the conventional 
inversion computations such as the Gauss elimination or Gauss-Jordan methods since the present 
approach involves the twice matrix multiplications, but it does provide the salient significant features as 
stated in following three respects.  
 
First, the approximate formula can circumvent effect of the possible ill-conditioning of the Newton 
iteration equations on the conventional inverse computation such as the Gauss elimination and Gauss-
Jordan methods. Such situations are often encountered in practice. Second, It is known that the finite 
element and finite difference methods give rise to large sets of algebraic equations, and their solutions 
usually require inverting a matrix, or at least solving a large set of equations with a great many of zero 
elements. The solution of such equations, especially for  large nonlinear systems, should utilize the zeros, 
otherwise, the computing cost will be unnecessarily very high. Therefore, the maintaining sparseness of 
coefficient matrix of such equations is of vital importance for the computational efficiency. The 
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applications of the approximate formula can easily maintain the sparseness of coefficient matrix. Third, 
the Newton-Raphson method using the present approximate formulas involves a great deal of matrix 
multiplication, while the operation of ordinary matrix product is very well suited for employing parallel 
treatment. Therefore, the computing efficiency can be improved in the Newton-Raphson method using the 
approximate formula by means of the parallel computations. Based on these considerations, it is 
conclusions that the presented approximate formula may be useful for ill-conditioning, large sparse 
systems and especially suitable for parallel computations. The formulas may be very efficient when 
A Ak k

−1δ << 1.  

 
From the standpoint of practical applications, the present study is rather preliminary. It is difficult to come 
to any general conclusion only from these examples, more experiences are required to determine the 
relative merits of the formula. The general applicability and efficiency of the formula is a current subject 
of further research. 
 
2.8. An Approach for Simplifying Some Nonlinear Formulations 
Following the idea of Quan et al. (1989a), Shu et al. (1992b), and Bert et al. (1993), we derive the DQ 
method from Lagrangian interpolation formula.  

Let W x x Wj j
j

N
2 2

1
( ) ( )=

=
∑ φ ,                                                                                        (2.8-1) 

where W W xj j= ( ) ,   φ j x( )   are the Lagrangian interpolation basic functions. 

( )W
dW
dx

x
x

W A Wi x i

i j

j
j

N

i j j
j

N
2

2
2

1

2

1

′
= = =

= =
∑ ∑

∂φ
∂
( )

,                                             (2.8-2) 

where Aij are the DQ weighting coefficients for the 1st order derivatives. Thus, 
 

WW A Wi i ij j
j

N′ =
=
∑1

2
2

1

.                                                                                                            (2.8-3) 

In matrix form, we have 

[ ]{ }W W A Wj j j
′⎧⎨⎩
⎫⎬⎭
=

1
2

2                                                                                                       (2.8-4) 

Therefore, the nonlinear term ww ′  can be approximated by the DQ weighted sum of the square of  
function values at all discrete grid points. The conventional DQ approximation expression for ww ′ is  

( ){ }WW W AW W A Wi i
i

i ij j
j

N′ = =
=
∑

K
D

G

1

                                                                                  (2.8-5) 

Obviously, Eq. (2.8-3) is a simpler formulation than Eq. (2.8-5) due to the elimination of cross nonlinear 
algebraic term ( )W W i ji j ≠ . Similarly, we have 

{ } [ ]{ }W W A Wj j
2 31

3
′ =                                                                                                         (2.8-6) 

{ } [ ]{ }′ + ′ =W W W B Wj j j j
2 21

2
                                                                                                (2.8-7) 

where [B] denotes the DQ weighting coefficient matrix for the 2nd order derivatives. Generally, if the 
nonlinear operator NL{ } can be expressed as 

{ } { }{ }NL L= φ                                                                                                               (2.8-8) 
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where L{ } is a linear operator, φ{ } is a nonlinear operator but simpler than NL{ }. The DQ or DC 
approximation of operator NL{ } can be given by 

{ } ( )i ij j
j

N

NL W x Q W( ) =
=
∑ φ

1

                                                                                                (2.8-9) 

where Qij‘s are the DQ weighting coefficients for linear operator L{ } and can been obtained by the sum 
of weighting coefficients of all single derivatives in linear operator L{ }. Since the nonlinear operator φ{ } 
is simpler than NL{ },  the corresponding DQ formulation is simpler and easier to be handled. It should be 
stressed that the boundary conditions in the present technique be converted into those only involving 
operator φ{W} before applying the approach, proposed by Wang and Bert (1993a), for implementing 
multiple boundary conditions. This conversion procedure is usually easy to be finished. If not using Wang 
and Bert’s approach, the present DQ method can be used like the conventional DQ method, but the 
formulations are simplified greatly.  
 
The nonlinear Boussinesq equations (Dodd et al., 1982) for shallow water waves can be stated as: 
∂
∂

∂
∂
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∂

∂
∂ ∂

∂
∂

∂
∂

∂
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2 .                                                                                (2.8-10) 

Considering u u
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u
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∂
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∂
∂

∂
∂

∂
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+ = , the DQ formulation for Eq. (2.8-10) can be 

expressed as 
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,                                      (2.8-11) 

where g and H are constants. [ ]Au 2 , [ ]Ah , [ ]Au  and [ ]Auh  are the DQ weighting coefficient matrices 

modified by the boundary conditions for the corresponding function u2, h, u and uh, respectively. It is 
observed that equation (2.8-11) eliminates the cross nonlinear algebraic terms in the conventional 
nonlinear formulations. Therefore, the requirements of virtual memory and computing effort are reduced 
greatly. This will  be significant in practice, especially for some on-line computations. The following 
gives a numerical comparison in detail. Considering the differential equation  (example 8 in Quan and 
Chang (1989)).  

( ) ( )U UU U U Ux xx xx, , , , ,2 0 0 0 1 1+ + = = = .                                                              (2.8-12) 

First, by using the standard procedure, we have 

( ) ( ) ( )ψ
K K K K

D
K K K KD

U A U a U B U b B U bu u u= + + + + + =
2

0 .                            (2.8-13) 

Applying the Newton-Raphson method to solve the above nonlinear matrix equation, we can obtain the 
Jacobian derivative matrix by the following formula: 

{ } ( ) ( )∂ψ
∂

K
K

K K K K KU
U

A A U a B U I B U b Bu u u u u= ◊ + + ◊ + ◊ + +2 .                                     (2.8-14) 

In contrast, we applying the technique presented to this example. Eq. (2.8-12) can be simplified 
1
2

0
2 2

2

2

2

d U
dx

d U
dx

+ = .                                                                                                          (2.8-15) 
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The corresponding boundary conditions are 
( ) ( ) ( ) ( )U U and U U0 0 1 1 0 0 1 12 2= = = =, , .                                                            (2.8-16) 

The second derivatives of functions U2 and U can be approximated by the DQ method as 
d U
dx

B U b and
d U
dx

B U b
u u u u

2 2

2
2

2

22 2

K
K K

K
K KD= + = +, .                                           (2.8-17) 

Generally, the modified DQ weighting coefficient matrices for functions U2 and U are different, but for 
this case, B

u 2  and Bu  for function U2 and U are the same due to the same boundary conditions by chance. 

We have the DQ formulation for Eq. (2.8-15) 

( )ψ
K K K K KDU B U B U b b

u u u u= + + + =
1
2

02 2
2 .                                                         (2.8-18) 

The Jacobian derivative matrix can be given by 
( )∂ψ

∂

K
K

KU
U

U B BT

u U= ◊ +2 .                                                                                             (2.8-19) 

Note that the premultiplying SJT product proposed in section 2.3 is used here. Eqs. (2.8-18) and (2.8-19) 
are obviously simpler than Eqs. (2.8-13) and  (2.8-14).  
 
The solutions for the linear differential equation 

( ) ( )U U Uxx, ; ,= = =0 0 0 1 1                                                                                      (2.8-20) 

is adopted as the starting guess values of the Newton-Raphson method. The Jacobian derivative matrix is 
computed by Eqs. (2.8-14) or (2.8-19), and the convergences are achieved with four iterations. The six 
grid points are used for this case. Results are displayed under the column eu   of table 2-3. The eu is defined 
to be the relative errors in computation, i.e., the ratio of the absolute error to the absolute analytical 
solutions.   
 
As is observed, the technique presented in this section obtains more accurate DQ results than the 
conventional procedure. In addition, the computing effort and storage requirements are also reduced 
greatly. In conclusion, a simple technique in the DQ method is presented to eliminate or reduce the cross 
nonlinear algebraic terms in the resulting DQ formulations for some differential operators and therefore 
computational efficiency of the DQ and DC methods can be improved significantly. 

 
Table 2-3. Comparison of the Numerical Results with the Analytical Solutions 
 
 

Conventional approach  
                   eu 

     Present approach   
                  eu 

x2               7.16E-4               5.93E-8 
x3               1.37E-4               3.60E-7 
x4               7.76E-5               2.36E-7 
x5               5.25E-5               3.30E-7 

 
2.9. Nonlinear Computations of Other Numerical Methods 
Based on the foregoing work, this section places its emphasis in the applications of the Hadamard product 
and SJT product techniques for general nonlinear numerical computations. The comparison of the 
advantages and disadvantages among a varity of  the numerical methods is not the purpose of this study.  
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In section 2.9.1 the Hadamard product is extended to the nonlinear computations of the finite difference 
(FD), collocation and pseudo-spectral methods. The nonlinear formulation in the Hadamard product form 
for these numerical methods can be easily obtained and has a explicit matrix form. The SJT product is an 
effective approach to  compute the Jacobian matrix for the formulation-H. For the nonlinear problems 
with varying parameters, we derive the general formulation-S in the ordinary and Kronecker product. 
Furthermore, the Hadamard product is also first applied to the nonlinear computations of the method of 
weighted residuals (MWR) as well as the least square, Galerkin, finite element (FE), boundary element 
(BE) and spectral methods. The same formulation-S in the ordinary and Kronecker product form is also 
obtained as in the foregoing pseudo-spectral method, etc. Due to special importance of the FE method in 
practice, more detailed discussion is also devoted to the FE method. Finally, some conclusions are 
obtained based on the present work. It is believed that the formulation-S is a standard formulation form 
for nonlinear numerical computations of general purpose. 
 
In section 2.9.2 we will give direct computing formulas for the Jacobian matrix of the formulation-H and -
S. Section 2.9.3 deals with the perturbed error analysis of the formulation-H and -S. 
 
2.9.1. Formulation-H and Formulation-S 
2.9.1.1. Nonlinear formulations in the finite difference, differential quadrature, differential                          

cubature, collocation and pseudo-spectral methods 
The work deals with the application of the Hadamard and SJT product for the general nonlinear numerical 
computations. The linear differential operator can be approximated by the finite difference, DQ and DC 
methods (Chen et al., 1996c, e, f) in the matrix form as  

[ ] { }∂
∂

m
j

m

n

x
m

n n j n

W
x

D W
⎧
⎨
⎩

⎫
⎬
⎭

=
×

× ×
1

1

( ) ,                                                                                    (2.9-1) 

where n is the number of interior discrete points. Dx
(m) is the FD, DQ or DC coefficient matrices for the 

mth order derivatives. {Wj} is the vector composed of unknown function values. Unlike the FD, DQ and 
DC methods, the pseudo-spectral and collocation (Canuto et al., 1988; Wright, 1964; Lapidus et al., 1985) 
methods use the spectral variables as the basic unknowns instead of the unknown function values. 
Therefore, a slightly different approximate formula is given for the collocation and pseudo-spectral 
method, namely, 

[ ] { }∂
∂

m
j

m

n

x
m

n n j n

W
x

Q H
⎧
⎨
⎩

⎫
⎬
⎭

=
×

× ×
1

1

( ) ,                                                                                   (2.9-2) 

where Q is the matrix representation of the collocation discretization of corresponding operator, Hj’s are 
the unknown spectral vector. For simplicity, in the latter discussion we assume that the related boundary 
conditions have been directly incorporated into the above FD, pseudo-spectral, DQ and DC weighting 
coefficient matrices. Therefore, the boundary conditions are no longer considered separately. 
 
We first consider quadratic nonlinear problems, the FD, DC and DQ formulations can be expressed in the 
Hadamard product form as 

 ( ) ( )∂
∂

∂
∂

p

p

q

q x
p

y
qW x y

x
W x y

y
D W D W

( , ) ( , ) ( ) ( )=
K
D

K
.                                                     (2.9-3) 

Proof for Eq. (2.9-3) is straightforward. This is a key step in the latter analysis. Similarly, we have the 
formulation in the pseudo-spectral and collocation method: 
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( ) ( )∂
∂

∂
∂

p

p

q

q x
p

y
qW x y

x
W x y

y
Q H Q H

( , ) ( , ) ( ) ( )=
K
D

K
 .                                                    (2.9-4) 

In the following we first discuss the FD, DQ and DC methods and the conclusions obtained are obviously 
applicable for the collocation and pseudo-spectral methods.  
 
The FD, DC and DQ formulations for the linear and quadratic nonlinear differential operators with 
varying parameter can be stated as 

( ) ( ) ( ){ } ( )( )c x y
U x y

x
c x y D U

p

p j j x
p,

,
,

∂
∂

= D
K

                                                     (2.9-5a) 

and 

( ) ( ) ( ) ( ){ } ( )( ) ( )( )c x y
U x y

x
U x y

y
c x y D U D U

p

p

q

q j j x
p

y
q,

, ,
,

∂
∂

∂
∂

= D
K
D

K
.      (2.9-5b) 

The Kronecker product of  matrices has the following property (Lancaster and Timenetsky, 1985) 
( ) ( ) ( )( )AB CD A C B D⊗ = ⊗ ⊗ .                                                                           (2.9-6) 

Applying the above property, SJT product and equation (2.2-1d) of theorem 2.2.1 in section 2.2, we have  

( ){ } ( ) ( ){ }( )c x y D U D c x y Uj j x
p

x
p

j j, ,( ) ( )D
K K

= ◊                                                    (2.9-7) 

and 

( ){ } ( ) ( ) ( ){ } ( ) ( )( ) ( ){ }
( )( )( ) ( )( ) ( ){ }( )( )

c x y D U D U c x y E D U D U E c x y

E D D U U E E D D c x y U U

j j x
p

y
q

j j n
T

x
p

y
q

j j

n
T

x
p

y
q

n
T

x
p

y
q

j j

, , ,

,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

D
K
D

K
D

K K

D
K K K K

= ⊗ =

⊗ ⊗ = ⊗ ◊ ⊗

1

1

 

(2.9-8) 
where E1 =1, n is the number of interior discrete points. Eqs. (2.9-7) and (2.9-8) isolate the FD or DQ 
coefficients from the unknown linear and nonlinear variables in the formulations. 
 
For the general purpose, the quadratic nonlinear partial differential equation is given as 

( ) ( )a
U

x y
b x y

U

x y
c x y

U

x y

U

x y
Ckl

k l

k l
k l

N

kl

k l

k l
k l

N

kl

k l

k l

i j

i j
i j
k l

N∂
∂ ∂

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂

( )

,

( )

,

( ) ( )

,
,

, ,
+

=

+

=

+ +

=
=

∑ ∑ ∑+ + + =
0

1

0

2

0
0

3

0             (2.9-9) 

where C is constant, akl is the constant coefficients. The above equation covers most of the quadratic 
nonlinear governing equations in practice.  
 
The FD, DQ or DC formulation for the above differential equation can be expressed as 

( ){ } ( )

( ){ } ( ) ( )

a D U b x y D U

c x y D U D U F

kl xy
k l

k l

N

k l j j xy
k l

k l

N

k l j j xy
i j

i j
k l

N

xy
k l

( )

,
,

( )

,

,
( )

,
,

( )

,

,

+

=

+

=

+

=
=

+

∑ ∑

∑

+ +

+ =

K
D

K

D
K
D

K K
0

1

0

2

0
0

3

0
,                                               (2.9-10) 

where 
K

F  is constant vector. The formulation (2.9-10) belong to formulation-H form.  Applying equations 
(2.9-7) and (2.9-8), we have 

( )L U Q U U Fn n n n× ×
+ ⊗ + =

K K K K
2 0,                                                                       (2.9-11) 

where  



CHAPTER  2. SOME BASIC ASPECTS ON NONLINEAR COMPUTATIONS 

 28

{ }

( )( ) { }

L a D D b x y C

Q E D D c x y C

n n k l x y
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k l

N

x y
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N
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n n n
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= + ◊ ∈

= ⊗ ◊ ∈

∑ ∑

∑
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,

( )

,

( ) ( )

,
,

( , )

( , )

0

1

0

2

0
0

2

2
.                            (2.9-12) 

The above equation has formulation-S form. We can easily obtain formulation-H and formulation-S in the 
pseudo-spectral and collocation methods similar to Eqs. (2.9-10) and (2.9-11) in the same way, namely, 

( ){ } ( )

( ){ } ( ) ( )

a Q H b x y Q H

c x y Q H Q H C

k l x y
k l

k l

N

k l j j x y
k l

k l

N

k l j j x y
i j

i j
k l

N

x y
k l

( )

,
,

( )

,

,
( )

,
,

( )

,

,

+

=

+

=

+

=
=

+

∑ ∑

∑

+ +

+ =

K
D

K

D
K
D

K
0

1

0

2

0
0

3

0
      (2.9-13) 

and 

( )L H Q H H Fn n n n× ×
+ ⊗ + =

K K K K
2 0 ,                                                                          (2.9-14) 

where the unknown spectral parameter vector 
K

H  replaces the unknown function value vector 
K

W  in Eqs 
(2.9-10) and (2.9-11).  For the cubic nonlinear problems, we have similar general matrix formulation-S 
for the FD, DC and DQ methods: 

( )L U R U U U Fn n n n× ×
+ ⊗ ⊗ + =

K K K K K
3 0 ,                                                             (2.9-15) 

where L∈Cn×n and R∈C n n× 3

. For higher order nonlinear problems, the formulations can be easily 
obtained in the same way.  
 
As a example, we consider equations (2.5-1a, b) for geometrically nonlinear bending of beams given in 
section 2.5. After some simple manipulations of the formulations (2.5-3a, b) in Hadamard product form, 
we have 

( ) ( ) ( ) ( ) ( )D W A B A W B W A W A W B W
qL
EI rw u u w w w w w

K K
D

K K
D

K
D

K
+ −
⎡
⎣⎢

⎤
⎦⎥

=−1
41

2
,         (2.9-16) 

where r= I
A , radius of gyration of beam cross section, W=w/r. Au, Bu, Aw, Bw  and DW are  defined as 

in section 2.5. Furthermore, we obtain the formulation in formulation-S form: 

( )D W G W W W
qL
EI rw n n

K K K K
+ ⊗ ⊗ − =

× 3

4

0                                                              (2.9-17) 

where ( ) ( )G
r

E A B E A B E A A Bn
T

u u n
T

w w n
T

w w w= ⊗ − ⊗
⎛
⎝
⎜

⎞
⎠
⎟ ⊗

⎡

⎣⎢
⎤

⎦⎥
−1 1

22
1 . The problem is 

cubic nonlinearity. The solution of equation (2.9-17) is given in section 2.9.2.  
 
It is noted that the foregoing nonlinear formulations are expressed either formulation-H (Eqs. (2.9-10) and 
(2.9-12)) or formulation-S (Eqs. (2.9-11), (2.9-13) and (2.9-14)), respectively. In fact, except for the FD 
method, other above-mentioned methods has very close relation with the collocation method (Bellman, 
1973; Canuto and Hussaini, 1988; Chen and Zhong, 1996c). It is obvious that the formulation-H and 
formulation-S can be derived in the nonlinear computations of other numerical techniques in the family of 
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the collocation method, for example, the discrete ordinate (DO) method (Shizgal et al., 1984; Mansell et 
al., 1993), spline DQ method (Bellman et al., 1975), and quadrature element method (QEM), which was 
introduced by Striz, et al (1994b) as a kind of the DQ finite element method. 
 
2.9.1.2 Nonlinear formulations for the Galerkin, finite element, boundary element, spectral and 

least square methods 
1. On the method of weighted residuals 
It is known that the Galerkin, least square, finite element, boundary element and spectral methods can be 
derived form the method of weighted residuals (Lapidus and Pinder, 1982; Finlayson, 1972; Szabo and 
Lee, 1969; Huebner, 1975). Therefore, we first apply the Hadamard product to the nonlinear computation 
of the method of weighted residuals. In the MWR, the desired function φ in the differential governing 
equation 
{ }ψ φ − =f 0                                                                                                               (2.9-18) 

is replaced by a finite series approximation �φ ,  

φ φ= =
=
∑� C Ui i
i

N

1
                                                                                                       (2.9-19) 

where { }ψ  is a differential operator. Ui can be defined as the assumed functions and Cj‘s are the 

unknown parameters. In the Galerkin, finite element and spectral methods, the function Uj are usually 
chosen to satisfy certain boundary conditions of considered problems and are also variously denoted as 
shape, trial or basis functions. The approximate function �φ   is completely specified in terms of unknown 
parameters Cj. Substituting this approximation �φ   into the governing equation (2.9-18), it is in general 
unlikely that the equation will be exactly satisfied, namely, result in a residual R 
{ }ψ φ� − =f R                                                                                                               (2.9-20) 

The method of weighted residuals seeks to determine the N unknowns Cj in such a way that the error R is 
minimized over the entire solution domain. This is accomplished by requiring that weighted average of 
the error vanishes over the solution domain. Choosing the weighting function Wj and setting the integral 
of R to zero: 

{ }[ ]ψ φ� − = =∫∫ f W dD RW dDj jDD
0,            j=1,2,....,N.                                       (2.9-21) 

Equation (2.9-21) can be used to obtain the N unknown coefficients. This equation generally describes the 
method of weighted residuals. In order to state our idea clearly, considering the following the two-
dimensional linear and nonlinear differential operators with varying parameter: 

{ } ( )L c x y
x

p

p1 φ
∂ φ
∂

= ,                                                                                               (2.9-22a) 

{ } ( )L c x y
x y

p

p

q

q2 φ
∂ φ
∂

∂ φ
∂

= ,  .                                                                                         (2.9-22b) 

Substitution of Eq. (2.9-19) into Eqs. (2.9-22a) and (2.9-22b) and applications of equation (2.2-1d) in the 
theorem 2.2.1 result in  

{ } ( )L c x y
U

x
C

p
i

p

T

1
� ,φ

∂
∂

=
⎧
⎨
⎩

⎫
⎬
⎭
K

                                                                                    (2.9-23a) 
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     (2.9-23b) 

where 
K

C  is vector composed of  the unknown parameters, E1=1. Substituting the Eqs. (2.9-23a, b) into 
Eq. (2.9-21), we have 
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                        (2.9-24b) 

Applying the above results, we can easily obtain the formulation of the method of weighted residuals for 
the nonlinear differential equation (2.9-9), namely,   

( )K C G C C Fn n n n× ×
+ ⊗ + =

K K K K
2 0                                                                            (2.9-25) 

where 
K

F  is the constant vector. 
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represent the coefficient matrices corresponding to the linear and nonlinear operators, respectively. 
Equation (2.9-25) has the same formulaton-S form as equations (2.9-11) and (2.9-13). It  is easily proved 
that, for the cubic nonlinear differential equations, the resulting MWR formulation-S  is similar to Eq. 
(2.9-14). Note that the evaluation of the coefficient matrices K and G is very suitable to be finished in a 
parallel treatment way. 
 
The choice of the weighting functions Wj   in the method of weighted residuals depends on the form of the 
error distribution principle. The different weighted functions are related with different weighted residual 
techniques. The most famous and often used weighted residual techniques are known as the Galerkin and 
least square methods. The least square method uses the derivative of the residual function R with respect 
to the unknown coefficients as the weighting functions, while the weighting functions Wj  in the Galerkin 
method are chosen to be the same as the approximating function Uj in Eq. (2.9-19). Among the family of 
the Galerkin methods, the spectral (Haltiner and Williams, 1980), boundary element and finite element 
methods are most commonly used in engineering practice. The difference between the spectral and finite 
(or boundary) element methods is to choose the different basis functions. The latter selects the spline 
functions as the basis functions, namely “local function” or “piece interpolation function” technique is 
used in the finite element method and the basis functions are defined in certain subregion and zero 
elsewhere, while the spectral method usually uses the basis functions of higher-order continuity exhibiting 
global support, which are also formally required to be member of a complete set of functions.  
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As are discussed above, the only difference among the above-mentioned numerical methods lies in the use 
of different weighting and basis functions in the method of weighted residuals. From the foregoing 
deduction on equation (2.9-25), it is noted that the formulation-S can be derived no matter what weighting 
and basis functions we use in the method of weighted residuals. Therefore, it is straightforward that, by 
using the Hadamard product, we can obtain the formulation-S for the nonlinear computations of these 
methods. Since the finite element method has the particular importance in practical engineering, in the 
following we will  discuss applying the Hadamard product to the finite element method in greater detail.  
 
The collocation method is the simplest numerical technique in the family of the method of weighted 
residuals (Lapidus and Pinder, 1982),  in which weighting function wj is chosen to be the Dirac delta, 

namely ( )w x xj j= −δ . Therefore, the Hadamard product is suitable for the nonlinear 

computations of the collocation methods. In the section 2.9.1.1 we directly introduce the Hadamard 
product to the DQ, DC, collocation and pseudo-spectral methods in a straightforward and intuitive way. 
Obviously, the formulation-S and formulation-H in the collocation method can be also derived from the 
method of weighted residuals by using the Hadamard prodcut. 
 
2. On finite element method 
In the preceding discussion on the method of weighted residuals,  we assumed that we were dealing with 
the entire solution domain. In the following the domain is broken into elements first, the main focus is on 
an individual element. By analogy with equation (2.9-19) we define a local approximation valid for only 
one element at a time. From the Galerkin method (Szabo and Lee, 1969), the residual equations governing 
the behavior of an element are expressed as  

( )( ) ( )[ ] ( ) ( ) ( ) ( ) ( )
( )( ) L f N dD R N dDe e

j
e e e

j
e e

D eD e
�φ − = =∫∫ 0,  j=1,2,...,r                  (2.9-26) 

where the functions Nj
(e) are recognized as the interpolation functions over the element. The superscript 

(e) restricts the range to one element, and φ(e)=[N(e)]{φ}(e), f(e)=forcing function defined over element (e), 
r=number of unknown parameters assigned to the element. We can obtain a set of equations like equations 
(2.9-26). The shape functions Nj should be chosen to guarantee the interelement continuity necessary for 
the assembly process. Similar to the procedure obtaining Eq. (2.9-25), we can derive the matrix 
formulation for the quadratic nonlinear problems from  element equation  (2.9-26), namely, 

( ) ( ) ( ) ( ) ( )( ) ( )K W G W W F
r r

e e

r r

e e e e

× ×
+ ⊗ =

K K K
2                                                                  (2.9-27) 

where 
K

W (e) denotes the nodal value of the unknown field variable or its derivatives instead of the 
foregoing undermined parameters Cj in equation (2.9-25). Note that equation (2.9-27) is defined over the 
element and expresses the properties of the individual elements. Kr×r

(e) and Gr×r
2 (e) are the linear and 

nonlinear element coefficient matrices, respectively. The computational effort for the evaluation of 
coefficient G(e) is r(r+1)/2 numerical integrations, and can be reduced by using the property of the 
considered problems such as symmetricity. The parallel computation is also very feasible and efficient to 
evaluate coefficient matrices K(e) and G(e). It is noted that G(e) is also a very sparse matrix like the matrix 
K.  
 
Next,  we assemble matrix equations (2.9-27) expressing the behavior of the elements and form the matrix 
equations expressing the behavior of the entire system. This work can be accomplished in the same 
routine procedure as in the linear problems and is usually done by computer. Also, the coordinate 
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transformation, from the local to the global system or from the global to the local system, has to be 
conducted. The resulting matrix equation for the system has the same form as equations (2.9-27) in an 
individual element except that they contain many more terms because they include all nodes, i.e.,  

( )K W G W W F
n n n n× ×

+ ⊗ =
K K K K

2                                                                                     (2.9-28) 

Eq. (2.9-28) must be modified to account for the boundary conditions of the problem before the system 
equation are ready for solution. These work can be accomplished in the procedures similar to those in the 
conventional linear finite element method. It is noted that the only difference during formulating process 
between the finite element and other Galerkin methods is that the former has an assembly operation while 
the latter has not. In contrast, the linear formulation of the finite element method is in general stated as  
K W Fn n× =

K K
                                                                                                                       (2.9-29) 

where K is the same as equation (2.9-28) and often known as the stiffness matrix in solid mechanics. Eq. 
(2.9-29) has not the nonlinear term ( )G W W

n n×
⊗2

K K
 in Eq. (2.9-28). By analogy with the linear FE 

formulation the conventional nonlinear formulation in the finite element method is usually expressed as 
( )K W W F
K K K

=                                                                                                                      (2.9-30) 

where ( )K W
K

 is the function of unknowns 
K

W .  The evaluation of the coefficient matrix ( )K W
K

 usually 

requires much strenuous work and lack the ease and clarity of implementation in the present Hadamard 
product approach. The main advantages of the present formulation are to separate the constant coefficient 
matrices G from nonlinear unknowns and provide an explicit unified matrix formulation-S. Thus, the FE 
formulations for general nonlinear problems are simplified greatly. 
 
Except for a few very simple cases, the explicit direct formulation is not available in the conventional 
nonlinear FE analysis, namely ( )K W

K
 in equation (2.9-30) is impossible to be explicitly expressed in 

algebraic form. In contrast, the present FE formulation-S has explicit matrix form and can be easily 
converted into the conventional FE formulation. For example, equation (2.9-30) can be restated 

( )

( )
( )K W

v e c G

v e c G
W W Fn n

n n

×

×

+

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

⊗ =
K

#
K K K1

1

                                                                     (2.9-31) 

where vec( ) is the vector-function of a rectangular matrix formed by stacking the column of matrix into 
one long vector (Lancaster and Timenetsky). Gi ‘s are n×n symmetric matrices and can be obtained easily 
from the related rows of the matrix G in Eq. (2.9-28) through the invert process of vec( ) with n(n-1)/2 
divisions. Furthermore, we have 

( )K W W K
W G

W G
W Fn n

T

T
n n

K K
K

#K
K K

= +

⎧

⎨
⎪

⎩⎪

⎫

⎬
⎪

⎭⎪

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=×

×

1

1

.                                                              (2.9-32) 

Obviously, ( )K W
K

 in the above equation is expressed as definite explicit matrix function. 

 
It is also noted that Eqs. (2.9-11), (2.9-13), (2.9-25) and (2.9-28) have the same formulation-S form for 
the quadratic nonlinear problems. Therefore, the formulation-S is also believed to be in the most general 
sense the standard matrix formulation form in the ordinary and Kronecker product for the various 
nonlinear numerical computations. Moreover, due to obtaining identical formulation-S for a variety of 
nonlinear computation, the unified techniques can be well developed to solve the standard formulation-S. 
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In section 2.9.2, we will discuss the unified approaches to compute the Jacobi derivative matrix in the 
Newton-Raphson method for the solution of the formulation-S. In addition, unlike the foregoing FD, DQ, 
DC, pseudo-spectral and collocation methods, only the formulation-S is available in the FE, BE, spectral 
and Galerkin methods. 
 
Considering heat conduction in a slab with a temperature dependent thermal conductivity as an example 
problem (Finlayson, 1980), the equation governing this system is stated as 

( )d
dx

T
dT
dx

1 0+
⎡
⎣⎢

⎤
⎦⎥
=α                                                                                               (2.9-33) 

or simply 

d T
dx

T
d T
dx

dT
dx

2

2

2

2

2

0+ +
⎛
⎝
⎜

⎞
⎠
⎟ =α .                                                                               (2.9-34) 

with the boundary conditions 
( ) ( )T T T L TL0 0= =, ..                                                                                     (2.9-35) 

where α is a constant. The unknown T is first approximated  by �T , namely, 

( ) ( ) ( ) ( ) ( ){ } ( ){ } ( ) ( )�T N x T N T N Te
j
e

j
e

j

m

j
e T

j
e e T e= = =

=
∑

1

K K
.                                                     (2.9-36) 

where Ni(x) are the interpolation functions and Ti are the unknown nodal temperatures for  an one-
dimensional line element with m nodes. Applying the Galerkin’s criterion, we have 

( )
( )

( ) ( )
( ) ( )d T

dx
T d T

dx
dT

dx
N x dx

e
e

e e

x

xm
j
e

2

2

2

2

2

1

0
� � � �

+ +
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=∫ α α ,   i=1,2,....,N                         (2.9-37) 

where x1 and xm are the coordinates of the end nodes of the line element. Using integration by parts to the 
left-hand side of Eq. (2.9-37) and after some deductions, we have 

( ) ( )
( )

( ) ( )
( )( )

( )
( )

( )dN
dx

dT
dx

T
dN

dx
dT

dx
dx

x

x
N x dT

dx
T dT

dx
j
e e

x

xm e j
e e m

j
e

e
e

e� � � � � �
+ = +

⎛

⎝
⎜

⎞

⎠
⎟∫

1

1

α α               (2.9-38) 

Substituting Eq. (2.9-36) into the above equation, we obtain  
( ) ( )

( )
( )

( ) ( )[ ]
( )

( )
( ) ( )

( )

( )
( )

( )
( ) ( )( )

dN
dx

N
x

T
dN

dx
N T N

x
T dx

dN
dx

N
x

dxT

dN
dx

N N
x

dx T T N Q N Q

j
e e T

e

x

xm j
e

e T e
e T

e j
e e T

e

x

xm

j
e

e T
e T

e e

x

xm
m m

∂
∂

α ∂
∂

∂
∂

α ∂
∂

K K K K
D

K K K K

K K K K

+
⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

+ ⊗
⎛

⎝
⎜

⎞

⎠
⎟ ⊗ = −

∫ ∫

∫

1 1

1
1 1

                      

(2.9-39) 

in which 
( )

( )
( )

Q dT
dx

T dT
dx

e
e

e

1 = +
� � �

α  at node 1 and 
( )

( )
( )

Q dT
dx

T dT
dxm

e
e

e

= +
� � �

α  at node m are the 

natural boundary conditions, which are left unspecified. Equation (2.9-39) are the nonlinear formulation 
in the element and can be restated as 

( ) ( ) ( ) ( ) ( )( ) ( ){ }K T G T T Q
m m

e e
m m

e e e e

× ×
+ ⊗ =

K K K
2 ,                                                                        (2.9-40) 
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which is similar to equation (2.9-27). K(e) and G(e) can be evaluated after the interpolation functions Ni
(e)‘s 

are specified. 
( )

( )
( )

G
dN

dx
N

N
x

dxij
j
e

p
e q

e

x

xm
= ∫α

∂
∂1

, in which j=(p-1)m+q (p, q=1,2,...,m). The assembled 

FE equation for this case has the same form as Eq. (2.9-28), namely, 

( )K T G T T Q
n n n n× ×

+ ⊗ =
K K K K

2 .                                                                                        (2.9-41) 

where n is the total number of nodes in entire solution domain. Using the same procedure, more complex 
examples in multi-dimensional sense can be derived the similar FE formulation-S. For example, the static 
geometrically nonlinear equations for beam, plate and shell involve the cubic nonlinearity, the FE 
formulation can be generally stated in formulation-S form as 

( )K W G W W W F
n n n n× ×

+ ⊗ ⊗ =
K K K K K

3 .                                                                         (2.9-42) 

where 
K

W  is the desired displacement vector. Obviously, equation (2.9-42) has the same form as the DQ 
formulation (2.9-17) for geometrically nonlinear beam. 
 
Some remarks on the formulation-S in the FE method are given in the following: 
a) The advantage of the formulation-S is that the known nonlinear coefficient matrix G are isolated from 

the unknowns vector and the formulation is obtained in an explicit matrix form. By using the 
formulation-S, the numerical integration in each iterative step is circumvented in the solution of the 
formulation-S. Thus, the computing effort is reduced greatly. 

b) By using the Hadamard product and SJT product, the formulation-S in the finite element method can 
be derived not only from the method of weighted residuals but from variational principles and energy 
balances approach. 

c) The finite element equation for nonlinear time-dependent problems can be derived by using the 
Hadamard product in the same way. The resulting FE formulation is ordinary differential equations in 
time and has the formulation-S form, in which the time-derivative vector is included.   

d) The formulation-S is given in global sense, which is different from the traditional incremental FE 
method for nonlinear problems (Bath, 1982; Yin, 1987). However, when the external force is 
gradually imposed by a small value in each incremental step, the present FE formulation-S will be 
equivalent to the incremental FE equations, namely,  the Total-Lagrangian (T. L.) method if the node 
coordinates are invariant in each loading step or Updated-Lagrangian (U.L.) method if the node 
coordinates must be refreshed in each step. In addition, the matrix G in formulation-S is always 
unvarying in the T.L. method and must be recalculated in each step in the U.L. method. 

e) The conventional nonlinear FE method may be too complex mathematically for routine applications 
(Bath, 1982; Yin, 1987) and thus are not easily learned or used. In contrast, the present Hadamard 
product approach is an explicit and simple matrix analysis technique and thus the complexity in the 
conventional method is circumvented. The formulation-H can be also derived from the finite element 
methods based on the Galerkin collocation, pseudo-spectral (spectral element), differential quadrature 
(Striz et al., 1994), orthogonal collocation (Finlayson, 1980), etc. 

 
We here point out a incorrect conclusion in Noguchi and Hisada (1995) on the T.L and U.L methods. By 
using tensorial components in the natural coordinate system, Noguchi and Hisada (1995) proposed an 
unified FE formulation in T.L. and U.L. methods to handle geometrically nonlinear problems. The basis 
idea in this paper is that “the tangent stiffness matrices and the numerical solutions obtained by these 
methods should be identical in geometrically nonlinear problems” . However, as was pointed out by Lü et 



CHAPTER  2. SOME BASIC ASPECTS ON NONLINEAR COMPUTATIONS 

 35

al. (1995), the T.L and U.L. methods use formally the same curvature strain formula, but in fact, the T.L. 
method considers only the linear terms in the curvature strain, while the curvature strain used in the U.L. 
method includes the nonlinear terms implicitly due to the coordinate transformation (Lü et al., 1995; 
Cook, 1974). Mattiasson et al. (1986) also pointed out the limitations of the T.L. method. Several 
geometric nonlinear problems provided by Lü et al. (1995) and Mattiasson et al. (1986) also showed the 
obviously different results obtained by these two methods under situations of larger deformation. 
 
2.9.2. Jacobian Derivative Matrix of the Formulation-S 
In this section we give explicit direct formulas for computing the analytical Jacobian derivative matrix in 
the solution of the quadratic and cubic nonlinear formulation-S and applied to numerical example 
successfully. 
 
The formulation-S for the quadratic nonlinear differential problems was converted into equation (2.9-32) 
in section 2.9.1. The equation can be further restated as 

( )ϕ
K K

K K

#
K K

K
W K W

W G W

W G W
Fn n

T

T
n n

= +

⎧

⎨
⎪

⎩⎪

⎫

⎬
⎪

⎭⎪
− =×

×

1

1

0                                                             (2.9-43) 

where 
K

WT is the transpose of vector 
K

W . Gi‘s are n×n symmetric matrices. According to the rule in 
differentiation of matrix function (Ni, 1984), the Jacobian derivative matrix for the above equation can be 
obtained by the following direct computing formula: 
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⎫

⎬
⎪

⎭⎪
×

×

2
1

1

                                                                                  (2.9-44) 

where 
∂
∂
K

W
 is Jacobi derivative matrix operator in the Newton-Raphson method. The computational effort 

using the above formula is only n2(n+1)/2 multiplications. We should notice that the formula (2.9-44) is 
very easy to be computed parallelly for each row. The further reduction of computational effort is still 
possible by using the properties of matrices Gi’s such as sparseness.  
 
Considering the formulation-S for the cubic nonlinear problems, for example, equation (2.9-14) in 2.9.1 

( )L U R U U U Fn n n n× ×
+ ⊗ ⊗ + =
K K K K K

3 0                                                                                (2.9-45) 

can be restated as 
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Similarly, the Jacobian matrix of the above equation can be evaluated by 

{ }
( )

( )
∂φ
∂

∂
∂

∂
∂

K
K

K K
K

#K K K
K

U
U

L

R U U
U

UR U U
U

n n

n n

n n

n
= +

⊗

⊗

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

×

×

×

2

2

1

                                                                     (2.9-47) 
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in which 

( ) ( )[ ] ( )∂
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Furthermore, we have 

( )∂φ
∂

K
K

K K K K
"

K K
K K K K

"
K K

# # # #K K K K
"

K K

U
U

L

U R U U R U U R U
U R U U R U U R U

U R U U R U U R U

T T T
n

T T T
nn

T
n

T
n

T
nn

= +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

3

11 12 1

21 22

1 2

                                              (2.9-48) 

Similar formulas for higher order nonlinear problems can be easily obtained.  
 
Consider the equation of the quadratic nonlinearity (Chen and Zhong, 1996c; Wright, 1964) 

( ) ( )y y yy y yx xx xx, , , , ,2 0 0 0 1 1+ + = = = ,                                                                   (2.9-49) 

Using the DQ method, we have K K K K K K
′ = + ′′ = +y Ay a y By b. .                                                                    (2.9-50) 

where A  and B  are the  weighting coefficient matrices, modified by the boundary conditions,  for the 
first and second derivatives in the DQ method, respectively. 

Ka  and 
K

b   are the constant vector dependent 
on the boundary conditions. We have the formulation-S for this case:  

( )L y Q y y Fn n n n× ×
+ ⊗ + =K K K K

2 0                                                                           (2.9-51) 

where  

( )
L I b A a B

Q E I B A A

F a b

n n

n n n
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×

×

= + ◊ +

= ⊗ + ⊗

= + +

2

1
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2

K

K K KD

.                                                                             (2.9-52) 

I is the unit matrix. The solutions for the linear differential equation 
( ) ( )y y yx x, ; ,= = =0 0 0 1 1                                                                     (2.9-53) 

is used as the initial guess of the Newton-Raphson method. The Jacobian matrix is computed by using 
equation (2.9-44). Six Chebyshev grid points in the DQ method are used for this case and the convergence 
is achieved with four iterations. The relative error of the numerical results obtained are no more than 
0.001.  
 
We also recalculate the same cubic nonlinear equation (2.5-1a, b) in section 2.5 using formulas (2.9-47) 
successfully, and the numerical results are coincident with the ones in section 2.5. The numerical 
examples demonstrate the efficiency and simplicity of the present formulas computing the Jacobian matrix 
for the standard formulation-S. More work on the nonlinear formulation-S may prove to be beneficial. 
 
However, as for the formulation-H, the SJT product may be a more effective and simple approach for the 
evaluation of the Jacobian matrix. It is obvious that the operation rules on the SJT product are applicable 
for the pseudo-spectral and collocation methods. It is shown in section 2.3 that the SJT product can 
compute accurately the Jacobian matrix in chain rule similar to those in differentiation of scalar function 
with minimum computing effort among all existing approaches. Unfortunately, however, the SJT product 
seems to be not amenable to the evaluation of the Jacobian matrix of the more general formulation-S. 
Traditionally, the Jacobian matrix is often obtained by numerical derivative computations and thus the 
speed of convergence in the Newton-Raphson method is affected. In contrast, the SJT product approach 
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and the presented direction formulas give the analytical Jacobian matrix for the formulation-S and 
formulation-H. It is also noted that the formulation-H is more easily obtained for the nonlinear 
computations. Therefore, the formulation-H is preferred for the nonlinear computations of the FD, DQ, 
DC, pseudo-spectral, collocation methods and some variants.  
 
2.9.3. Perturbed Error Analysis 
The condition number of coefficient matrix can indicate the effect of round-off errors on the accuracy of 
the solution of linear simultaneous algebraic equations, and  is  closely related to stability analysis of 
numerical computation (Wilkinson, 1964; Burden et al., 1970; Shi, 1980). In this section we will discuss 
the relation between the condition number and the perturbed error bound in the solution of the nonlinear 
formulation-H and -S.  
 
For the quadratic nonlinear problems, the presented formulation-S in the ordinary and Kronecker product 
is 

( )K U G U U Fn n n n× ×
+ ⊗ =

K K K K
2 .                                                                                  (2.9-54) 

We will consider the effects of perturbing the right side vector 
K

F . Suppose first the above equation is 
perturbed so that matrices K and G are kept fixed and δF is added to 

K
F . Thus, 

( ) ( ) ( )( )K U U G U U U U F F
K K K K K K K K
+ + + ⊗ + = +δ δ δ δ ,                                   (2.9-55)   

then                    
( )δ δ δ δ δ δ

K K K K K K K K
U K F K G U U U U U U= − ⊗ + ⊗ + ⊗− −1 1                                                      (2.9-56) 

δ δ
K K

U U⊗  in the above equation is relatively fairly small in comparison to other terms in the above 
equation and thus neglected in the following analysis, and  K K K K
U U U U⊗ =δ δ                                                                                                        (2.9-57) 

 We have 
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Form Eq. (2.9-54),  
( )δF K G U U≤ +

K K
 

and  
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Multiplying Eqs. (2.9-58) and (2.9-59) provides 
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,
            (2.9-60) 

where ( )κL K  is the conventional condition number of linear system, ( )κN K G,  is defined as the 

nonlinear condition number. The quantity on the left of  Eq. (2.9-60) may be considered a measure of the 
relative disturbance of 

K
U . The inequality provides a bound on this relative disturbance in terms of the 

relative disturbance of 
K

F . Removing the nonlinear term in Eq. (2.9-54), we can obtain the traditional 
linear formula: 
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F
FL≤ =−1                                                                       (2.9-61) 
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Compared with Eq. (2.9-61),  the relative disturbance bound in the formula (2.9-60) depends on not only 
( )κ K  but also ( )κN K G,  and the norm of unknown vector x. Thus, the analysis for nonlinear 

problems are much more complex than that for linear problems. Let the nonlinear condition number 
( )κN K G,  zero, Eq. (2.9-60) is equivalent to Eq. (2.9-61). 

 
The following analyzes the nonlinear formulation-H.  
 
Theorem 2.9.3.1. If matrices A=[aij] and B=[bij]∈CN×M,  then 
A B A BD 2 2 2≤                                                                                                       (2.9-62) 

where 
2
 denotes the spectral norms. This is famous Schur theorem on the Hadamard product. Note that 

the matrices A and B involved in numerical computation are in general N×1 dimensional vector, i.e., A, 
B∈CN×1. So it is straightforward that the inequality (2.9-62) exists for the other norms in the present 
study, and thus the particular choice of norm is immaterial, we will omit the subscript 2 in the latter 
discussion. 
 
For example,  

( ) ( )KU AU BU F
K K

D
K K

+ =                                                                                             (2.9-63) 

is perturbed. A and B are kept fixed, and F is added to δF, namely, 
( ) ( )( ) ( )( )K U U A U U B U U F F
K K K K

D
K K K K

+ + + + = +δ δ δ δ                                                        (2.9-64) 

Thus,  

( ) ( ) ( ) ( ) ( ) ( )[ ]δ δ δ δ δ δ
K K K

D
K K

D
K K

D
K

U K F K AU B U A U BU A U B U= − − −− −1 1                     (2.9-65) 

Multiplying Eqs. (2.9-58) and (2.9-64) and applying theorem 2.9.3.1, we have 
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11 2 1 2
.                         (2.9-66) 

( ) ( )A U B Uδ δ
K
D

K
 is relatively fairly small value in comparison to other terms in Eq. (2.9-65) and thus 

neglected in the analysis. The nonlinear condition number here is ( )κN K A B, ,  similar to  ( )κN K G,  

in Eq. (2.9-60). 
 
Equations (2.9-60) and (2.9-66) may establish the basis for stability and error analysis in nonlinear 
numerical computations. The further applications are under active study.  
 
2.10. Concluding Remarks 
In the closing section we will discuss the potential advantages of the DQ and DC methods for the 
nonlinear problems. After that, some remarks on the Hadamard product and SJT product techniques are 
given. 
 
2.10.1. Some advantages in applying the DQ and DC methods for nonlinear problems 
Some researchers (Malik and Civan, 1994; Wang, 1995) have pointed out that the DQ and DC methods 
may be especially attractive for nonlinear computations. But they did not provide some theoretical 
analysis to support their arguments. We here discuss some inherent merits in the DQ and DC methods for 
nonlinear computations. 
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The DQ and DC methods belong to the global numerical techniques. It is well known that the most 
distinctive feature of the nonlinear problems is their global correlation in comparison to the linear 
problems. In other words, the function values far from each other in entire computational domain may 
have much larger relative affection for nonlinear problems. Of course, for linear problems, there exists 
similar each other dependence, but that is weaker. The finite element and finite difference methods are 
derived from local interpolation technique. The global  methods use much more function values to 
approximate the function value at certain grid point, while the FE and FD methods only use less function 
information, in which the solution at a grid point is approximated only by using those dependent-variable 
values at adjacent points. The main shortcomings of the global methods are their computational stability 
and the applicability for problems with complex geometries. The former can be circumvented by using the 
proper basis functions for problems of interest, the latter can be overcome to somewhat extent by 
coordinate mappings or multidomain approaches. If the solution for problems of interest is sufficiently 
smooth and we choose proper basis functions, the global methods produce more reliable results and has 
more rapid rate of convergence than the FE and FD methods, especially for nonlinear problems. From the 
resulting formulation standpoint, the FE and FD methods result in a sparsely banded coefficient matrix, 
while the DQ method generates algebraic equations with full characteristic matrices in one dimensional 
problems. But for two-dimensional domain problems, Civan and Sliepcevich (1984b) pointed out that the 
Jacobian matrix in the DQ algebraic formulation contained many null elements, nearly a half of all 
elements but much less than in the FD and FE formulations. Unlike the DQ method, the DC method is a 
really  global numerical method for multi-dimensional problems. The DQ method is a special case of the 
DC method in one dimension. The resulting coefficient matrices in the DC formulation for multi-
dimensional problems contain much less null element. Therefore, the DC method may be the most 
efficient numerical technique for multidimensional nonlinear problems. Some applications also proved 
much higher efficiency of the DQ and DC methods for the nonlinear problems than the conventional FE 
and FD methods. In addition, it should be pointed out that the DQ and DC methods are also generally 
more effective for the linear problems than the FE and FD methods. The DC method may be especially 
efficient for differential equations whose derivatives with respect to one coordinate is not only dependent 
on the function value at that coordinate direction. 
 
On the other hand, the other global numerical methods (Rayleigh-Ritz, Galerkin, etc.) also have similar 
inherent efficiency for nonlinear computations. However, these methods require one to select initial trial 
functions satisfying boundary conditions for problems considered, which is not an easy task for many 
problems in practice. In addition, these methods need more strenuous formulation effort. In contrast, the 
DQ and DC method can easily and exactly satisfy a variety of boundary conditions and require much less 
formulation effort. Recently, the spectral and pseudo-spectral methods have been extensively used in 
practical engineering especially for the numerical solutions of fluid dynamic problems. The spectral and 
pseudo-spectral methods are also belong to global numerical methods and are efficient for many linear 
and nonlinear problems. Quan and Chang (1989a) have pointed out that the DQ-type methods are 
basically equivalent to the collocation and pseudo-spectral methods. But the DQ and DC methods directly 
compute the desired function values at grid points rather than spectral variables. Thus, they are more 
explicit and simple for some practical applications. Moreover, the pseudo-spectral methods require heavy 
and complicated formulation effort and lack the ease of implementation of the DQ and DC methods 
(Mansell et al., 1993). Also, as was discussed earlier, the desired spectral coefficients in these methods 
usually have no physical significance. Therefore, assumed initial values in the iterative solution of the 
nonlinear problems are inherently poor guess, and the computational effort is aggravated. 
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The proper basis functions can improve the convergence rate and reliability of the DQ method (Chang et 
al., 1993; Striz et al, 1995), but it should be emphasized that the choice of the basis functions in the DQ 
and DC methods is different from the Rayleigh-Ritz and Galerkin methods. The DQ and DC methods 
need not consider the boundary conditions of certain problems to choose the basis functions. Thus, the 
effort to determine the basis functions is very little. Generally, we can categorize the problems into several 
sorts. For example, the harmonic functions are chosen as the basis functions for periodic problems, the 
family of Bessel functions for buckling, deflection and vibration of circular and annular plates. The DQ 
and DC methods using the polynomial basic functions are usually effective and reliable for a variety of 
problems if the zeros of Chebyshev, Gauss or Legendre polynomials are adopted as the grid spacing. The 
idea using split range polynomial expansions as the basic functions proposed by Mansell et al. (1993) is 
applicable to the DQ and DC methods for dealing with problems involving steep gradients and 
discontinuities. For the definite basis functions, the DQ and DC weighting coefficients for certain grid 
spacing need be computed only once and are independent of any special problems. Therefore, these 
weighting coefficients can be used repeatedly for various problems. 
 
Based on the foregoing discussions, we can conclude that the DQ and DC methods has the superb 
accuracy, efficiency, convenience and the great potential for nonlinear numerical computations. 
 
2.10.2. Some remarks on the Hadamard product and SJT product 
The conventional nonlinear algorithms have been rather adequately studied with the framework of linear 
algebra and relative matrix approaches. As was pointed out earlier, the approaches do not work very well 
for this task. In this chapter we hope to present a new framework for nonlinear computations of the DQ-
type methods. The principal contributions of this chapter are to introduce the Hadamard product of 
matrices to the nonlinear computations of the DQ method as well as other numerical techniques and to 
first present new SJT product to compute the Jacobian derivative matrix in the Newton-Raphson method. 
The specialist in numerical computation field are seldom familiar with the Hadamard product. As was 
pointed out by Horn (1990), the Hadamard product was even rarely involved in the standard matrix and 
linear algebraic text book. The objective of this chapter is to recognize the usefulness and generality of the 
Hadamard product in nonlinear computations. Using the Hadamard product, the nonlinear differential 
equations are easily formulated by various numerical methods. Moreover, regardless of the method we 
choose to compute the nonlinear problems, the resulting formulation can have the same formulation-S 
form. The formulation-S isolates the known coefficient matrix and unknown nonlinear vectors and has an 
explicit matrix form. Therefore, the solution and analysis of the formulation-S are much easier than that of 
the conventional nonlinear formulations. For the finite difference, differential quadrature, differential 
cubature, pseudo-spectral and collocation methods as well as the finite element methods based on these 
numerical techniques, we can obtain either the formulation-S or the formulation-H. The formulation-H is 
preferred for these methods. The most important point in this study is that a computational attractiveness 
is shown to develop the unified techniques for the analysis and computation of the standard formulation-H 
and formulation-S.  
 
The approaches are developed to efficiently compute the Jacobian matrix and analyze the perturbed error 
of the formulation-H and -S. The simple iteration method become a competitive alternative to the 
Newton-Raphson method due to the application of the Hadamard power and function. The SJT product 
may be very significant because the Jacobian matrix is often used in many engineering areas. The 
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decoupling computations by means of the Hadamard and SJT product are of extreme importance in the 
solution of large nonlinear systems. The Hadamard product, power and function are shown to be 
innovative and powerful concepts in nonlinear numerical computations. The most important feature of the 
Hadamard product may be its ability to express the nonlinear relation in the problems of interest. But in 
fact it seems to be seldom applied in practical engineering. Though we restrict attention here to numerical 
computations of nonlinear differential equations, the work will possibly bring impulse for some new 
development in the Hadamard product and its applications in various science and engineering areas, in 
which nonlinear analysis can not be circumvented. The Hadamard product may be of vital importance in 
“nonlinear algebra” rather than in the conventional linear algebra.  
 
The practical applications of the DQ method to nonlinear problems are still few in comparison to the other 
numerical methods. The present work may provide a guidance to more studies in this field. In section 4.5 
we will show the practical applications of the techniques in the DQ solution of geometrically nonlinear 
bending of orthotropic plates. 
 
 
 
 
 
 
 



CHAPTER 3.TRUNCATION ERROR AND GRID SPACINGS 

 42

CHAPTER 3 
TRUNCATION ERROR AND GRID SPACINGS 

 
3.1. Introduction 
As was pointed out by Bert and Malik (1996d), the studies in the error aspects of the DQ method have 
been neglected. The work has been not reported so far except Bellman et al. (1972), Jang et al. (1989), 
Chen et al. (1994, 1996b) and He and Wang (1995). Bellman et al. (1972) presented truncation error 
formulas based on Rolle’s theorem. However, the formulas do not involve the practical grid interval and 
are too inaccurate for practical use. Therefore, they are not significant for many practical purpose. Based 
on Bellman’s formulas, Jang et al. (1989) briefly discussed the error estimates for the DQ analysis of a 
beam. Chen et al. (1994, 1996b) derived a new explicit truncation error formulas for the first order 
derivative by using interpolation technique and discuss in general the truncation error distribution 
problems. Then, by using the same technique, He and Wang (1995) compared maximum truncation errors 
of the 1st order derivative in using several types of sampling points to find the optimal grid spacings. 
Recently, Chen, Zhong and He (1996d) gave the simple and explicit truncation error formulas for the DQ 
approximation of various order derivatives. It is also noted that the choice of the sampling points is deeply 
related to the truncation error. It is known that the optimal grid spacing in the polynomial approximate if a 
function is to satisfy the mimimax principle, i.e., the absolute  truncation errors at various grids are 
basically uniform (Atkinson, 1978). The optimal approximation of derivatives of a function is an 
extremely important problem. However,  research in this field is still fairly poor so far. In this study, we 
discuss the truncation error and sampling point problems in the DQ method through trial and error. Seven 
general rules for choosing sampling points are presented. The relations between the optimal types of grid 
spacings and truncation errors are discussed. Since the DQ method is in fact equivalent to the collocation 
and pseudo-spectral methods, the truncation error formulas and the rules for selecting sampling points are 
also applicable for these two methods. It is worth pointing out that the proposed truncation error formulas 
are also important for analyzing the convergence speed of the DQ method. 
 
The zeros of orthogonal polynomials such as the Legendre or Chebyshev polynomials do not include the 
end points of the normalized domains, and, thus, the end points have to be forced if these points are 
needed for the boundary conditions. The DQ method using such grid points is equivalent to the so-called 
orthogonal collocation methods. Bellman et al. (1975) applied the spline technique to avoid this boundary 
point difficulty. Bert and Malik (1996d) suggested that the Chebyshev-Gauss-Lobatto points be a better 
choice in that the grid spacing automatically includes the end points. However, as was pointed out by 
Quan and Chang (1989a), the zeros of the Chebyshev or Legender polynomials can be used to reach the 
end points by using a simple linear algebraic transformation, and direct computing formulas for weighting 
coefficients of such grid points are also presented. Their study also showed that the DQ method using all 
zeros of the Chebyshev polynomials without additional forced ends is more efficient than using the 
modified Chebyshev grid points. However, the formulas given by Quan and Chang (1989a) is still 
somewhat complex. In the present study, the simplified formulas for computing weighting coefficients of 
such grid spacing as well as other often used grid spacings are provided. 
 
3.2. Truncation Error in the DQ Method 
Based on the fact that the DQ method is a polynomial approach (Quan and Chang, 1989a, b), new 
truncation error formulas are derived and their distribution in the entire variable domain are discussed in 
this section. 
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Bellman et al. (1972) presented a truncation error formula for the DQ approximation to the second 
derivative: 

( ) ( ) ( ) ( ) ( )
R x K

N
x x Kh

Nj
j

N N
2

1

2 2

2 2
≤

−
− ≤

−=

− −

∏! !
                                                                               (3.2-1) 

where K is the maximum value of the Nth derivative of the function f(x), ( ) ( )f x KN ≤ . xj∠x j ∠xj+2,  

xj ‘s are the grid coordinate. h is the maximum interval on the grid, h=max x x j− . The formula was 

derived by using Rolle’s theorem. There exist similar truncation error formulas for the 1st and other 
higher order derivatives. The major drawback of the above formula is that relation between the truncation 
error and the grid interval has not be clearly exposed, since x j ’s are not definite value as the grid 

coordinate xj. Therefore, h in the formulas is too vague for many practical purpose. 
 
Quan and Chang (1989a, b), Shu and Richards (1992) and Bert, Wang and Striz (1993) derived the DQ 
method from the Lagrangian interpolation formulas. Following this idea, Chen (1994) and Chen, Yu, 
Wang (1996b) proposed a different truncation error formulas in the DQ method for the 1st order 
derivative. 
 
If a function can be approximated by a Lagrangian polynomial, we have 

( ) ( ) ( ) ( )f x p x f x R x j Nj j
j

N

= + =
=
∑

1
1 2, , , , .…                                      (3.2-2) 

where pj(x)’s are Lagrangian interpolation basis polynomials, R(x) is the truncation error, namely,  
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where Aij‘s are the DQ weighting coefficients of the 1st order derivative, xi’s are discrete grid point 
coordinates, R’(xi) is the truncation error of the DQ method to approximate the 1st order derivative. Thus, 
we have 

( )
( ) ( ) ( )

′ =
′

R x
f W x

Ni

N
iξ

!
,                          i=1,2,...,N.                                                              (3.2-5) 

where ( )′W x  depends on the grid spacings. It can be observed that the truncation error formula (3.2-5) is 

different from one given by Bellman et al. (1972).  
 
In the subsequent study we will derive new formulas of the truncation error for high order derivatives. Aii, 
Bij and Cij herein represent the DQ weighting coefficients for the 1st, 2nd and 3rd order derivatives, 
respectively. Differentiate equation (3.2-2) to the second order and let x=xi , we have 

( ) ( ) ( )′′ ≤ ′ + ′′R x K W x W x
Ni i i2

1
!

           i=1,2,...,N.                                                     (3.2-6) 

where K=max ( ) ( ) ( ) ( )( )f x f xN N, + 1 , ′′R (xi) is the corresponding truncation error in the DQ 

method. According to equation (8b) in Shu and Richards (1992), namely  
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where Aii‘s are the diagonal entries in the DQ weighting coefficient matrix for the 1st order derivative. 
We have 
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According to  
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By using the similar procedure, we have 
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where K4=max ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )f x f x f x f xN N N N, , ,+ + +1 2 3 , K3=max ( ) ( ) ( ) ( )( f x f xN N, ,+ 1  

( ) ( ) )f xN + 2 .  

 
In this section, we only discuss the zeros of the Chebyshev polynomials and the equally spaced grid 
points. For example, consider truncation error of the 2nd order derivative under the equally spaced grid 
points, we have 
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where τ =
−
−

b a
N 1

 is the uniformly grid interval. b and a are the upper and below limits of variable x, 

respectively, namely x∈[a, b], CN
i
−
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1
1  denotes combination computation. Note that τ is accurate value 

greatly different from imprecise h in equation (3.2-1). Therefore, the present formula indicates more 
explicitly the truncation errors of the approximate solutions at various sampling points in terms of the grid 
interval. For the grid spacing using the zeros of the Chebyshev polynomials of the first kind, we have 
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where d
N

= 2
2

cos π
 is the distance between the last and first roots of the N order Chebyshev 

polynomial in the normalized range (-1, 1), ri is the corresponding ith root of the Chebyshev polynomial, 
x∈[a, b]. The convergence speed using this grid spacing is faster than using the equally spaced grids 
(Quan and Chang, 1989a, b; Bert, Wang and Striz, 1993).  
 
To facilitate comparison with the equally spaced grid spacing, the truncation error formula (3.2-13) for 
the Chebyshev grid spacings is restated as   
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where τ=(b-a)/N. The general truncation error formulas for the 1st, 2nd, 3rd and 4th order under various 
grid spacings can be expressed as 

( )
( )R K erri

m
m

N≤ −τ 1 ,     m=1, 2, 3, 4            i=1,2,....,N                                                                (3.2-15) 

in which err denotes the corresponding error constants. 
 
Considering equally spaced grid points, we have 
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for both ends and 
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for the center points if N is an even number. 
 
Comparing the truncation error formulae (3.2-16) for the ends with (3.2-17) for the center point, it may be 
concluded that largest truncation error could possibly occur in the vicinity of the ends if equally spaced 
grid points are used in the DQ method. The two examples, which were Eqs. (4) and (5)  provided by 
Civan and Sliepcevich (1986) as accuracy tests of the DQ method, can be as the numerical demonstration 
for the present error analysis (see fig. 1 and fig. 2 of Civan and Sliepcevich (1986)). Also a similar error 
distribution is expected for unequally spaced grids such as defined by the zeros of the shifted Chebyshev 
or Legendre polynomials.  
 
The truncation error constants at all grid points for the 2nd order derivative under N=10 are given in table 
3-1 for the equally spaced and the Chebyshev grids, where i denotes the sequence of the grid points. It can 
be found that the error constants except for those at end points for the Chebyshev grids are in general 
more smooth than those for the equally spaced grids. This compares favorably with the fact that the DQ 
method using the Chebyshev grid points can produce more accurate results than using the equally spaced 
grid points. It is fact that maximum diagonal entries in weighting coefficient matrices Aij, Bij and Cij come 
upon at the end points. So the largest error constant may appear at the end points according to Eqs. (3.2-
11), (3.2-16) and (3.2-17). In table 3-1 we can note that the largest error constants indeed locate at the 
ends of these two grid spacings. Therefore, it can be concluded that the largest truncation error may much 
probably occurs in the vicinity of the ends. Also, it is known that the Chebyshev grid spacing is very 
efficient for some problems among all existing grid spacings (Quan and Chang, 1989b) but not optimal 
for the DQ method as well as the pseudo-spectral and collocation methods since the error constants at the 
vicinity of the ends are obviously larger than at other grid points. Similar to min(max(W(x)) principle in 
the polynomial approximation of a function by using the Chebyshev grid points, it is very significant 
work to find the grid spacing which satisfies min(max ( )′W xi ) at inner grid points. The further 

discussions on this issue can be found in section 3.4. 
 
Table 3-2 displays the error constants at the end point N for the equally spaced and the Chebyshev grid 
points under N=5, 10, 15, 20. err(1), err(2), err(3) and err(4) denote the corresponding truncation error 
constants for the 1st, 2nd, and 3rd and 4th order derivatives, respectively. Note that the truncation errors 
for various order derivatives are all O(ΔτN-1) in the DQ method but have greatly different the error 
constants. As can be seen from table 3-2, the error constants for high order derivative are in general 
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larger. As the number of grid points increases, the error constants for the second order derivative increase 
in the equally spaced grid points but decrease in the Chebyshev grid points. So, if using the larger number 
of grid points, the Chebyshev grid spacing is preferred. In addition, it is also observed that the diagonal 
elements in weighting coefficient matrices Aij, Bij and Cij decrease gradually from two end points to 
central point. Therefore, according to formulas (3.2-11), (3.2-16) and (3.2-17), we can conclude that the 
truncation error constants for higher order derivatives increase more quickly at points nearby boundary 
ends than at those around the vicinity of central point. Finally, it should be also pointed out that the 
present truncation error formulas and the respective conclusions are also applicable for the pseudo-
spectral and collocation methods. 
 
Table 3-1. The error constants in the present formulas for the truncation error under ten the 

equally spaced and the Chebyshev grid points 
i 1 2 3 4 5 6 7 8 9 10 

Chebyshev   5.83   0.17  0.013  0.015   0.02  0.028   0.04   0.08    0.03   6.14 
Equally   4.89   0.32  0.049   0.011  0.001  0.004   0.02   0.06    0.36   5.29 

 
 
Table 3-2. The maximum error constant (at end point N) in the present truncation error formulas 
N Equally spaced grids 

err(1)       err(2)        err(3)         err(4) 
Chebyshev grids 

err(1)       err(2)         err(3)         err(4) 
5 0.2           3.7              38.6          260.8  0.4            8.4           91.4           629.2 
10 0.1           5.3              173           4148 0.075          6.1          264.8          7662 
15 0.07          6                371           17109 0.013         2.4           229            15136 
20 0.05          6.8              616           43704 0.002          0.7          119            14044 
 
3.3. Simplified Formulas for Weighting Coefficients 
In this section the formulas computing weighting coefficients for some often used grid spacings are 
discussed. 
 
Civan and Sliepcevich (1984b) pointed out that the accuracies of the DQ solutions for some problems 
increased with the number of equally-spaced grid points up to 1/1. When the grid points were increased to 
15 the accuracy dropped off. Civan and Sliepcevich (1984b) attributed the behaviors of the DQ method to 
inaccuracies of the DQ weighting coefficient caused by inversion computation of an ill-conditioning 
Vandermonde matrix (Hamming, 1973) during the evaluation of these coefficients. They suggested that 
an optimum number of grid points 11 should be used for  equally spacings. The inaccuracies of the DQ 
weighting coefficient is one of tow factors which give rise to the unstable behaviors in the DQ method. 
Another is the grid spacing which will be discussed in the following section 3.4. 
 
The effect of the ill-conditioning Vandermonde matrix was overcome due to recent work (Quan and 
Chang 1989a, Shu and Richards, 1992, Civan, 1989). Civan (1989) applied special algorithms in the 
solution of a Vandermonde system of equations (Bjorck and Pereyra, 1970) to obtain the exact DQ 
weighting coefficients. Quan and Chang (1989a) presented explicit formulas for the calculation of the DQ 
weighting coefficients. Shu and Richards (1992) also independently presented the same formulas and 
derived a useful recurrence formulas for weighting coefficients of higher order derivatives. It was proven 
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that the BP algorithm generally yields the same accuracy of weighting coefficients as the explicit formulas 
(Malik and Civan, 1995, Bert and Malik, 1996). It is preferred to use the BP algorithms for computing 
weighting coefficients of the integral and composite operators (Bert and Malik, 1996), while the  explicit 
formulas may be simple and convenient for computing the weighting coefficients of single differential 
operators.  
 
Quan and Chang (1989a) also pointed out that the DQ method can use all zeros of the Chebyshev and 
Legendre polynomials as its grid points, and such sampling points can  naturally encompass the boundary 
end points without additional forced points, while the orthogonal collocation method can not. Therefore, 
the DQ method using the grid spacing of such type has somewhat faster convergence rate than the 
orthogonal collocation method (1989b). Quan and Chang (1989a) also gave the direct computing formulas 
for the evaluation of the DQ weighting coefficients when using these grid spacings. However, these 
formulas are still somewhat complex and inconvenient for practical use. We herein give simpler and more 
explicit alternative computing formulas. 
 
The roots of the N order Chebyshev polynomials in (-1, 1) domain are given by 
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i Ni =
−
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1 2π …                                                                              (3.3-1) 

The Chebyshev grid spacing for any finite range x∈[a, b] can be obtained by a simple algebraic 
transformation,  
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Using the properties of the Chebyshev polynomials and after some manipulations, we can derive the 
direct computing formulas for the 1st order derivative under this grid spacing. 
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The weighting coefficients for higher order derivatives can be easily computed by using recurrence 
formulas presented by Shu and Richards (1992), namely equation (1.2-4) in section 1.2. The formulas 
(3.3-3) and (3.3-4) are obviously simpler and easier to be used than those presented by Quan and Chang 
(1989a). 
 
Similarly, the computing formulas for the weighting coefficients of the 1st order derivative using the roots 
of the shifted Legendre polynomials in domain [0, 1] (Eqs. (5) and (7) in Bellman, Kashef and Casti 
(1972)) can be modified to include the boundary point directly for any finite range [a, b] by multiplying a 

constant coefficient 
λ λN

b a
−
−

1 , where λ1 and λN  are the first and last roots of the N order shifted 

Legendre  polynomials. In addition, there exists a typographical error in Eq. (7) of that reference on page 
43:  
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The formula should be correctly stated as: 
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where xk is the kth roots of the shift Legendre polynomials. 
 
For the equally spaced grid points, Chen and Yu (1993a) also proposed the following simplified formulas 
for the 1st order derivative in the finite range [a, b]: 
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where C denotes the combination computation.  
 
In order to avoid the difficulty due to the fact that the zeros of the conventional shifted Legendre and 
shifted Chebyshev polynomials are not located at the boundary points, Bert et al. (1993) introduced extra 
grid points to satisfy the boundary conditions. The DQ method using the grid spacings of this type is 
equivalent to the orthogonal collocation method. For the analysis of plates (Chen, Yu and Wang, 1996b), 
the DQ method using the present Chebyshev grid spacing (e.g. equation 3.3.2) has faster rate of 
convergence than using both the equally spaced grid points and the grid points presented by Bert et al. 
(1993).  
 
3.4.  A Preliminary Study of Grid Spacings 
Even if the accurate weighting coefficients are obtained, the application of various grid spacings in the 
DQ method will have a greatly different numerical stability behavior and convergence rate. It is shown 
that the DQ method using zeros of orthogonal polynomials are in general more efficient and reliable for 
some problems (Quan et al., 1989a, b; Bert et al., 1993). Quan and Chang (1989b) compared 
performances of a variety of existing grid spacings through the solution of some typical chemical 
engineering problems. Their conclusion is that the DQ method using the zeros of Chebyshev polynomials 
may be the most efficient. Similar to the polynomial interpolation approximation for a function, equally 
spaced grid points were in general convenient but obviously not reliable for some cases (Sherbourne et al., 
1991; Wang et al., 1994a). Bert and Malik (1996) suggested that the so-called Chebyshev-Gauss-Lobatto 
points may be consistently better than the equally spaced, Legendre, and Chebyshev points in a variety of 
problems since such grid points encompass the boundary end points of the normalized domains. The task 
of this section aims to provide several general rules for determining the optimal grid spacings in the DQ 
method. 
 
The following six types of sampling points are used in this study. All variable domains in the present 
study have been normalized as x∈[0, 1].  
Type I: Equally spaced sampling points 

x
i
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Type II: Normalized Chebyshev sampling points 
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Type III: Equally spaced sampling points with δ points immediate adjacent two ends 
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Type IV: Normalized Chebyshev sampling points with δ points immediate adjacent two ends 
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Type V: Equally spaced sampling points with only one δ point immediate adjacent one boundary end  
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Type VI: Normalized Chebyshev sampling points with only one δ point immediate adjacent one boundary 
end  
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We choose N=7 and δ=10-5  in this study otherwise specified, the corresponding grid coordinates of the 
above six types in normalized domains are listed in table 3-3. 
 
Table 3-3. Grid coordinates of the six types of sampling points ( N=7 and δ=10-5) 

 x1 x2 x3 x4 x5 x6 x7 
Type I 0.0 0.167 0.333 0.5 0.667 0.833 1.0 
Type II 0.0 0.099 0.277 0.5 0.723 0.901 1.0 
Type III 0.0 0.00001 0.25 0.5 0.75 0.99999 1.0 
Type IV 0.0 0.00001 0.19098 0.5 0.80902 0.99999 1.0 
Type V 0.0 0.00001 0.2 0.4 0.6 0.8 1.0 
Type VI 0.0 0.00001 0.13397 0.36602 0.63398 0.86603 1.0 

 
The following four nonlinear differential equations serve as the numerical examples in a comparison 
study of the six types of sampling points. These examples are not very complex and not expected to be 
adequate in all circumstances. It is our opinion that the simple problems can provide some innovations 
into the more complex problems. 
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Example 1: ′ − =−y e y 0;      y(0)=0,   0≤x≤1                                                              (3.4-7)  
Example 2: ′ + − =y y2 2 1 0;      y(0)=0,   0≤x≤1                                                     (3.4-8) 
Example 3: ′ − − =y y 2 1 0;        y(0)=0, 0≤x≤1                                                       (3.4-9) 

Example 4: ( ) ( )′′ + +
′
= = =y

y
y
y

y y1 0 0 1 1 2
2

; ,                                                     (3.4-10) 

erri denotes the relative error at the ith grid point, e.g., 
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The average error is defined as 
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The average relative errors for the above four examples are displayed in table 3-4. It is observed that the 
DQ method using different grid spacings yields approximate solutions of different accuracies. Based on 
comparison, the sampling points of type VI is the most accurate in the DQ solution of the first three 
examples, while type II produces the most accurate solutions for the fourth example. Obviously, types I, 
II, III and IV are symmetric spaced grid points, while types V and VI are not symmetric, e.g., where only 
one δ point is placed at immediate adjacent position of one boundary end. We can find that the 
asymmetric grid points seem to performs better for the problems with single boundary condition. In 
contrast, symmetric sampling points are more accurate for problems with double boundary conditions, one 
condition each with the two end points. This fact is also discovered again in applying the DQ method for 
analysis of deflection and vibration of beam and plates with two boundary conditions at each boundary. 
As shown in table 3-8, type IV gives the best solutions for these cases, while type VI yields the worst 
ones. In the case study for beam and plate, we exploit the technique proposed by Chen et al. (1993a), Du 
et al. (1994), Wang (1995), and Bert et al. (1996c) in applying multi-boundary conditions, namely, the so-
called DQZ approach as defined in later section 4.4. The technique uses the boundary condition analog 
equation instead of the DQ analog of the governing equations at the boundary and its immediate adjacent 
points.  
 
As were pointed out by Quan et al. (1989b) and Bert et al. (1994b), the Chebyshev-type points (e.g. type 
II, IV, and VI) in general produce more accurate solutions than the equally spaced points. It can be 
observed from table 3-3 that the Chebyshev grid spacing has a obvious tendency towards neighboring 
area of boundary ends than the equally spaced points. We define this phenomena as the boundary effect, 
namely, grid points should be placed to tend towards boundary ends where boundary conditions are 
impose. Although in this study we do not involve the Legender points and so-called Chebyshev-Gauss-
Lobatto points, it is noted that the Chebyshev points in general have stronger tendency towards two ends 
and sparser density in central region than either the Legendre points or the Chebyshev-Gauss-Lobatto 
points. Quan and Chang (1989a, b) pointed out that the Chebyshev points may be most efficient sampling 
points based on some numerical experiments in chemical engineering area. The boundary effect provides 
an explanation for this conclusion.  
 
Table 3-4 shows that the so-called δ spacings (types III, IV, V and VI) seem to be very effective for 
examples 1, 2 and 3 with single boundary condition. In these cases, the boundary effect manifests more 
obviously. Table 3-5 provides the relative errors at various grid points for example I in applying type II 
and IV of sampling points. The most inaccurate DQ solution is found at the second grid point for type II 
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and at third grid point for type IV. This phenomena also occurs in using types I and III for example 2 and 
3. The accuracies at δ points are obviously higher than those at other grid points. Table 3-9 compares the 
accuracies of type III with various δ value. δ=0.01 seems to be preferred. We find a most effective 
sampling points for the DQ analysis of static deflection of SS-SS-SS-SS square plate, which is shown in 
Table 3-10 and δ is arbitrary value within the scope of 0 to 0.181. The DQZ approach using such 
sampling points yields accurate solution 4.062×10-3 at center point, and 9.864 (relative error 0.06%, exact 
solution 9.869) for fundamental frequency of a SS-SS beam which is much more accurate than using the 
same number of any other existing grid spacing. A very interesting fact is also noted that the locations of  
δ points can not produce any affect on the DQ solutions of beams and plates when the DQZ technique is 
used to apply multi-boundary conditions in the DQ analysis of structural component analysis. The reason 
for this phenomena may be due to the fact that the DQZ approach applies the boundary conditions to 
replace the DQ analog equation of the governing equations at δ points immediate adjacent boundaries. In 
contrast, similar situations do not occur when the new approach in applying multiple boundary conditions 
proposed by Wang and Bert (1993a) is used. It is noted that the δ grid spacings are not applicable in 
vibrational analysis of  beams and plates by means of Wang and Bert’s approach. 
 
The absolute truncation error constants for the 1st and 2nd order derivatives in applying the present six 
types of sampling points are displayed in tables 3-6 and 3-7. It is noted that the truncation error constants 
are closely related to the grid spacings. In general, the error constants at points nearby boundaries are 
obviously larger than those at points nearby center region. The truncation error constants under the 
asymmetric grid spacings (types V and VI) is also asymmetric, while the symmetric sampling points yield 
basically symmetric distributions of error constants. The error constants for the 2nd derivative are also 
obviously larger than for the 1st order derivative. Also, it is a very interesting fact that smaller error 
constant at certain point can not ensure to obtain more accurate solution at the same point. The accuracies 
of the solution depend more on the total error distribution. However, it is worth stressing that the error 
constants at boundary points have not effect on the accuracies of the solutions if the DQ approximations 
are not required at the boundary points. The sample points, where error constants values have smaller 
relative difference, in general yield more accurate solutions, for example, the Chebyshev points. On the 
basis of the above case analysis, the following general rules for choosing sampling points in terms of 
efficiency and accuracy are concluded: 
1) The Chebyshev points are usually the first choice for polynomial approximation of a function. 

However, such situations do not occur in numerical approximation of partial derivative of a function. 
No grid spacing is in general consistently more efficient than any other possible one for differential 
equations of different types. 

2) The choice of sampling points is deeply related to the boundary conditions for problems of interest. 
For double boundary conditions, one each at two ends, the symmetric spaced grid points are 
preferred. In contrast, the asymmetric sampling points may be more effective in situations of 
problems with the single boundary condition. 

3) In order to avoid the so-called boundary effect, sampling points should be more inclination to 
boundary ends where boundary conditions are imposed. 

4) The accuracies of the DQ approximation using certain type of sampling points are determined to great 
extent by the relative difference among truncation error constants at various inner points including 
ends where no boundary conditions are imposed. In general, the sampling points, whose truncation 
error constants varied in a smoother form, yield more accurate approximation. Moreover, only the 
truncation errors of the highest order derivative in differential governing systems need be considered. 
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5) The δ value in the so-called δ spacings has not effect on the accuracies of the DQZ approach for 
analysis of beams and plates. Therefore, the choice of grid spacings for the DQZ need not consider 
the location of δ points, namely, if N points are used, we only consider the spacing problem of N-2 
sampling points. However, it is noted that δ points must locate between the boundary points and 
adjacent inner points. 

6) The  δ spacings is in general more effective for the DQ solution of differential equations. 
7) Rule 2 is more important than rule 4 in choosing sampling points. 
 
Since the DQ method and the collocation method are equivalent except for the different choices of grid 
points (Quan and Chang, 1989a), the above rules are also applicable for the collocation method. It is 
observed that the high efficiency using a kind of grid spacing for some problems usually means better 
stability and reliability. The present study only consider the DQ method based on the usual polynomial 
basis functions. It should be pointed out that the DQ method using other types of basis functions, which 
may be more proper for certain problems, have very fast speed of convergence and strong stable, namely, 
no limitation on the number of grid points. 
 
Table 3-4. A comparison of average errors of the DQ solutions using different sampling  points 

(δ=0.00001). 
 Type I Type II Type III Type IV Type V Type VI 

Example I 1.8E-4 5.7E-5 4.0E-5 2.1E-5 1.96E-5 9.98E-6 
Example II 2.1E-6 1.1E-6 5.8E-7 1.7E-7 2.6E-7 1.3E-7 
Example III 1.6E-2 8.4E-3 9.0E-3 3.7E-3 1.4E-3 6.4E-4 
Example IV 2.1E-4 3.4E-5 2.2E-4 1.6E-4 1.2E-3 1.5E-4 

 
Table 3-5. Accuracy comparison for example 1 at various grid points  

 2 3 4 5 6 7 
Type 2 2.2E-4 5.1E-5 3.2E-5 1.9E-5 1.6E-5 1.3E-5 
Type 4 2.9E-8 1.3E-4 4.2E-5 3.3E-5 1.9E-5 1.9E-5 

 
 
Table 3-6.  Absolute value of truncation error constants for the first order derivative 

Grids 1 2 3 4 5 6 7 
Type I 3.6E-1 6.0E-2 2.4E--2 1.8E-2 2.4E-2 6.0E-2 3.6E-1 
Type II 2.1E-1 7.4E-2 5.2E-2 4.7E-2 5.2E-2 7.4E-2 2.1E-1 
Type III 2.2E-5 2.2 E-5 1.0 E-1 9.1E-2 1.0E-1 2.2E-5 2.2E-5 
Type IV 1.8E-5 1.8E-5 1,1 E-1 1.4E-1 1.1E-1 1.8E-5 1.8E-5 
Type V 8.9 E-8 8.9E-6 3.5E-2 3.5E-2 5.4 E-2 1.9E-1 8.9E-1 
Type VI 6.3 E-6 6.3E-6 3.1E-2 6.2E-2 1.1E-1 2.0E-1 6.3 E-1 

 
Table 3-7.  Absolute values of truncation error constants for the second order derivative 

Grids 1 2 3 4 5 6 7 
Type I 9.9 8.1E-1 1.2E-1 3.6E-2 2.2E-1 1.0 11.3 
Type II 7.6 1.4E-1 4.9E-2 9.3E-2 1.6E-1 4.4E-1 8.4 
Type III 4.4 4.4 6.6E-2 1.8E-1 3.4E-1 4.4 4.4 
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Type IV 3.6 3.6 8.8E-1 2.8E-1 4.6E-1 3.6 3.6 
Type V 1.8 1.8 4.2E-2 1.3E-1 4.7E-1 2.2 24.1 
Type VI 1.3 1.3 4.4E-1 4.3E-1 6.1E-1 1.4 20.0 

 
Table 3-8. Relative errors of DQ solutions of center deflections of square plates  

 Type I Type II Type III Type IV Type V Type VI 
SS-SS-SS-SS  2.6E-2 1.9E-2 1.4E-2 2.5E-3 9.6E-2 1.6E-1 

C-C-C-C 2.4E-2 1.2E-2 5.5E-3 7.9E-3 1.3E-1 2.3E-1 

 
Table 3.-9. The effect of δ values on DQ average errors using type III grid spacing 

δ Example 1 Example 2 Example 3 Example 4 
0.1 5.7E-5 1.0E-6 8.8E-3 1.1E-4 

0.075 4.5E-5 8.1E-7 6.2E-3 1.4E-5 
0.01 3.9E-5 6.4E-7 7.8E-3 2.3E-4 

0.001 3.9E-5 6.6E-7 8.7E-3 2.3E-4 
0.0001 4.0E-5 6.9E-7 8.9E-3 2.2E-4 

0.00001 4.9E-5 5.8E-7 9.0E-3 2.2E-4 

 
Table 3-10.  

0.0 δ 0.181 0.5 0.819 1-δ 1.0 
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CHAPTER 4 
BOUNDARY VALUE PROBLEMS 

 
3.1. Introduction  
Chen, Wang and Zhong (1996b) proposed the new DQ approximate formulas in matrix form for partial 
derivatives in tow-dimensional domain, which were different from the conventional ones presented by 
Civan and Sliepcevich (1984b). By using these new approximate formulas, the DQ formulations for the 
Poisson and convection-diffusion equations can be expressed as the Lyapunov algebraic matrix equation. 
The formulation effort is greatly simplified, and a simple and explicit matrix formulation is obtained. A 
variety of fast algorithms in the solution of the Lyapunov equation (Bartels and Stewart, 1972; Golub et 
al., 1979; Gui, 1992) can be successfully applied in the DQ analysis of these two-dimensional problems, 
and, thus, the computing effort and storage requirements can be greatly reduced. Finally, we also point out 
that the present reduction technique can be easily extended to the three-dimensional cases.  
 
Many applications has shown that the DQ method is a very efficient technique for structural analysis. Bert 
and Malik (1996b) proposed a semi-analytical approach for further improving the efficiency of the DQ 
technique for some structural problems. However, the conventional applications of the DQ method does 
not work well. Wang and Bert (1993a) presented a new approach for application of multiple boundary 
conditions and proved that it was more efficient than the conventional approach for the analysis of some 
structural component. However, this new approach is not equally successful for beams and plates with 
clamped-clamped (C-C) boundary condition and other complex conditions. Chen et al. (1993, 1994) and 
Du et al. (1994) presented a different approach for the same task. The efficiency and simplicity of the 
approach are demonstrated via numerical examples. We also gave a theoretical explanation for this 
method. We compare these three approaches through numerical experiments. 
 
The geometrically nonlinear bending of orthotropic plate were recalculated by the DQ method (Chen, 
Zhong and He, 1996h). Due to the application of the Hadamard product and SJT product techniques and 
new matrix approximation formulas, the formulation and programming effort is greatly simplified, the 
computing effort and storage requirements are reduced to about one-twenty seventh and one-ninth as 
much as those in Bert et al. (1989). New approaches for applying boundary conditions also improve the 
accuracies of the DQ solutions for this case. 
 
4.2. New Approximate Formulas and Lyapunov Matrix Equation 
Chen et al. (1996b) gave the following DQ formulation in matrix form for the partial derivative of the 
function ψ(x,y) in two-dimensional variable domain, e.g. 
∂ ψ
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                                     (4.2-1) 

where the unknown ψ is a rectangular matrix rather than a vector as in other references. The matrices A 
and B with subscripts stand for the DQ weighting coefficient matrices for the 1st and 2nd order partial 
derivatives with respect to the corresponding independent variables, respectively. The superscript T on the 
A and B means the transpose of the matrices. There are similar approximate formulas for higher order 
derivatives. Formula (4.2-1) is very useful to reduce the formulation and computational effort in practice 
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(Chen, Zhong and He, 1996h; Chen and Zhong, 1996i). It is noted that the present DQ approximate 
formulas in matrix form can be easily extended to three-dimensional problems. 
 
In terms of the matrix approximate formulas (4.2-1), the governing equations for some boundary value 
problems can be easily converted into a Lyapunov algebraic matrix equation. The detailed examples will 
be provided in the later section 4.3. In what follows we discuss the several existing fast algorithms for the 
solution of the Lyapunov equation. 
 
The Lyapunov matrix equation are often encountered in the optimal control, and several efficient methods 
for solving equations of such type have been proposed. To simplify the presentation, BS, HS and R-THR 
represents the methods presented, respectively, by Bartels and Stewart (1972), Golur , Nash and Loan 
(1979), and Gui (1992). In the following we only discuss the computational efficiency of these methods. 
Detailed information on their use see the corresponding references. All these methods are also stable and 
in general include the following four steps (Nash and Loan, 1979, and Gui, 1992). For example, 
considering the Lyapunov equation 
ψ ψG R Q+ = ,                                                                                                                               (4.2-2) 
where G, R and Q are constant rectangular matrix, ψ  is the rectangular matrix composed of the desired 

values. We have 
Step 1: Reduce G and R into certain simple form via the similarity transformations G*=P-1GP and R*=S-

1RS. 
Step 2: F= S Q P-1 for the solution of F. 
Step 3: Solve the transformed equation V G*+ R*V=F for V. 
Step 4: ψ =SVP-1. 

The respective computational effort is listed in table I (Gui, 1992). 
 
Table 4-1. Comparison of computational effort in the BS, HS and R-THR methods 

      G*=P-1GP 
 R*=S-1RS 

F= S-1QP 
for F 

VG*+R*V=F              
for V 

ψ =SVP-1  
for ψ  

BS 10(m3+n3) 
 

m2n+mn2 (m2n+mn2)/2 m2n+mn2 

HS 5m3/3+10n3 

 
m2n+mn2 3m2n+mn2/2 m2n+mn2 

R-THR m3+n3 
 

m2n+mn2 n3/3+5m2n+ 3mn2 m2n+mn2 

 
Based on consideration of the computational effort,  the R-THR method is the most efficient for boundary 
value problems. The detailed analysis on the computational efficiency can be found in the latter section 
4.3. 
 
On the other hand, the DQ formulations for some problems are not Lyapunov matrix equation, even if the 
present matrix approximate formulas are applied, for example, problems in field of  structural mechanics. 
However, the use of the present approximate formulas can greatly reduce the formulation effort and yield 
a explicit matrix formulation. Therefore, the programming is simplified significantly. The desired ψ  in 

Methods 

Steps 
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rectangular matrix form can be converted into the conventional vector form by the following Lemma 
4.2.1. 
 
Lemma 4.2.1. If  A∈Cp×m, B∈Cn×q and the unknown X∈Cm×n,  then 
vec AXB A B vec XT( ) ( ) ( )= ⊗                                                                                                    (4.2-3) 

where vec( ) is the vector-function of a rectangular matrix formed by stacking the rows of matrix into one 
long vector, ⊗ denotes the Kronecker product of matrices. To simplify the presentation, we define 

( )vec AXB AXB=
K

 and ( )vec X X=
K

. 

Corollary:  
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                                                                        (4.2-4) 

where In and Im are the unit matrix.  
 
The examples on anisotropic plate in section 6.3 and geometrically nonlinear plates in section 4.5 show 
obvious advantages of the present matrix approximate formulas. 
 
4.3. Convection-Diffusion Equations and Poisson Equation 
Compared with the Galerkin, Control-volume and finite difference methods, the differential quadrature 
(DQ) method has proved to be a most efficient numerical technique in the calculation of the Poisson and 
convection-diffusion equations (Civan and Sliepcevich, 1983a, b; 1984b). The present study deals with 
further improvement of efficiency of the DQ method for these cases. By using the new approximate 
formulas presented in section 4.2, the DQ formulations for the Poisson and convection-diffusion 
equations can be expressed as the Lyapunov algebraic matrix equation. The formulation effort is 
simplified, and a simple and explicit matrix formulation is obtained. A variety of fast algorithms in the 
solution of the Lyapunov equation can be successfully applied in the DQ analysis of these two-
dimensional problems, and, thus, the computing effort and storage requirements can be greatly reduced. 
Finally, we also point out that the present reduction technique can be easily extended to the three-
dimensional cases (Chen et al., 1996i).  
 
4.3.1. Formulations in the Lyapunov Matrix Equation Form 
Unlike the conventional DQ method (Civan and Sliepcevich, 1983a, b; 1984b), the DQ weighting 
coefficients here are modified in advance by using the boundary conditions. For example, considering the 
Dirichlet and Neumann boundary conditions in the x-direction (x∈[0,1])  
( )φ 0, y h=                                                                                                                     (4.3-1) 

( )∂φ
∂
1, y
x

q= .                                                                                                                 (4.3-2) 

Eq. (4.3-2) can be approximated by 

A qNj j
j

N

φ
=
∑ =

1
.                                                                                                                 (4.3-3) 

The function values at boundary points can be expressed  by the unknown interior point function values, 
namely, 
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φ φN
NN

N Nj j
j
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A
q A h A= − −
⎛
⎝
⎜

⎞
⎠
⎟

=

−

∑1
1

2

1

.                                                                          (4.3-4) 

Substituting equations (4.3-4) and (4.3-1) into the DQ formulations for the first and second derivatives, 
respectively, we have 
∂φ
∂

φ
K

K K
x

A ax x= +                                                                                                              (4.3-5) 

∂ φ
∂

φ
2

2

K
K K

x
B bx x= + ,                                                                                                         (4.3-6) 

where { }K
…φ φ φ φ= −2 3 1, , N , 

Kax  and 
K
bx  are the constant vectors, A x and B x are the 

modified (N-2)×(N-2) weighting coefficient matrices for the 1st and 2nd order derivatives, respectively. 
Also, it is noted that the similar procedures can be used to incorporate any complex linear boundary 
conditions into the DQ weighting coefficient matrices. Substituting Eqs. (4.3-5) and (4.3-6) into matrix 
approximate formulas (4.3-1), we have 
∂ φ
∂

φ
∂ φ
∂

φ

∂φ
∂

φ
∂φ
∂

φ

2

2

2

2 0

~
~ ,

~
~ ,

~
~ ,

~
~

x
B B

y
B B

x
A A

y
A A

x ox y
T

y
T

x ox y
T

oy
T

= + = +

= + = +
,                                                                  (4.3-7) 

where the unknown ~φ  is a n×m rectangular matrix rather than a vector as in Civan and Sliepcevich 
(1983a, b, 1984b), n and m is the number of inner grid points along x- and y- directions, respectively. The 
superscript T means the transpose of the matrices. A0x and B0x are generated by stacking the 
corresponding constant vectors 

Kax  and 
K
bx   in Eqs. (4.3-5) and (4.3-6).  For example,   

A

a a a
a a a

a a a

x

x x x

x x x

nx nx nx n m

0

1 1 1

2 2 2=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

×

"
"

# # % #
"

.                                                                                      (4.3-8) 

A0y and B0y can be obtained in a similar way. For higher order partial derivatives, there exist similar 
matrix approximate formulas. 
 
The Poisson equations can be normalized as: 

2

2
2

2

2 0
∂ φ
∂

β
∂ φ
∂x y

S+ + = ,                                                                                                 (4.3-9) 

where x and y are the dimensionless Cartesian coordinates, namely x, y∈[0, 1], β denotes the aspect ratio, 
S is a given strength, φ   is the desired variable. More details see Civan and Sliepcevich (1983b). 
 
Applying the matrix approximate formulas (4.3-7), the DQ formulation for equation (4.3-9) is given by 
B B Hx y

T~ ~φ β φ+ + =2 0,                                                                                            (4.3-10) 

where ~φ , Bx  and B y  are  (n-2)×(n-2) rectangular matrix, H S B Bx oy
T= + +0 . Since the 

boundary conditions have been taken into account in the formulation of weighting coefficient matrices 
Bx  and B y , no additional equations are more required. 

 
The equation governing steady-state convection-diffusion (e.g., equation (24) in Civan and Sliepcevich 
(1983b) neglecting time derivative term) can be simplified as 
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α
∂ϕ
∂

β
∂ϕ
∂

ϕ
αx y

+ =
4

,                                                                                                    (4.3-11) 

where ϕ  is the desired values as defined in equation (23) in Civan and Sliepcevich (1983b), α and β are 
constants. In terms of the new DQ matrix approximate formulas (4.3-7), we have   

α ϕ βϕ ϕB B
a

Qx y
T~ ~ ~+ − =

1
4

,                                                                                      (4.3-12) 

where Q is constant matrix generated from the modified DQ weighting coefficient matrices similar to H 
matrix in Eq. (4.3-10). Furthermore, the above equation can be restated as 

α ϕ βϕB
a

B Qx y
T−

⎛
⎝
⎜

⎞
⎠
⎟ + =

1
4

~ ~                                                                                        (4.3-13) 

The above DQ formulations (4.3-11) and (4.3-13) are the Lyapunov algebraic matrix equation. Obviously, 
they are more explicit and simpler than the conventional polynomial formulations given in Civan and 
Sliepcevich (1983a, b; 1984b).  
 
4.3.2. Results 
The respective computational effort for the algorithms of solution of Lyapunov equation is listed in table 
4-I in section 4.2. The total computing effort in these methods is O(n3+m3) scalar multiplications. The R-

THR method requires n3+
4
3

m3+7n2m+5mn2+n2 (or 14
1
3

n3+n2 when n=m) scalar multiplications, and 

may be the most efficient in the solution of the Lyapunov matrix equations for the present purpose. By 
using the R-THR method, the same examples given in Civan and Sliepcevich (1983b) are recalculated by 
the DQ method, and the accuracies of results are coincident with those given by Civan and Sliepcevich 
(1983b). However, the conventional approach required solving a linear simultaneous equations of (Nx -
2)(Ny -2) order by using the Gaussian elimination method, where Nx  and Ny  are the number of gird points 

along x- and y- directions, respectively. If N=Nx=Ny, about 
1
3

(N -2)6 multiplications were performed. In 

contrast, the present reduction approach requires about 14
1
3

(N -2)3 multiplications. Thus, the 

computational effort is only about 34% in using 7×7 grid points and 6% in using 11×11 grid points as 
much as that in Civan and Sliepcevich (1983b). The steady-state convection-diffusion (example 1 in 
Civan and Sliepcevich (1984b)) is also computed by using the present technique, and the same computing 
reduction is achieved. Gui (1992) also pointed out that the parallel computation was very efficient in the 
solution of the Lyapunov equations. It is well known that more grid points, more accurate DQ results, 
while the computational effort in the present DQ method for these cases is reduced in proportional to (N -
2)3. 
 
4.3.3. On the three-dimensional problems 
For three-dimensional cases, we first convert into it into a set of ordinary differential equations by using 
the new DQ matrix approximate formulas (4.3-7) and the Kronecker product. It is straightforward that the 
DQ matrix approximate formula for a set of ordinary differential equations is similar to formulas (4.3-7). 
Thus, the ordinary differential equations can be formulated into a Lyapunov matrix equation. The 
following examples can illustrate our idea more clearly. Considering the three-dimensional steady-state 
convection-diffusion equation (equation (52) in Civan and Sliepcevich (1984b) neglecting time derivative 
term) 
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∂
∂

β
∂
∂

γ
∂
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= +
2

2

2

2 .                                                                                            (4.3-14) 

First, in terms of the DQ matrix approximate formulas (4.3-14), the above equation can be approximated 
as the following ordinary equations,  

A C CB Q
d C
dzx y

T~ ~
~

− + =β γ
2

2 ,                                                                                  (4.3-15) 

where ~C  is a (Nx-2)×(Ny-2) rectangular matrix, Q= A x0 − βB y
T
0 . By using the Kronecker product of 

matrices (Lancaster and Timenetsky), we have  

[ ]γ β
d C
dz

A I I B C Qx y x y

2

2

G
K

= ⊗ − ⊗ + ,                                                                 (4.3-16) 

where 
K

C  is a ((Nx-2)(Ny-2)) ×1 vector stacked from matrix C. The DQ matrix approximate formula for 
the above ordinary differential equations can be written as 

[ ]A I I B C CB Rx y x y z
T⊗ − ⊗ − =β γ� �                                                                      (4.3-17) 

where �C  is a ((Nx-2)Ny-2))×(Nz-2) rectangular matrix, R= γBoz
T −Q. The above equation is also a 

Lyapunov matrix equation. Thus, the reduction technique for the Lyapunov equation can be used to 
achieve a considerable savings in computational effort.   

  
4.3.4. Remarks 
Civan and Sliepcevich (1983b; 1984b) suggested that special matrix solver should be developed to reduce 
the computing effort in applying the DQ method to the Poisson and convection-diffusion equations. The 
present work realizes this goal to minimizes the computational effort. It is shown that the principal 
advantages of the new matrix approximate formulas are to offer a more compact and convenient 
procedure for obtaining an explicit matrix formulation and make the DQ method computationally more 
efficient for multi-dimensional problems by means of the existing techniques in the solution of the 
Lyapunov equations. It is concluded that the presented DQ approximate formulas in matrix form are 
competitive alternatives to the conventional ones presented by Civan and Sliepcevich (1984b). The 
extension of the present reduction DQ method to the transient convection-diffusion equations are a current 
subject of further study.  
 
4.4.1. Traditional DQN Approach  
To apply the DQ method to the analysis of structural components, the traditional DQN approach required a 
special nonuniform grid spacing, in which two points, separated by a very small distance δ, are placed at 
each boundary point. One boundary condition each is imposed at the so-called δ point immediate adjacent 
boundary, and thus the approach can not satisfy exactly all boundary conditions and the accuracies of the 
solution are affected. The approach has been high efficiency for the C-C boundary condition but not 
equally successful for other boundary conditions (Wang and Bert, 1993a; Wang, Bert and Striz, 1993b). 
The accuracy of the solutions depends on the proper choice of  δ. However, too small  δ will result 
oscillation and deteriorate the computations. δ is usually determined by trial and error for different cases. 
This is a rather tedious work in practice. In addition, the number of grid points in the DQN approach can 
not be large due to the instability caused by the δ effect. The approach has been utilized  to analyze a 
variety of structural components (Jang, 1989; Bert et al., 1988a, 1989; Farsa et al., 1991; Feng, 1992; 
Kukretic et al., 1992; Laurra, 1993, 1994a,b, 1996; Sherbourne et al. 1991; Striz et al., 1988), and extended 
to handle truss and frame structures (Striz et al., 1994a) 
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4.4.2. Wang and Bert’s New Approach  
To overcome the drawbacks in the DQN approach, Wang et al. (1993a, b, c, 1994a, b, 1995) and Bert et 
al. (1993) developed a new DQU approach. The essence of the technique is that the boundary conditions 
are applied during formulating the weighting coefficient matrices for inner grid points. The accuracy and 
efficiency using the DQU approach is much higher than those using the conventional DQN approach. 
However, it is regret that the DQU approach is not applicable for the C-C boundary condition. Another 
shortcoming is that the DQU approach seems not to be applicable for the problems with complex 
boundary conditions or extra constrains. Thus, a combination of the DQU and DQN approaches was used 
to handle the problems with both the C-C boundary condition and other boundary conditions in Wang et 
al. (1993b). 
 
If Wang and Bert’s new approach is employed to modify the weighting coefficient matrices in advance, 
the matrix approximate formulas (4.2-1) can be expressed as  
∂ ψ
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ψ
∂ ψ
∂ ∂
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∂ ∂
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T

x y
T
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x y
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= = =

= = = =
         (4.4-1) 

where the unknown �ψ  is a rectangular matrix composed of desired function values at inner grid points, 

A , B , C  and D   with subscripts x and y here stand for the DQ weighting coefficient matrices, 
modified by the respective boundary conditions using Wang and Bert’s DQU approach, for the 1st, 2nd, 
3rd and 4th order partial derivatives, respectively. 
 
4.4.3. Another New Approach  
Chen (1994) noticed the fact that the rank of the weighting coefficient matrix for the ith order derivative is 
m-i, where m is the number of grid points. Moreover, the coefficient matrix is in fact a nilpotent matrix, 
namely the weighting coefficient matrix is a zero matrix when m=i. Therefore, the coefficient matrices in 
the DQ method must be modified into full rank matrices before practical computation. Chen and Yu 
(1993)1 proposed a different DQZ approach to eliminate the δ effect in the conventional DQN approach. 
The rank of the DQ coefficient matrix for the 4th order derivative is N-4. Therefore, the DQ analog 
equations of the governing equations in the points immediate adjacent boundary ends are replaced by 
boundary equations, and all boundary conditions are imposed at boundary points exactly. Bert and Malik 
(1996d) emphasized that in the DQZ method the replacement of the quadrature analog equations at inner 
points can not be arbitrary for vibrational analysis of beams and plates. They also proposed to employ the 
δ grid spacings in the present DQZ approach to avoid that the inner points of invoking the boundary 
conditions are of the ones of zero displacements, i.e., the nodal points of the vibrating beams and plates. 
However, according to our work in section 3.4, the δ value of the δ grid spacings has no effect on the 
DQZ solutions of both static and vibration problems. The improvement on accuracies for example 3 using 
the δ grid spacings in Bert and Malik (1996d) is due to the application of the different grid spacings at 
inner sampling points2 rather than the very samll δ value. Therefore, it seem not to be necessary to use the 
very small δ value in the DQZ approach.  
 

                                                           
1Du et al. (1994) also presented independently this approach in analyzing the structural  components. 
2 Here inner sampling points exclude end points and their immediate adjacent points. 
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The DQZ approach is conceptually simple and effective for the C-C boundary conditions as well as any 
other boundary condition. The principal advantages of the approach are better numerical stability and 
somewhat higher accuracy in comparison to the conventional DQN approach as well as the DQU 
approach for many cases. The requirements for very small δ is not necessary as in the DQN approach. 
Therefore, the larger number of grid points can be used in the DQZ approach. Moreover, there is more 
room for selecting types of sampling points in the DQZ method. In this paper, an improvement is also 
made for the DQZ approach, namely, we eliminate the first two and last two rows of the original 
weighting coefficient matrix and apply the four boundary condition equations to modify it into (N-4)×(N-
4) matrix of full rank before the formulation of two-dimensional partial differential systems. Bert and 
Malik (1996d) pointed out that two different boundary conditions at the same corner point from the 
respective two edges may cause one problem in the implementation of multiple boundary conditions. The 
so-called corner difficulty is avoided in the present DQZ formulation, since the boundary condition 
equations are incorporated into the DQ weighting coefficient matrices in advance. The resulting size of 
the formulation equations is also reduced. For example, the DQ approximate equations for the C-C 
boundary condition are given by 

w1 0= ,             A wj j
j

N

1
1

0
=
∑ =                                                                                                  (4.4-2) 

and 

wN = 0,             A wNj j
j

N

=
∑ =

1
0,                                                                                               (4.4-3) 

where wj’s are the corresponding displacement at the jth grid point. It is noted here that all boundary  
conditions are exactly satisfied at boundary points. The desired displacement at the 2nd and (N-1)th grid 
points are expressed in terms of the unknown function values at interior point, namely, 

w
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A wj j
j
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∑                                                                                                               (4.4-4) 
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                                                                                                   (4.4-5) 

Substituting equations (4.4-4) and (4.4-5) into the DQ analog equations for the 1st, 2nd, 3rd and 4th 
derivatives at the 3rd, 4th until (N-2)th grid points, respectively, we have 
dw
dx

Aw d w
dx

Bw d w
dx

Cw d w
dx

Dw
K K K K K K K K= = = =, , ,

2

2

3

3

4

4                                         (4.4-6) 

where { }K …w w w w N= −3 4 2, , , . A ,  B , 
K

C   and D  are (N-4)×(N-4) modified coefficient 

matrices different from those of (N-2)×(N-2) dimension in the DQU approach. For other boundary 
conditions, the modified coefficient matrices can be obtained in the similar way. The extension of this 
idea to the DQN approach is also beneficial to simplify its use. Matrix approximate formulas in the DQZ 
approach is similar to formulas (4.4-1) for the DQU approach. 
 
4.4.4. Some Examples and Discussions 
In the following, DQZ is first applied to solve the deflection of a cantilever beam under a centralized load 
at free end. In terms of  the DQ method, the governing equation for this case can be expressed as  

D w pL
EINj

j

N

j
=
∑ =

1

3

                                                                                                                       (4.4-7) 

and 
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Applying the DQ method to the Boundary conditions in the DQZ way, we obtain 
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It is obvious that the DQZ approach satisfies all boundary conditions at boundary ends. The analytic 
solution for this case is a third order polynomial, while the DQ method is a polynomial fitting method. 
The DQZ method gives analytic solutions for this case by using only five equally spaced grid points. Bert 
et al. (1994b) computed this case by the DQU method and obtained analytic results at all grid points 
except for solution at the loading end.  We list all these results in table 4-2. Although the larger number of 
grid points (N=7, 9) is used, the DQU method can still not obtain analytic solution at loading end.  Bert et 
al. (1994b) also used non-uniform grid spacing that a grid point is placed close to the loading end. The 
closer this grid point is to the loading end, the better the DQU approach yields solution at the loading end. 
But it should be pointed out that the analytical solution at the loading end can never be obtained by DQU. 
The DQU method has an inherent discontinuity for structures under concentrated load at boundary point. 
Applying the special grid spacing can decrease the effect of this discontinuity but not eliminate it. 
Similarly, consider the deflection of the circular plate under a concentrated load at center point, DQZ can 
obtain the exact solutions at all grid points including loading point, while DQU cannot. Therefore, the 
DQU approach appear not to be very suitable for the structural components subjected to the centralized 
load which are often encountered in practice. 
 
Table 4-2. Nondimensionalized deflection w of a cantilever beam subjected to a concentrated end 

load P (w w EI PL= 3  ). 

x/L 0 1/4 1/2 3/4 1.0 
DQU (N=5)   0 0.028646 0.10417 0.21094 0.32884 (-1.3%)  
         (N=9) 0 0.028646 0.10417 0.21094 0.33300 (-0.1%) 
DQZ  (N=5) 0    0.028646 0.10417 0.21094 0.33333 
EXACT 0   0.028646 0.10417 0.21094 0.33333 

 
The DQU method is also not amenable to a C-C beam or plates with a combination of C-C and other 
boundary conditions. Wang (1993b) still compute this sort of problems by means of a combined use of 
DQN and DQU. We also apply DQZ (five grid points used) to the deflection of C-C beam under the 
uniformly distributed load, and analytic solutions are obtained at all grid points. In contrast, the deflection 
at center point by DQN (Wang et al., 1993b) was 0.0026031(δ=0.0005), while analytic solution is 
0.0026042. Although the DQN error was very small, it was not exact solution. In fact, DQN cannot obtain 
analytical solution at any grid point for this case and the above cantilever beam because it can not exactly 
satisfy all boundary conditions at the boundary points. 
 
The cases that the DQ method can give their analytic solutions are few. Consider the fundamental 
frequency of free vibration of a cantilever beam, the analytical solution is 3.516, the results by DQN is 
3.524 (N=9, error 0.24%), DQU 3.514 (N=7, error -0.05%) in Wang et al. (1993b), and DQZ 3.517 (N=9, 
error 0.03%) in Bert and Malik (1996). Here N is the number of grid points, and equally spaced grid 
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points with the δ points are used for DQZ and DQN. DQU uses the equally spaced points without the δ 
points. It is noted that the computing effort in the DQZ and DQN methods using N sampling points is 
basically equal to that in the DQU method using N-2 sampling points. Obviously, DQZ is the best 
approach for this case, while the accuracy of DQN is the worst. The above-mentioned examples are 
provided to demonstrate that DQZ is more effective than DQU and DQN in many cases. So far we have 
not found cases for which  DQN is more effective than DQZ. DQN has been shown to be very efficient 
for analysis  of clamped beam and plate (Wang et al, 1994; Bert and Malik, 1996). Even if considering 
these cases, the DQZ approach also has the same computing accuracies and efficiency as the DQN 
approach if the DQZ approach applies the similar grid spacings. Therefore, it is concluded that the DQZ 
approach is very competitive alternative to the DQN approach. The conclusion is also supported by the 
following case analysis. However, it should be pointed out that DQU can yield better results for some 
problems than DQZ in a comparable computational effort. For instance, considering the simply supported 
beam, the relative errors using the DQZ (N=9) and DQU (N=7) approaches are 0.2% and 0.02%, 
respectively, but it is also noted that the DQZ (N=8), DQN (N=8) and DQU (N=6) solutions for this case 
is 0.25%, 0.27% and 0.5%. The DQZ (N=9) and DQU(N=7) solutions for static deflection of SS-SS-SS-
SS plate are 0.05% and 0.1%, respectively. Therefore, it is concluded that the DQU technique may be 
very efficient only under some specific situations. 
 
In section 2.2 we discuss the formulation-H for geometrically nonlinear vibration of beams. In the 
following we continue this work. The DQN results by Feng and Bert (1992) for the clamped-clamped 
case agreed very well with existing FEM solutions by Mei (1973). However, their results for the simply 
support-simply supported case showed somewhat large discrepancy with FEM (Mei, 1973) and analytical 
solutions (Singh and Rao, 1990). This is because the conventional DQN approach was not very successful 
for SS-SS boundary conditions (Wang and Bert, 1993). In the following analysis, we will show Wang and 
Bert’s DQU approach to be very efficient for the analysis of nonlinear structural components with SS-SS 
boundary conditions (Chen et al., 1996j). 
 
It is known that, in Wang and Bert’s new approach, there exists 
D B= 2                                                                                                                                          (4.4-10) 
for SS-SS boundary conditions. Therefore, B  and D  are orthogonal similarity and both have the same 
eigenvectors. So the beam oscillates at the same mode as the one in the linear case, and the iterative 
procedures for the solution of equation (2.2-7) used in Feng and Bert (1992) are not necessary for the SS-
SS case. In this study, we first solve the eigenvalue and eigenvectors of B  and D , and then obtain the 
nonlinear coefficient of equation (2.2-7) by using these eigenvectors. The resulting dimensionless 
nonlinear frequency can be obtained by  
ϖ λ ηλ= −D B                                                                                                                         (4.4-11) 

where λB  and λD  are the eigenvalues of B  and D , η is nonlinear coefficient. If choosing the minimum 
values of λB  and λD , the fundamental dimensionless nonlinear frequency is obtained. 

 
Seven equally spaced grid points are used in the present DQ computation. Table 4-3 shows the 
remarkable agreement between the analytical, finite element and present DQ solutions. Amplitude-
frequency curves are plotted in Figure 4-1. Obviously, DQU gives more accurate results than the 
conventional DQN by Feng and Bert (1992). As is expected, the DQ solutions using the zeros of the 
Chebyshev polynomial of seven order are more accurate than using equally spaced grid points, and in this 
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case are coincident with the analytical ones. Compared with FEM, the DQ method yields more exact 
results and is easier to be used and requires much less computational effort and storage. 
 
Circular plates with clamped or simply supported edge under uniformly distributed loading have been 
studied by Bert et al. (1988, 1994), Jang et al. (1989), Chen et al. (1993), Wang (1995) by using the DQN, 
DQU and DQZ approaches, respectively. We only compare the numerical results here. For the details see 
the related references. The DQU and DQZ approaches can give analytical solutions for static bending of 
circular plates, while the DQN approach can not. As was pointed out by Bert and Malik (1996d), the 
DQU technique has some limitations in practical engineering. Therefore, it is our conclusion that the DQZ 
method is in general preferred in the DQ solution of problems with multiple boundary conditions. Also, 
the DQN, DQU and DQZ solutions of geometrically nonlinear bending of plates are discussed in later 
section 4.5. We can obtain the same conclusion as in linear cases.  
 
Table 4-3. The ratios (ωn/ωl) of the nonlinear frequencies to the linear frequency for a SS-SS beam. 

a/r Elliptical integral[6] Analytical Present DQ DQ[1] FEM[2] 
0.1 1.0009 1.0009 1.0009 1.0010 1.0009 
0.2 1.0037 1.0037 1.0037 1.0043 1.0037 
0.4 1.0149 1.0149 1.0149 1.0170 1.0148 
0.6 1.0331 1.0332 1.0332 1.0384 1.0329 
0.8 1.0580 1.0583 1.0582 1.0673 1.0578 
1.0 1.0892 1.0897 1.0896 1.1030 1.0889 
1.5 1.1902 1.1924 1.1922 1.2045 1.1902 
2.0 1.3178 1.3229 1.3225 1.3170 1.3183 
3.0 1.6257 1.6394 1.6389 − 1.6260 
4.0 1.9760 2.0000 1.9991 − 1.9715 
5.0 2.3501 2.3848 2.3836 − 2.3341 

Results underlined are incorrectly typed in Feng and Bert (1992). 
 
What follows may be outside our scope of the title of this section. A straightforward and intuitive 
procedure is given to obtain the analytical solution of governing equation of geometrically nonlinear 
vibration of SS-SS beam. 
 
The m order normal mode of a linear SS-SS beam is 
( ) ( )v mξ πξ= s i n .                                                                                                                    (4.4-12) 

Based on the fact that the nonlinear SS-SS beam has the same vibrational mode as the linear SS-SS beam, 
we obtain nonlinear frequency of m order mode for geometrically nonlinear SS-SS beam by substituting 
equation (4.4-12) into equation (2.2-7) 

( )ϖ π= +m
a
r

2
2

21
3

16
.                                                                                                        (4.4-13) 

The above solution is coincident with that by using the perturbation method (Singh et al., 1990) and is 
regarded as the analytical solution of the m order mode. Thus,  

ϖ
ωl

a
r

= +1
3

16

2

2 ,                                                                                                                  (4.4-14) 

where ωl =(mπ)2 is the linear frequency of m order model.  
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The elliptic integral solutions for assumed space model (ASM) in this case by Woinowsky-Krieger (1950) 
are also listed in table 4-3 and compared with the analytical solutions of the governing equation (2.2-7) in 
Figure 4-2. It is noted that both agree well especially when a/r is less than 2.0. Therefore, it is concluded 
that the governing equation (2.2-7), e.g. the so-called assumed time model (ATM), provides a rather 
accurate description for the geometrically nonlinear vibration of SS-SS beam. 
 
4.5. Geometrically Nonlinear Bending Analysis of Plates 
The geometrically nonlinear behavior of thin plates is usually described by the von Karman equations and 
has become a benchmark problem for testing numerical solutions to nonlinear partial differential 
equations (Timoshenko and Woinowsky-Krieger, 1959). Bert et al. (1989) have used the DQ method to 
solve the static von Karman equations in analyzing geometrically nonlinear bending of isotropic and 
orthotropic rectangular plates. In the present study, we wish to apply some new techniques, presented in 
the foregoing sections, to simplify the use and improve efficiency and accuracy in applying DQ method 
for these cases. The main purpose of this section is to show the utility, simplicity and high efficiency of 
the Hadamard product and SJT product approach as well as new matrix approximate formulas in the DQ 
nonlinear computations (Chen et al., 1996h). 
 
Considering a thin, homogeneous, orthotropic rectangular plate subject to a uniformly distributed 
transverse load (Bert et al. 1989), we have 

( )E u G u Cv w E w G w Cw wxx yy xy x xx yy y xy1 12 1 12, , , , , , , ,+ + = − + −μ μ                                      (4.5-1a) 

( )E v G v Cu w E w G w Cw wyy xx xy y yy xx x xy2 12 2 12, , , , , , , ,+ + = − + −μ μ                                     (4.5-1b) 

( )

( ) ( )]
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2
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⎡

⎣
⎢

+ +⎛
⎝⎜

⎞
⎠⎟

+ + + +

μ
υ

υ μ
               (4.5-1c) 

in terms of three displacement components, where ν12 and v21 are Poisson’s ratio,  E1 and E2 are the 
Young’s moduli. C is the shear modulus, D1, D2 and D4  are the principal bending and twisting rigidities, 
μ=1-ν12v21, u, v and w are the desired inplane and transverse displacements. a, b and h are width, length 
and thickness of plate, respectively. The equations are high nonlinearity, which consists of two second 
order and one fourth order simultaneous cubic nonlinear partial differential equations.  
 
Applying the Hadamard product and the presented DQ matrix approximate formulas (2-7), the 
formulations for this case are 

( ) ( )
( ) ( )

E B U G UB CA VA A W E B W G WB

C WA A WA

x y
T

x y
T

x x y
T

y
T

x y
T

1 12 1 12+ + = − +

−

μ μD

D
                                (4.5-2a) 

( ) ( )
( ) ( )

E VB G B V CA UA WA E WB G B W

C A W A WA

y
T

x x y
T

y
T

y
T

x

x x y
T

2 12 2 12+ + = − +

−

μ μD

D
                               (4.5-2b) 
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       (4.5-2c) 

where A , B  and D  with subscript x and y denote the modified weighting coefficient matrix along x and 
y directions, respectively. The orders of these matrices are N-2 for the DQU approach and N-4 for the 
DQZ and DQN approaches, where N is the number of grid points. Note that the boundary conditions have 
applied in the DQU, DQZ and DQN approaches and, thus, are no longer considered. U, V and W in the 
above formulations are rectangular matrices. Also, 

K
Ax  and 

K
Bx  along the x-direction and 

K
Ay  and

K
B y  

along y-direction are, respectively, the same for the desired displacement U, V and W in the cases of 
clamped and simply supported edges. 
 
By using the Kronecker product of matrices, we have 

( ) ( ) ( ) ( )H U H V H W H W H W H W1 2 7 1 8 2

K K K
D

K K
D

K
+ = − −                                                               (4.5-3a) 

( ) ( ) ( ) ( )H U H V H W H W H W H W2 3 8 3 7 2

K K K
D

K K
D

K
+ = − −                                                               (4.5-3b) 
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where 
K

W , 
K

U  and 
K

V  are vectors yielded by stacking the rows of the corresponding rectangular matrix 
W, U, and V into one long vector. H1, H2, H3, H4, H5, H6, H7 and H8 are defined as follows: 

( ) ( )H E B I G a
b

I Bx y x y1 1 12

2

= ⊗ + ⎛
⎝⎜

⎞
⎠⎟

⊗μ                                                                              (4.5-4a) 

( )H C A Ax y2 = ⊗                                                                                                                         (4.5-4b) 
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( )H h
a

A Ix y7

2

2= ⊗                                                                                                                       (4.5-4g) 

( )H h
b

I Ax y8

2

2= ⊗                                                                                                                       (4.5-4h) 
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Obviously, the nonlinear formulations are very easily accomplished by using the new matrix approximate 
formulas and Hadamard product. The present matrix form is also much simpler and more explicit than the 
conventional algebraic polynomial form given by Bert et al. (1989). 
 
The variables are  nondimensionalized as X x a Y y b U u a V v b≡ ≡ ≡ ≡, , , and W w h≡ . 

Equations (4-3a) and (4-3b) can be also restated as 
( )H U H V L W1 2 1

K K K
+ = −                                                                                                            (4.5-5a) 

( )H U H V L W2 3 2

K K K
+ = −                                                                                                           (4.5-5b) 

where 

( ) ( ) ( ) ( ) ( )L W H W H W H W H W1 7 1 8 2

K K
D

K K
D

K
= +                                                                            (4.5-6a) 

( ) ( ) ( ) ( ) ( )L W H W H W H W H W2 8 3 7 2

K K
D

K K
D

K
= +                                                                           (4.5-6b) 

The unknown vector 
K

U  and 
K

V  can be expressed in terms of 
K

W  by 

( ) ( )K K K
U H H L W H H L W= −− − − −

9
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3
1

2 9
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2
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1                                                                                        (4.5-7a) 

and  

( ) ( )K K K
V H H L W H H L W= −− − − −

10
1

2
1
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1                                                                                         (4.5-7b) 

where H H H H H9 2
1

1 3
1

2= −− −  and H H H H H10 1
1

2 2
1

3= −− − . By using the SJT product for the 

evaluation of the Jacobian matrix, we have 
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where  

( ) ( ) ( ) ( ) ( )∂
∂
L W

W
H H W H H W H H W H H W1

7 1 1 7 8 2 2 8

K
K

K K K K
= ◊ + ◊ + ◊ + ◊                                        (4.5-9a) 

and  

( ) ( ) ( ) ( ) ( )∂
∂

L W
W

H H W H H W H H W H H W2
8 3 3 8 7 2 2 7

K
K

K K K K
= ◊ + ◊ + ◊ + ◊ .                                     (4.5-9b) 

∂
∂

K
K

U
W

  and 
∂
∂

K
KV

W
 are relative Jacobian derivative matrices of dependent variable vector 

K
U  and 

K
V  with 

respect to 
K

W . By applying formulas (4.5-7a, b) and (4.5-8a, b), the coupling formulation equations (4.5-
3a, b, c) are decoupled. The resulting set of simultaneous nonlinear algebraic equations are reduced from 
3(N-2)×3(N-2) to (N-2)×(N-2) for the plate with simply supported edges or from 3(N-4)×3(N-4) to (N-
4)×(N-4) for the plate with clamped edges. It is known that each iteration step in the Newton-Raphson 
method is necessary to solve a set of linear simultaneous algebraic equations and requires an order of n3 
scalar multiplications, where n is the size of the equations. For example, the Gauss elimination method 
requires n3/3 scalar multiplications. Therefore, the computational effort and storage requirements here are 
only about one twenty-seventh and one-ninth, respectively, as much as in Bert et al. (1989). 

K
W  is a basic 

variable vector here. Equation (4.5-3c) is chosen as the basic iteration equation, namely,  
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The Jacobian derivative matrix for the above iteration equation is given by 

{ } ( ) [ ]

( ) ( ) [ ]

( ) ( ) ( )[ ]

∂ϕ
∂ μ

∂
∂

∂
∂

μ

μ ∂
∂

K
K

K
K

K K

K K K
K

K K

K K K K K
D

K

K
K

D

D

W
W

H a
D h

a
h

H U
W

H H W H W

a
h

H H U H W b
h

H V
W

H H W H W

b
h

H H U H W
G
C

H H U H V H W H W

G
C

H U
W

H

= − + ◊
⎡

⎣
⎢

⎤

⎦
⎥◊

⎡

⎣
⎢

+ ◊ +⎡
⎣⎢

⎤
⎦⎥
+ + ◊

⎡

⎣
⎢

⎤

⎦
⎥◊

+ ◊ +⎡
⎣⎢

⎤
⎦⎥
+ ◊ + +

+ +

4

4

1

2

2 7 7 7 5

2

2 5 7 7
2

2

2 8 8 8 6

2

2 6 8 8
2 12

2 8 7 7 8

12
8 7

1
2

1
2

2

2 ( ) ( ) ( )∂
∂

K
K

K K KV
W

H H W H H W H W+ ◊ + ◊
⎡

⎣
⎢

⎤

⎦
⎥◊

⎤

⎦
⎥7 8 8 7 2

.  (4.5-11) 

It is noted that the SJT product approach here yields the analytical solution of the Jacobian matrix quite 
simply and efficiently. The Newton-Raphson iteration equation for this case is the same as equation (2.5-
7).  
 
The solutions obtained by the DQ method for the corresponding linear isotropic and orthotropic plates are 
chosen as the initial guess of the iteration procedures. Even if the resulting nonlinear results are even eight 
times larger than the initial linear solutions, the Newton-Raphson method still converges. Therefore, the 
Newton-Raphson method has rather big convergence domain for these cases. Moreover, the iterative 
times varies from 1 to 7 for various loading and the solutions converge very rapidly. In contrast, the IMSL 
subroutine NEONE used in the Bert et al. (1989) computed the Jacobian matrix approximately by a finite 
difference technique. Therefore, the accuracy and convergence speed were affected.  
 
It is well known that the accuracy and stability of the DQ method can be improved significantly if the 
Chebyshev grid spacing is used. In the following the DQU and DQZ solutions are obtained by using 
Chebyshev grid spacings 7×7 for a simply supported plate and  11×11 for a clamped plate unless where 
specified. To avoid the effects of round-off errors on the accuracy of the solution, double-precision 
arithmetic is used in all the analysis presented here. Bert et al. (1989) has pointed out the high efficiency 
and ease of use in the DQ method in comparison to other numerical techniques such as the finite element, 
finite difference, perturbation, Galerkin and Rayleigh-Ritz, etc., while this study places its emphasis in the 
simplification of the use and  further improvement of the accuracy and efficiency in the DQ method. 
Therefore, the numerical comparisons with other numerical techniques are not repeated here.  
 
The same simply-supported and clamped isotropic square plates subject to a uniformly distributed loading 
as in example 1 of Bert et al. (1989) are recalculated by the present DQ method. The results are shown in 
Fig. 4-3, and compared with the exact Levy (1942a, b) and the conventional DQ (Bert et al., 1989) 
solutions. The present DQU and DQZ results all show remarkable agreement with those of Levy (1942a) 
and Yang (972). It is also noted that the DQN approach using 7×7 grid points by Bert et al. (1989) gives 
obviously better results in the clamped cases than in the simply supported cases. This is because the DQN 
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approach is not suitable for the cases of supported edges. As is expected, the DQU approach gives more 
accurate results than the DQN approach for simply supported plate. Therefore, the former is a competitive 
alternative to the latter for the nonlinear cases of simple supports. Both the DQZ and DQN approaches 
can yield accurate solutions for the clamped plate. But it should be emphasized that the DQN approach 
can not use larger number of grid points as in the DQZ approach due to instability caused by the δ effect. 
 
Also, we compute the isotropic simply supported square plate under a uniformly distributed transverse 
load. The parameters of this case are a=16”, h=0.1”, E=30E+6 and ν=0.316. Fig. 4-4 depicts the results 
obtained by the DQU approach using 5×5 Chebyshev grids and  7×7 equally spaced grids. All solutions 
agree very well with those given by Levy (1942a). The DQ method is demonstrated again to be highly 
computationally efficient for nonlinear structural analysis. As is expected, the DQU method using the 
Chebyshev points yields more accurate results than using equally spaced grids, although in this case more 
equally grid points are used.  
 
The central deflection of the clamped plate (a=100, h=1.0, E=2.1E+6, ν=0.316, q=3.0) and the simply-
supported square plate (a=100, h=1.0, E=2.1E+6, ν=0.25, q=1.0) subject to a uniformly distributed 
pressure are computed by the DQU method and listed in table 4-4. The 9×9 Chebyshev grid spacing is 
used for the case of clamped edges. The present DQU solutions show excellent agreement with the 
analytical (Bazeley et al., 1965) and FEM solutions (Bazeley et al., 1965; Zhu et al., 1989). However, the 
computational effort in the present DQ method is much less than in the analytical method and FEM. 
 
Table 4-4. The Central deflections of the clamped and simply-supported square plates 
Methods Analytical   Bazeley   Zhu  Present 

Simply supported 0.940 1.028(9.3%) 0.942(0.3%) 0.944(0.4%) 
Clamped 1.151 1.316(14.3%) 1.170(1.6%)  1.123(2.4%) 

 
The numerical examples on the orthotropic square plate provided by Bert et al. (1989) are recalculated by 
the present DQ methods. The specific parameters are E1=18.7E+6 psi; E2=1.3E+6 psi, G12=0.6E+6 psi; 
ν12=0.3; h=0.0624inch;  a=9.4; b=7.75inch. The center deflections for the clamped and simply supported 
cases are displayed in Figures 4-5 and 4-6, respectively. For the case of clamped edges, the results by the 
DQZ method using 11×11 grid spacing are very close to those by Bert and Cho (1988b). It is noted that 
the DQZ method using 15×15 or even 21×21 grid spacings is still stable and give accurate results, but 
computational effort also increases exponentially. For the case of simple supports, it is noted that the 
results using DQN approach under 7×7 grid spacing given by Bert et al. (1989) are obviously larger than 
those by Bert and Cho (1988a). In contrast, the present DQU approach appears to give results that are 
much closer to those by Bert and Cho (1988b) as shown in Fig. 4-6. Bert and Cho’s (1988b) values are 
taken from graphs 9 and 10 in Bert et al. (1989) with appropriate scaling factors.  
 
The above computations were executed on an IBM-PC 386DX computer with 4M memory. Microsoft 
Fortran77 ver. 3.3 and NDP-Fortran-386 ver. 2.1 are used for programming. It is found that the results 
yielded by using both Fortran versions have slight discrepancy, as an example, for the case of a simply 
supported plate depicted in Fig. 4-7, the nondimensionalized center deflection under q=2.5p.s.i. are 0.977 
for Microsoft Fortran77 ver. 3.3 and 0.974 for NDP-Fortran-386 ver. 2.1, respectively. The results shown 
in this paper are all obtained by using NDP-Fortran-386 ver. 2.1.  



CHAPTER 4.BOUNDARY VALUE PROBLEMS 

 70

 
The DQ approach using some new techniques is applied to analyze geometrically nonlinear bending of 
isotropic and orthotropic plates with simply supported and clamped edges. It is apparent that the results 
obtained are more accurate than the conventional ones (Bert et al., 1989) and compare favorably with 
exact solutions (Levy, 1942a, b; Zhu et al., 1989). The DQU approach is proved to be a successful 
technique for geometrically nonlinear plate with SS-SS boundary conditions. The DQZ approach is 
improved and shown to be a stable and accurate technique for handling the cases with the C-C boundary 
conditions. Although only square simply supported and clamped boundary conditions are involved in this 
study, it is straightforward that the same procedures can be easily used for handling problems with various 
aspect ratios and other edge conditions. 
 
The references in which the DQ method was applied to deal with nonlinear problems are still few due to 
much more complex programming, storage requirements, formulation and computing effort in comparison 
to linear problems. The Hadamard product and SJT product approach may provide a simple and efficient 
technique to greatly reduce the above difficulties. The detailed solution procedures are provided here to 
show the simplicity and efficiency of the Hadamard and SJT product approach as well as new DQ matrix 
approximate formulas. For more complex plates with varying thickness, Poisson’s ratio and Young’s 
modulus, the DQ formulation and the evaluation of the respective Jacobian matrix are also easily finished 
by using the Hadamard product and SJT product. The extension of the present DQ method to the 
nonlinear dynamic and postbuckling cases is currently the subject of further investigation. Also, it is 
expected that the Hadamard product and SJT product techniques can achieve a considerable savings in 
formulation, storage and CPU time for other nonlinear examples such as those discussed by Striz et al. 
(1988, 1994a), Shu et al. (1992a, b, 1994a, b) and Wang (1994b). 
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Chapter 5. 
INITIAL   VALUE   PROBLEMS 

 
5.1. Introduction 
The numerical solution of initial value problems has been of vital importance in many science and 
engineering areas. Considerable research effort has been devoted to the development of efficient 
computational method for the solution of the ordinary equations of initial value problems. So far there are 
several numerical methods available such as the known Houbolt, Wilson θ, Newmark, central difference, 
Runge-Kutta and Gear, etc. (Dokainish and Subbaraj, 1989a, b). The purpose of this chapter is to apply 
the differential quadrature method in using some new techniques to initial value problems. The 
conventional DQ method (Civan and Sliepcevich, 1984a) is to convert a very simple initial value 
problems into a boundary value problem by means of an algebraic transformation. Therefore, it is in 
general not significant in practice. It is worth pointing out that our work is the first authentic attempt to 
solve initial value problem using computational step-by-step procedure of the DQ method. 
 
In the literature, the DQ method has been usually applied to handle boundary value problems. There is an 
impediment to using the DQ method for the initial value problems. It is when the DQ method using m grid 
points is applied to a system of N ordinary differential equations, a system of N×m simultaneous algebraic 
equations will have to be solved and, thus, is costly in comparison to other existing methods. 
 
In this study, we introduce the DQ approximate formulas in matrix form for ordinary differential 
equations of initial value problems. By using these approximate formulas, the DQ formulation for initial 
problems can be obtained very easily and is a Lyapunov-like algebraic matrix equation. The reduction 
techniques discussed in section 4.2 for solving the Lyapunov algebraic matrix equation can be 
successfully applied to reduce the computational effort greatly in the solution of the present formulation. 
Wang and Bert’s DQU technique is extended to the DQ formulation of the initial value problems and 
proves to be accurate and efficient. Based on the fact that the DQ method is equivalent to the collocation 
method, we point out that the DQ method is an A-stable method. Thus, the DQ method is safe for 
structural dynamic analysis and stiff problems. According to the new formulas of the truncation error 
presented in section 3.2, it is apparent that the DQ method for the initial value problems is high order 
accuracy, namely, the convergence speed is O(τN-2). We also analyze advantages of the DQ method over 
the collocation method. Some numerical examples are also provided to demonstrate the efficiency, 
reliability and simplicity of the DQ analysis of structural dynamic and stiff problems using the above-
mentioned new techniques. Finally, we also discuss some promsing approaches to overcome the difficulty 
in handling nonlinear initial value problems. 
 
5.2. Approximate Formulas in Matrix Form 
The DQ weighting coefficient matrix for the first and second derivatives are denoted as A and B in this 
section, respectively. Considering the ordinary differential equations 
du
dt

Hu c
K

K= +                                                                                                                              (5.2-1) 

where 
Ku  is n×1 desired vector, H is a constant matrix, c is a n×1 constant vector, t is a scalar variable. By 

analogy with matrix approximate formulas (4.2-1) for boundary value problems, the formulation for 
equation (5.2-1) is taken to be of the matrix form 
UA HU CT = +                                                                                                                               (5.2-2) 
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where A  is the DQ weighting coefficient matrix, modified by the initial condition, for the 1st order 
derivative of unknown function u with respect to variable t. Capital letter U and C denote n×m rectangular 
matrix stacked from vector 

Ku  and c in Eq. (5.2-1) along variable t direction, namely, 

U

u u u
u u u

u u u

m

m

n n nm

=

⎡

⎣
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⎤

⎦
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"
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# # % #
"

                                                                                                         (5.2-3) 

and  

C

c c c
c c c
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⎢
⎢

⎤

⎦

⎥
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2 2 2

"
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"

                                                                                                             (5.2-4) 

where m is the number of grid points along variable t direction. Matrix formulations (5.2-2) for ordinary 
differential equations is a key formula in the present study. It is emphasized that the formulation (5.2-1) is 
effective only when the initial conditions for all unknown elements uj in vector 

Ku  are the same and, thus, 
all corresponding weighting coefficient matrices A  are identical. This requirement can be satisfied easily 
by using simple algebraic transformation, which will be given in the latter analysis. Obviously, there 
exists similar  matrix formulation for higher ordinary differential equations of initial value problems. 
Also, it is noted that formulation equation (5.2-2) is a Lyapunov-like algebraic matrix equation. 
 
As can be seen from table 4-I, the R-THR method (Gui, 1992) may be the most efficient in the solution of 
steady-state Lyapunov matrix equations. However, it is noted that the present problems is involved 
transient initial value equation, and thus a different estimation on total computational effort is required. 
Step 1 in the methods, which costs major calculation time as shown in table 4-1, is required to operate 
only once for equations (5.2-2). Therefore, the computation effort in step 1 takes a very small percentage 
of total solution time and is in general neglected in a long time journey. Linear transformations are also 
operated only once and thus can be neglected. The actual computing cost is to accumulate computational 
effort in step 2, 3 and 4. Therefore, the BS method may be the most efficient method for initial value 
problems. The equation (5.2-2) is used as a sample example in the following discussion. The total 
multiplication times in the BS method are 2.5m2n+2.5mn2 for equation (5.2-2) in each time step. Since n 
(the dimension number of equation (5.2-1)) is usually much larger than m (the number of inner grid 
points) in practical engineering. So the computing effort can be estimated approximately as 2.5mn2  in 
each step or 2.5n2 at each time grid point, which is basically the same as in the Wilson θ, Houbolt and 
Newmark methods (Bathe and Wilson, 1976). It is still possible to apply the sparseness and symmetricity 
of matrices G and R in equation (5.2-2) to further reduce the computational effort. It should be also 
emphasized that the BS, HS and R-THR methods have very high efficiency for the parallel computations 
(Gui, 1992). The numerical examples for the DQ analysis of initial value problems are presented in 
sections 5.3, 5.4 and 5.5. 
 
5.3. Stability Aspect and Comparison With the Collocation Method 
Bellman et al. (1972) pointed out that the stability analysis was very difficulty problems in the DQ 
method, especially for the nonlinear problems. The study on the stability for the DQ method is not 
available in the existing literature. Section 2.9.3 discussed nonlinear stability analysis in the DQ method 
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for the steady-state problems by means of the Hadamard product (Chen et al., 1996f). The present 
emphasis is placed in the stability aspect of the DQ solution of the initial value problems.  
  
Quan et al. (1989a), Bert et al. (1993) and Mansell et al. (1993) have pointed out that the DQ method is in 
fact equivalent to the general collocation (pseudo-spectral) method. It is known that the collocation 
method is an implicit A-stable method (Burka, 1982). Therefore, the DQ method is also an A-stable 
method, namely for Re(λi)∠0, there are no limits on the size of the product τλ , where λi are the 

eigenvalues of the coefficient matrix of differential equations and τ is the step size of variable t. Since the 
real part of eigenvalues in structural dynamic equation is in general negative, an A-stable method is also 
unconditionally stable for structural dynamic analysis. It is well known that A-stable method is reliable for 
stiff problems. Since the collocation method has been applied to compute the initial value problems 
(Burka, 1982; Wright, 1964; Finlayson, 1972; Villdsen, 1972). In the following we will point out the 
advantages of the DQ method for the same task comparatively. 
 
The salient merits of the DQ method is its ease of implementation (Mansell et al., 1993). The DQ method 
directly computes the unknown function values at grid points rather than the spectral variables as in the 
collocation method. Moreover, these desired spectral coefficients usually have no physical significance 
and thus assumed initial values in the solution of the nonlinear problems are inherently poor guesses. So 
the computational effort for the nonlinear problems is aggravated (Burka, 1982). This shortcoming does 
not exist in the DQ method. Next, for the definite basis functions, the DQ weighting coefficients for 
certain grid spacing need be computed only once and are independent of any special problems. Therefore, 
these weighting coefficients can be used repeatedly for various problems. Also, as was pointed out by 
Quan and Chang (1989b), the DQ method using the zeros of the Chebyshev polynomials has somewhat 
faster convergence rate than the orthogonal collocation method. The DQ method is also more convenient 
to use any grid spacing. 
 
In addition, the most important point may be that the presented Lyapunov-like matrix formulation (5.2-2) 
in the DQ method drastically reduces formulation and computing effort and storage requirements for the 
initial value problems. For N linear ordinary differential equations, the collocation method using m grid 
points yields a system of m×N linear algebraic equations at each iteration step. If they are to be solved 
simultaneously, the repeated computation of m×N matrices for linear problems and even larger matrices 
for nonlinear problems are too costly (Burka, 1982).  This is main obstacle to apply the collocation 
method for initial value problems. As discussed in section 5.2, the computing effort in the DQ method 
using the Lyapunov-like matrix formulation is reduced to nearly the same as in the conventional single-
step numerical integration methods such as Wilson θ and Newmark, etc. Based on the above 
considerations, it is believed that the DQ method is preferred for numerical computations of the present 
purpose. 
 
5.4. Structural Dynamic Problems 
Typical structural dynamic problems have natural periods that differ by many orders of magnitude. Thus, 
they are in general “stiff”. The methods for solving problems of such type are required to be A-stable, that 
is, unconditionally stable. The often used Newmark, Wilson θ, and Houblot methods is also 
unconditionally stable. However, the maximum order of an A-stable multistep method was 2 (Dahlquist, 
1963). Therefore, the computing efficiency of these methods is not high. On the other hand, the explicit 
methods such as central difference and Runge-Kutta methods are conditionally stable, and, thus, require 
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excessively small time steps to ensure numerical stability. Consequently, the computing cost is 
unnecessarily high, and is generally not practical. This section aims to apply the DQ method to structural 
dynamic problems (Chen et al., 1996g). To the authors’ knowledge, the method has been not used for 
solving such problems in the existing literature. 
 
The linear matrix equation of structural dynamic for general purpose is 
Mu Cu Ku f′′ + ′ + = ,                                                                                                             (5.4-1) 
where M, C and K are time-invariant mass, damping, and stiffness matrices, respectively.  f is the vector 
of applied loads, u is the displacement vector and superposed dotes indicate time differentiation, 

i.e., ′′ =u d u
dt

2

2 , ′ =u du
dt . The initial conditions for the problem are 

u dt t= =
1

                                                                                                                                           (5.4-2) 

′ ==u ht t 1
                                                                                                                                       (5.4-3) 

where d and h are the prescribed vectors of initial data, t1 is the initial time. The order of the above 
dynamic equation is assumed as n. 
 
The problems is usually complicated if considering the influence of damping. The assumption of 
proportional damping is in general adequate in many engineering analysis. However, in the analysis of 
structures with widely varying material properties, nonproportional damping may be needed (Dokainish 
and Subbaraj, 1989). In the following we derive the DQ formulations for the problems with 
nonproportional and proportional damping, respectively. The resulting form of two formulations is also a 
Lyapunov algebraic matrix equation.  
 
5.4.1. Formulation for the Problems with Nonproportional Damping 
We here discuss general cases, in which the definition of damping is very broad and include non-
proportional. Using the transformation presented by Zhong (1995), Eq. (4-5) can be restated as 
′ = +v Hv q                                                                                                                                (5.4-4) 

in which 

 { }v u p p Mu Cu H
D G
E F

T= = ′ + =
⎡

⎣
⎢

⎤

⎦
⎥, , , ,2  

{ }
D M C E CM C K F C M

G M q f T

= − = − = −

= =

− − −

−

1 1 1

1

2 4 2

0

, , ,

, .
                                        (5.4-5) 

The corresponding initial conditions are 

{ }v v d pt t
T

= = =
1 0 0,                                                                                                                       (5.4-6) 

where po is the initial value of p obtained from Eqs. (5.4-2), (5.4-3) and (5.4-5). Applying the algebraic 
transformation 
v v v= − 0 ,                                                                                                                                         (5.4-7) 

equation (5.4-4) can be expressed as 
′ = +v Hv q�                                                                                                                                       (5.4-8) 

with the initial conditions  
v t t= =

1
0 .                                                                                                                                            (5.4-9) 

where �q =Hv0+q. 
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Applying the DQ matrix formulation presented in section 5.2 (e.g. equation (5.2-2)) to equation (5.4-8),  
we have 
VA HV QT − =                                                                                                                               (5.4-10) 

where A  is obtained by eliminating the first row and column of the DQ weighting coefficient matrix for 
the 1st order derivative. Capital letter V and Q denote rectangular matrix stacked from vector v  and �q  as 

in equations (5.2-3) and (5.2-4). Obviously, Eq. (5.4-10) is a Lyapunov-like algebraic matrix equation.   
 
5.4.2. Formulation for the Problems with Proportional Damping or No Damping 
If only proportional damping is included in equation (5.4-1) or damping is neglected. the problems will be 
simplified greatly.  Rayleigh damping using proportional damping has been in use and has the form 
C M K= +α β ,                                                                                                                         (5.4-11) 
where α and β are the given Rayleigh constants. Thus, the equation (5.4-11) becomes 

( ) ( )M u u K u u f′′ + ′ + ′ + =α β                                                                                       (5.4-12) 

In order to use the matrix formulation presented in section 5.2, we must convert the initial conditions 
(Eqs. (5.4-2) and (5.4-3)) of all elements in unknown vector u into certain same constant.  An algebraic 
transformation is presented by 
u u d ht ht= − − + 1 .                                                                                                                       (5.4-13) 

Thus,  
′ = ′ −u u h                                                                                                                                 (5.4-14) 
′′ = ′′u u                                                                                                                                          (5.4-15) 

Substituting Eqs. (5.4-13), (5.4-14) and (5.4-15) into Eqs. (5.4-1),  (5.4-2), and (5.4-3), we have 
( ) ( )M u u K u u f′′ + ′ + ′ + =α β                                                                                   (5.4-16) 

u t t= =
1

0                                                                                                                                        (5.4-17) 

′ ==u t t 1
0                                                                                                                                    (5.4-18) 

where f f Ch Kd Kht Kht= − − − + 1 .   

 
Before the formulation of equation (5.4-16), we first consider the approach applying the initial conditions 
in the DQ method for the problems involving the derivative of no less than the 2nd order, which is very 
important for computational efficiency. We extend the DQU and DQZ approaches for boundary value 
problems in section 4.4 to handle the present initial value problems. Considering the initial value equation 
(5.4-17), the DQ formulation for the 1st order derivative can be expressed in matrix as 
0
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,                                                                                           (5.4-19) 

namely, 
{ } { }A u u= ′                                                                                                                                 (5.4-20)  

where A  is the modified weighting coefficient matrix by using the initial value equation (5.4-17). 
Similarly, we have 
{ } { }A u u′ = ′′                                                                                                                               (5.4-21) 

by using the initial value equation (5.4-18). Thus,  
{ } { } { } { }′′ = ′ = =u A u A A u B u                                                                                     (5.4-22) 
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A  and B  are the resulting modified weighting coefficient matrices for the 1st and 2nd order derivatives, 
respectively, in which the initial conditions have been taken into account. In terms of the modified 
weighting coefficient matrices A  and B , the DQ formulation for equation (5.4-16) can be expressed as 

( ) ( )MU B A KU A I FT T T+ + + =α β ,                                                                      (5.4-23) 

where U  and F  are n×(m-1) rectangular matrices if m grid points are used in the DQ method. The 
above equation can be converted into a Lyapunov-like algebraic matrix equation, namely, 
UG RU Q+ =                                                                                                                           (5.4-24) 

where ( ) ( ) ( )G B A A I R M K Q M F A I
T T T= + + = = +

− − − −
α β β

1 1 1 1
, , . 

 
Similar to the DQZ approach for handling boundary conditions discussed in section 4.4, the initial 
equation (5.4-18) can be approximated by 

A uj j
j

m

1
1

0
=
∑ = .                                                                                                                                  (5.4-25) 

where uj’s are corresponding to the displacement at the jth time point. We have 

u
A

A uj j
j

m

2
12

1
3

1
= −

=
∑ .                                                                                                                    (5.4-26) 

Substituting the initial equation (5.4-17) and equation (5.4-26) into the DQ formulations for the first and 
second derivatives, respectively, we have 
K Ku Au= �                                                                                                                                              (5.4-27) 
K K′′ =u Bu�                                                                                                                                            (5.4-28) 

where { }K …u u u um= 3 4 , , . Note that �A  and �B  are (m-2)×(m-2) modified weighting 

coefficient matrices different from (m-1)×(m-1) dimension A  and B  in equation (5.4-24). It is 
emphasized that the DQ formulations at the first two grid points are omitted here. Using the modified �A  
and �B ,  the resulting formulation for equation (5.4-16) are 
UG RU Q+ = ,                                                                                                                              (5.4-29) 

where ( ) ( )G B A A I
T T= + +

−� � �α β
1

, ( )Q M F A IT= +− −1 1
β �  and R M K= −1 .  Matrices U  is 

generated form vector 
Ku  as in equations (5.2-2).  Eq. (5.4-29) is also an algebraic Lyapunov matrix 

equation. 
 
Eqs. (5.4-10), (5.4-24) and (5.4-29) are Lyapunov-like algebraic matrix equation, but it should be pointed 
out that the size of equation (5.4-10) is 2n×(m-1), while the size of the equation (5.4-24) and (5.4-29) are 
n×(m-1) and n×(m-2), respectively. The advantages of equation (5.4-10) is to evaluate simultaneously the 
velocity and displacement vector. However, for the problems with proportional damping or no damping, 
equation (5.4-24) or (5.4-29) is still preferred. Also, the DQZ approach requires less computing effort 
than the Wang and Bert’s DQU approach, but as will be seen later, the former computational accuracy is 
lower than the latter. It is noted that no additional equations are required in the solution of equations (5.4-
10), (5.4-24) or (5.4-29) since the initial conditions have taken into account. Finally, the obtained 
displacement values can be used to calculate the corresponding velocity and acceleration by using 
equations 
′ = ′′ =U UA and U UBT T,                                                                                                     (5.4-30) 

in the DQU approach and 
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′ = ′′ =U UA and U UBT T� , �                                                                                                     (5.4-31) 

in the DQZ approach. 
 
5.4.3. Applications 
Example 1. We consider a simple system of two differential equations provided by Bathe and Wilson 
(1976) as a test example. They are given by 
Mx Kx q��+ =                                                                                                                                   (5.4-32) 

with the initial conditions  
( ) ( ) ( ) ( )x x x x1 2 1 20 0 0 0 0 0= = = =, � � .                                                                              (5.4-33) 
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Applying the linear transformation equation (5.4-13), we have 
My Ky p�� + = ,                                                                                                                                (5.4-34) 

where y x d ht ht= − − + 1 , d, h and t1 are the initial displacement vector, velocity vector and time at 
each time step. p q Kd Kht Kht= − − + 1 . The DQ formulation using the DQU approach for this case 

can be expressed as 
MYB KY P+ = .                                                                                                                            (5.4-35) 

Furthermore,  
YB M KY M P+ =− −1 1 ,                                                                                                               (5.4-36) 
where B  is the modified DQ weighting coefficient matrix for the second order derivative as defined in 
equation (5.4-22). Y and P are rectangular matrix. Eq. (5.4-36) is a Lyapunov-like matrix equations. The 
resulting DQ formulation using the DQZ approach for this case is YB M KY M PT� + =− −1 1 .                                      
(5.4-37) 
where �B  is defined in equations (5.4-28). However, It is noted that in the following the DQ results are 
obtained using equation (5.4-36) unless otherwise indicated. 
 
Let grid interval Δt=0.28, we compute this example using eleven equally spaced grid points. Table 5-1 
lists the results by the DQ,  Wilson θ (θ=1.4) and Newark (α=0.25, δ=0.5) methods under the same 
Δt=0.28. Note that the grid interval Δt in the DQ method is equivalent to the time step in the Wilson θ and 
Newmark methods but different from the step size in the present DQ method. For example, the present 
step size in the DQ method is (11-1)×Δt=2.8. 
 
Figs. 5-1 and 5-2 display the relative errors for the displacement x1 and x2 using the DQ method as well as 
the Wilson θ (θ=1.4) and Newmark (α=0.25, δ=0.5), and Houblot methods under Δt=0.28. The DQ 
method employs eleven equally spaced grid points and the Chebyshev grid points under the comparable 
step size 2.8. The relative error is defined as the ratio of the absolute error to the absolute value of the 
analytical answer. It is observed that the Wilson θ, Newmark and Houblot methods have basically the 
same computational efficiency. In contrast, the DQ method have much high accuracy. Except for the 
solutions at the first four grid points, the DQ method  yields about 100 times smaller errors than these 
conventional integration methods. This is due to the fact that the DQ method has high order convergence 
rate (nine order accuracy using eleven grid points),  while other methods are only two order accuracy. The 
results indicated by DQ* in Fig. 5-1 and 5-2 are computed by the DQ method using the DQZ approach. It 
is obvious that the DQ results using Wang and Bert’s DQU approach have higher accuracy. In addition, as 
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is expected, the DQ method using the Chebyshev grids also yields more accurate results than using the 
equally spaced grids. We also compute 1000 steps for the case under Δt=0.28, the DQ method still 
maintains stable. If choosing the large step size, say Δt=28, no unstable behavior occurs in the DQ 
method. 
 
Table 5-2 lists the relative errors of the DQ solutions using eleven and twenty-one the Chebyshev grid 
points under the step size 2.8, respectively. err1 and err2 denote the relative errors corresponding to 
displacement x1 and x2, respectively. It is noted that the results using 21 grid points are more accurate than 
using 11 grid points. Therefore, more grid points, more accurate results are obtained. It is concluded that 
the larger number of grid points should be used for the system of high order. However, for the stiff 
problems, more care should be paid to choose the number of grid points and grid intervals because the 
stiff systems are characterized by irregularly shaped curves particularly in stiff regions (Burka, 1982). 
 
Example 2. The tow-degree-of-freedom system with nonproportional damping (D’souza and Garg, 1984) 
is given by 
Mx Cx Kx q�� �+ + =                                                                                                                         (5.4-38) 

where x={x1, x2}T.  
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The initial conditions are 
( ) ( )x x0 0 0= =� .                                                                                                                             (5.4-39) 

By using the linear transformations (5.4-5) and (5.4-7), we have 
′ = +v Hv q� ,                                                                                                                                  (5.4-40) 

where  
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The details  on v  and �q  see section 5.4.1. The matrix formulation for this case is 

VA HV QT − =  ,                                                                                                                            (5.4-41) 

where A  is the modified DQ weighting coefficient matrix for the 1st order derivative as defined in 
equation (5.4-17). Q is a rectangular matrices stacked from �q . Equation (5.4-41) is also a Lyapunov 

matrix equation. 
 
D’souza and Garg (1984) found that, when the time step is increased to 0.5s, the Newmark beta (α=0.5, 
β=1/6), central difference predictor, two-cycle iteration with trapezoidal rule and the fourth-order Runge-
Kutta schemes yielded unstable solutions for this case, while Park (Prak, 1975), Houbolt, and Wilson θ 
(θ=1.5) schemes remain stable. The present DQ method is also stable under Δt=0.5s or more when eleven 
or twenty-one equally spaced and the Chebyshev grid points are employed, and the results using eleven 
equally spaced grid points under larger Δt=2.5s (step size 25s) are shown in Fig. 5-4 and 5-6 for the 
displacement x1 and x2, respectively. The relative errors at t=250s for displacement x1 and x2 are 1%. In 
D’souza and Garg (1984) the Wilson, Prak and Houbolt methods are applied for this case under Δt=0.05, 
0.1, respectively. However, the numerical results are not presented there and thus a direct accuracy 
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comparison can not be given. The analytical solutions of displacement for this case are plotted in Fig. 5-3 
for x1 and Fig 5-5 for x2. More example study may prove beneficial. In the above two examples at least, 
the DQ method proves very successful. 
 
In the present study, we consider only tow-degree-of-freedom system. Thus, the computational effort 
seems to be a little larger in the DQ method using 11 eleven grid points than in the Newmark, Wilson θ 
and Houbolt methods under comparable step size. The ratio of computing effort is 1+(m-1)/n, n and m 
denote the order of systems and grid points in the DQ method. However, as discussed in section 5.4.2, the 
computing effort in the DQ method is nearly the same as those in the Newmark and Wilson methods 
under comparable step size for the larger systems in engineering practice, say that eleven grid points are 
used in the DQ method for the analysis of the system more than 50 degree of freedom. In addition, by 
using less grid points or larger time step, the DQ method consumes a comparable computing effort for 
these cases in comparison to other methods while still producing very accurate solutions. Therefore, it is 
believed that the DQ method has much higher computational efficiency than all other methods involved 
here. 
 
Table 5−I. Numerical results for example I under Δt=2.8 
      Method Analytical 

   x1             x2 
DQ 

   x1            x2 
Wilson θ 

   x1             x2 
Newmark  

  x1              x2 
2Δt 0.0381      1.412  0.0389     1.410   0.0525      1.34   0.0504      1.35   
4Δt 0.486        4.094  0.486      4.093  0.490        3.92    0.485        4.00 
6Δt 1.657        5.291  1.656       5.292    1.54          5.31  1.58          5.34 
8Δt 2.861        4.277  2.860       4.278  2.67          4.61   2.76         4.48 

10Δt 2.806        2.806   2.806       2.806  2.82          3.06    2.85         2.90 
12Δt 1.157       2.488  1.159       2.485 1.54           2.29   1.40         2.31 

 
Table 5−2. The relative errors of the DQ results for example I using the Chebyshev 
                 grid spacings (step size=2.8) 
Sequence of grid point 

in time direction 
11 grid points 

       err1            err2 
21 grid points 

        err1            err2 
2     1.4E-2          2.5E-4       6.5E-3          1.8E-5 
4     1.3E-4          2.6E-5      6.0E-5          1.8E-6 
6     4.1E-5          2.8E-5      1.1E-6          1.8E-7 
8     1.3E-5          2.0E-5      1.2E--6         5.4E-7 
10      6.4E-6         1.6E-5       1.2E-6          1.4E-6 
12      7.0E-5         1.1E-4      2.4E-6          2.7E-7 

 
5.5. Stiff Problems 
The stiff ordinary differential equations are often encountered in automatic control, electronic network, 
biosciences, physics and chemical kinetics. The key to handle stiff problems is the numerical stability of 
methods. However, most explicit integration formulas have a bounded region of stability. For example, 
the well-known fourth-order explicit Runge-Kutta method has a region of stability, and very small step 
sizes are required by this method. These methods are, in general, inefficient for solving stiff systems as 
they do not properly simulate the rapidly decaying solutions. The stability obstacle can be overcome by 
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considering implicit Runge-Kutta methods. However, such methods suffer from a serious practical 
disadvantage in that the computing effort is in general costly for large systems. Some effective solution 
techniques have been also well developed  to handle stiff systems (Gear, 1967, 1971a, 1971b). Based on 
the foregoing analysis of the DQ method, the purpose of this section is to provide several numerical 
examples for demonstrating the efficiency in the DQ solution of initial value problems for stiff systems of 
ordinary differential equations. 
 
Example 1. ′ = − +y yα β ,       ( )y 0 0=                                                                  (5.5-1) 

The accurate solution for this case is  

y e t= − −β
α

β
α

α .                                                                                                                     (5.5-2) 

The linear transformation  
( )u y y t= − 1                                                                                                                             (5.5-3) 

is applied to equation (5.5-1). t 1 means the initial time at each iteration step. We have 

( )′ = − − +u u y tα α β1 ,         ( )u t 1 0= .                                                                         (5.5-4) 

In terms of the DQ method, we have 
( )Au u y tK K= − − +α α β1 ,                                                                                                    (5.5-5) 

where A  is the modified weighting coefficient matrix for the 1st order derivative. The equation can be 
restated as 
[ ] ( )A I u y t+ = − +α α βK

1                                                                                                   (5.5-6) 

The Gauss elimination method is used to solve the above algebraic equations. Let parameters α=1000, 
β=105, and time step h=0.1, the relative error at t=1, 2, 3, 4, 5, and 6 are listed in table 5-3. It is found that 
the relative errors after the sixth step are zero. Let α=105, β=107, the relative errors after h=4 become 
zero. In the above two cases, stiffness are 1000 and 105, respectively. Thus, the transients dies out very 
quickly. It is concluded that the DQ method is very safe and reliable in the solution of stiff systems. 
 
Table 5-3. The relative errors at the first six steps (α=1000, β=105, and h=0.1) 

time t 1 2 3 4 5 6 
relative error 9.2E-4 8.4E-7 7.7E-10 7.9E-13 7.1E-16 0.0 

 
 
Example 2. This example was given in many standard textbooks. Therefore, it is a benchmark problem 
for testing numerical algorithms for stiff ordinary differential equations. 

du
dt

u v

dv
dt

u v

= +

= − −

⎧

⎨
⎪

⎩
⎪

998 1998

999 1999
.                                                                                                          (5.5-7)  

The corresponding initial conditions are 
( )u 0 1= ,     ( )v 0 0=  .                                                                                                               (5.5-8) 

Apply the linear transformation  

( )u u u t= − 1     and   ( )v v v t= − 1                                                                                  (5.5-9) 

to equation (5.5-7), we can obtain the following DQ formulation: 
XA RX CT = +                                                                                                                         (5.5-10) 
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where 

X
u u u
v v v

N

N

=
⎡

⎣⎢
⎤

⎦⎥
2 3

2 3

"
"

,   R =
− −

⎡

⎣⎢
⎤

⎦⎥
998 1998
999 1999

,  C
c c c
c c c

=
⎡

⎣⎢
⎤

⎦⎥
1 1 1

2 2 2

"
"

,   

( ) ( )c u t v t1 1 1998 1998= + ,     ( ) ( )c u t v t2 1 1999 1999= − − . 

The accurate solutions for this case are 
( )u t e et t= −− −2 1000                                                                                                                 (5.5-11) 

and 
( )u t e et t= −− −2 1000                                                                                                                 (5.5-12) 

The stiffness in the example is 1000. Similar to the situations in section 5.4 for structural dynamic 
problems, the BS approach is exploited for solving the formulation equation (5.5-10). The DQ method is 
stiff stable even if the larger time step h=0.5 is used. In contrast, the time step h in applying the Runge-
Kutta method for this case can not be larger than 0.00278. Therefore, the Runge-Kutta method is 
obviously not applicable for the stiff problems. The relative error of the DQ solutions using eleven 
equally spaced grid points under h=0.1 is no more than 10-9. Therefore, the DQ method is shown to have 
rather high accuracy. We also calculate other some stiff systems, and the same conclusions can be drawn. 
 
5.6. Nonlinear Problems 
The nonlinear initial value problems are often encountered in practice. In this section we investigate the 
potential of the DQ method in the solution of nonlinear initial value problems. The Hadamard product and 
SJT product technique are used for formulation and calculation of the respective Jacobian matrix. 
Unfortunately, however, the fast algorithms for the Lyapunov matrix equation, which are very efficient 
for linear initial value problems, are not applicable for solving the Newton iteration equation resulting 
from applying the Newton-Raphson method to the DQ nonlinear formulations. Thus, the computing effort 
is obviously increased. In the following section 5.7 we will discuss some possible routes to improve the 
computational efficiency. 
 
A combined use of the DQ and Adams-Moulton methods (Bellman et al, 1972) were exploited to analyze 
some nonlinear initial-boundary problems. The partial derivative in spatial dimensions were approximated 
by using DQ method, while the derivative in time was analogized by an Adams-Moulton method. We 
recalculate two examples of them only by using the DQ method, e.g.,  the following examples 1and 2. 
Example 3 is a nonlinear structural dynamic systems.  
 
Example 1. ( ) ( )u x t uu x tt x, ,,= ,      0∠x≤1,   0≤t≤T;       ( )u x o x, .= 01                                    (5.6-1) 

The above equation is a hyperbolic nonlinear one. First, let  
( ) ( ) ( )v x t u x t u x t, , ,= − 1                                                                                                (5.6-2) 

When t1=0, u(x, t1)=0.1x. Therefore,  

( ) ( ) ( )[ ] ( ) ( )[ ]v x t v x t u x t v x t u x tt x, , , , ,= + +1 1                                               (5.6-3) 

and 
( )v x t, 1 0= .                                                                                                                                 (5.6-4) 

In terms of the DQ method, equation (5.6-3) can be approximated by 

( )( ) ( )( )VA V U x t A V A U x tt
T

x x= + +, ,1 1D .                                                             (5.6-5) 
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where Ax  is the M×M DQ weighting coefficient matrix for spatial derivative. M is the number of grid 
points used in x direction, while N is the number of grid points along time direction. At  is the (N-1)×(N-

1) modified DQ weighting coefficient matrix for time derivative. 

( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )

U x t

u x t u x t u x t
u x t u x t u x t

u x t u x t u x tM M M M N

,

, , ,
, , ,

, , ,

1

1 1 1 1 1 1

2 1 2 1 2 1

1 1 1 1

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

× −

"
"

# # " #
"

                                          (5.6-6) 

Note that the Hadamard product is applied to formulate equations (5.6-3) into DQ analogue equation (5.6-
5). By applying the Kronecker product to equation (5.6-5), we have  

{ } ( ) ( ) ( )( ) ( )( )( )ψ
K K K K

D
K K

V I A V V U A I V A I UM t x N x N= ⊗ − + ⊗ + ⊗− −1 1          (5.6-7) 

Employing the SJT product, we can obtain the Jacobian matrix of the above equation: 
{ }

( ) ( )( ) ( )( )[ ]
( )( ) ( )

∂ψ
∂

K
K

K K

K K

V
V

I A I A I V A I U

A I V U

M t M N x N x N

x N

= ⊗ − ◊ ⊗ + ⊗ −

⊗ ◊ +

− − −

−

1 1 1

1

                 (5.6-8) 

The exact solution for the case is given by 

( ) ( )u x t x
t, = − 10 .                                                                                                               (5.6-9) 

Eleven equally spaced grid points and seven Legender points are used, respectively, along x-and y-
directions. The time step is h=0.1. The relative errors of the DQ solutions are listed in Table 5-4. It is 
observed that the DQ method yields very high accurate solutions.  
 
Table 5-4. The relative errors of differential quadrature solutions for example 1. 

t 0.1 0.1 0.1 0.5 0.5 0.5 1.0 1.0 1.0 
x x1 x4 x7 x1 x4 x7 x1 x4 x7 

error 1.5E-8 1.5E-8 1.5E-8 1.6E-8 1.6E-8 1.6E-8 1.7E-8 1.7E-8 1.7E-8 

 
 
Example 2. The Burger’s equation is stated as 
 u uu ut x x x, , ,+ = ν ,      ν>0,                                                                                                    (5.6-10) 
where the term uu x,  represents a nonlinear convective term while νu,xx means a dissipative term. The 

parameter ν represents the inverse of the Reynolds number, which determines the importance of 
convection versus that dissipation. Equation (5.6-10) serves as a useful model since it possesses features 
in common with the Navier-Stokes equation and has become a popular benchmark for testing numerical 
technique to partial differential equations.  
 
Initial value condition for equation (5.6-10) is 
( ) ( )u x f x0, = .                                                                                                                         (5.6-11) 

In this case we choose  
( ) [ ] [ ]f x b x c x b x c x d= − + + +2 2 2υ π π π π π πc os c os s i n s i n . 

(5.6-12) 
where constants ν=0.01, b=0.2, c=0.1, d=0.3. 
The analytic solution for this case is  
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( ) [
]

u t x b e x
c

e x be

x c e x d

t t t

t

. c os c os

s i n s i n

= − +
⎡
⎣⎢

⎤
⎦⎥

+ +

− − −

−

2
2

2

2

2 2 2

2

4

4

υ π π
π

π

π π

υπ υπ υπ

υπ

             (5.6-13) 

The same grid spacings and time step as example 1 are used for this case. Table 5-5 displays the relative 
errors of the DQ solutions. The DQ method is demonstrated again to be a high accurate approach. We also 
compute the cases in some different situations by choosing large the Reynolds number, namely 103, 105, 
and 107, respectively. The accuracies of the DQ method are even higher. 
 
Table 5-5. The relative errors of differential quadrature solutions for example 2. 

t 0.1 0.1 0.1 0.5 0.5 0.5 1.0 1.0 1.0 
x x1 x4 x7 x1 x4 x7 x1 x4 x7 

error 1.3E-4 1.1E-4 1.2E-4 1.6E-3 3.7E-4 6.4E-4 3.8E-3 4.2E-4 8.8E-4 

 
 
Example 3. This example was considered by D’Souza and Garg (1984). The dynamic equations are given 
by 

( )1 0
0 10

0 2 01
01 01
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(5.6-14) 
The initial conditions are expressed as  

( ) ( )x x0 0 0= =
.

                                                                                                                       (5.6-15) 

The dynamic equations can be restated in the Hadamard product form as 

( ) ( )Mx Cx Kx K x K x q�� �+ + + =2
2

3
D D                                                                                       (5.6-16) 

where  

K K2 3

1 1
1 1

1 1
1 1

=
−
−
⎡

⎣
⎢

⎤

⎦
⎥ =

−
−
⎡

⎣
⎢

⎤

⎦
⎥,   

The detailed solution procedure is omitted for the brevity. The DQ solutions are displayed in Figure 5-7, 
and agree well with those by using other numerical techniques (D’Souza and Garg 1984). 
 
5.7. Discussions 
The DQ method has been extensively used to approximate the spatial derivative so far. However, like the 
pseudo-spectral and collocation methods, the method seems to be not very suitable for problems with 
complex geometries. Although the coordinate mappings and multidomain approaches can be used to 
overcome this drawback, there is a larger loss in the efficiency and simplicity of the DQ method. As is 
shown in the foregoing study, the shortcoming are not inherent in applying the DQ method to the 
structural dynamic problems and stiff initial value problems. The principal contributions of the work are 
to present the matrix formulation in the DQ method for ordinary differential equations of initial value 
systems. Therefore, the resulting formulation are reduced to an algebraic Lyapunov matrix equation, and 
the formulation and computational effort are greatly abbreviated to a comparable level with other 
conventional methods while the high accuracy and ease of implementation in the DQ method yet 
maintains. We also point out that the DQ method is an A-stable method. To our knowledge, this fact has 
never been indicated in the literature. The DQU approach proposed by Wang and Bert (1993a) is 
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extended to the initial value problems and shows high efficiency. The DQ method using the presented 
techniques can be also efficiently used to solve other initial-boundary problems, for example, the transport 
problems (1984b). Based on the given numerical comparisons and theoretical analysis, it is concluded that 
the DQ method is a promising numerical technique to linear dynamic analysis and stiff initial value 
problem. 
  
The following points should be also pointed out: 
1) Many studies (Bellman et al. 1972, 1974a, 1979; Mingle, 1973, 1977; Quan et al., 1989; Shu et al., 

1992, Malik et al, 1994; Bert et al., 1989; Striz et al., 1988) have shown that the DQ method is 
especially efficient for the nonlinear boundary value problems. Therefore, it is very significant to 
apply the DQ method to nonlinear structural dynamic problems.  

2) It is also well known that the A-stable methods are strong stability and reliable for the stiff problems 
(Gear, 1971). Since the DQ method is A-stable. it is also expected that the DQ method will be an 
efficient technique to handle a variety of the stiff equations. 

3) The adaptive mesh technique can be easily used in the DQ method for the present purpose. 
4) The accuracy and computing efficiency of the DQ method also depend greatly on the proper choice 

of the trial functions as in the collocation method (Bert et al., 1993; Wang and Wang, 1994; Striz et 
al., 1995). For example, it is expected that the DQ method using the trigonometric functions may be 
more efficient than using the present polynomial basis functions for the periodic dynamic problems, 
especially for the problems with high order frequency, while split range functions (Mansell, 1993) or 
other proper test function (Chang, 1993) may obviously improve the efficiency in applying the DQ 
method for the initial value problems involving steep gradients.  

 
In what follows we discuss the application of the DQ method to nonlinear stiff initial value problems. As 
was pointed out in section 5.6, as soon as the equation is allowed to have variable coefficient or nonlinear 
operators, the computational effort will be obviously increased.  
 
Considering example I in section 5.6, the Newton iteration equations for this case can be stated as 

( ) ( )
( )( )

( )
( )( )K K

K
K

K
V V

V
V

Vk k
k

k
k+

−

= −
⎡

⎣
⎢

⎤

⎦
⎥1

1
∂ψ
∂

ψ .                                                                                 (5.7-1) 

The above equations can be converted into a set of algebraic equations, namely,  
( ){ } ( ) ( )[ ] ( )( )∂ψ

∂
ψ

K
K

K K KV
V

V V V
k

k k k+ − =1

.                                                                        (5.7-2) 

Let ( ) ( ) ( )δ
K K K

V V Vk k k+ += −1 1 , we have 
( ){ } ( ) ( ){ }∂ψ

∂
δ ψ

K
K

K KV
V

V V
k

k k+ =1 .                                                                                                 (5.7-3) 

Substituting equation (5.6-8) for computing Jacobian matrix into the above equation, we have 
( ) ( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( ){ }
δ δ

δ ψ

V A A V A U V

V U A V V

k
t x

k
x

k k

k k
x

k k

+ +− + −

+ =

1 1D

D
,                                                   (5.7-4)  

where δV(k), V(k), and U(k) are rectangular matrices. The Newton iteration equation (5.7-4) is a linear 
algebraic equations with the Hadamard product operation. In the derivation of equation (5.7-4), we 
employ the following property of the SJT product: 
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( ) ( )K
D

K K K
C AV A C V= ◊ ,                                                                                                               (5.7-5) 

where 
K

C  is the constant vector. This property of the SJT product is also applied in section 2.9.1 for 
deriving the formulation-S for systems with varying coefficients.  
 
Eq. (5.7-4) are not different from the traditional Lyapunov matrix equation due to its Hadamard product 
operation. The fast algorithms for the latter are not applicable for solving matrix equation of such type. 
Therefore, Eq. (5.7-4) must be converted into the standard algebraic equation as done in section 5.6 if the 
Gauss elimination method is used. Although the very high accuracy of the DQ method can compensate to 
some extent for great computational effort, there is still much room for developing some efficient 
techniques for abbreviating computational effort. Three approaches for this purpose are presented as 
follows. 
 
In order to ensure the convergence, the very small control parameter in the standard iteration formula of 
the simple iteration method is usually required for the stiff initial value problems and, thus, the computing 
efficiency is in general very poor. It is well known that the Newton-Raphson method must be used to 
solve such problems. In section 2.2, we found that the DQ formulations in Hadamard product form can 
easily yield some very efficient iteration formulas of the simple iteration method by using the Hadamard 
matrix function, power and inverse concepts. Moreover, the most effective iteration formula can be easily 
determined in advance by using the SJT product. Some boundary value problems such as the example 
discussed in section 2.2, which are similar to stiff initial value problems and need very high computing 
cost to use the standard iteration formula, are efficiently solved by using new iteration formula obtained 
via the Hadamard matrix inverse approach. It is hoped that these techniques can be extended to handle 
stiff initial value problems. It is also expected that the computational effort in the DQ method using this 
technique for nonlinear stiff problems is nearly the same as other existing methods such as Gear method 
while the high accuracy of the DQ method is still maintained. Next, section 2.5 discussed that the 
Hadamard product and SJT product approach can be applied for decoupling computation of nonlinear 
boundary value problems. The extension of the decoupling computations is another hopeful route to 
reduce computing effort for nonlinear stiff problems of large scale. Finally, we hope to develop a Gauss-
Sidel iteration method for the efficient solution of the Newton iteration matrix equation with the 
Hadamard product operation. The computing effort using the technique will be greatly reduced in 
comparison to the Gauss elimination method for the same task. A combined use of the above three 
approaches may greatly reduce the computing effort in applying the DQ method for nonlinear stiff initial 
value problems and makes the DQ method very competitive to other numerical techniques. 
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CHAPTER 6.  
STRUCTURES OF WEIGHTING COEFFICIENT MATRICES 

 
6.1. Introduction 
The DQ and HDQ weighting coefficient matrices play a prominent role in the application of the DQ and 
HDQ methods. However, the research in this field is neglected in the literature. Quan and Chang (1989a) 
pointed out that the skew centrosymmetric and centrosymmetric structures of the DQ weighting 
coefficient matrices for the 1st and 2nd order derivatives, and this properties can be used to decompose 
the DQ coefficient matrix for ordinary differential equations of systemic models into two smaller size 
matrices. But in that reference they did not use the centrosymmetric and skew centrosymmetric 
terminologies and, thus, can not be fully aware of the possible advantages in application of these 
properties. Chen and Yu (1993) pointed clearly out the relation between the DQ weighting coefficient 
matrices and centrosymmetric or skew centrosymmetric matrices. 
 
In this chapter, we prove that the structures of the weighting coefficient matrices for any order derivative 
in the DQ and HDQ methods are either centrosymmetric or skew centrosymmetric if the grid spacing is 
symmetric with respect to the center point irrespective whether the grid spacings are equal or nonequal. It 
is known that, in the evaluation of the determinant, inverse and eigenvalue and eigenvectors, a 
centrosymmetric matrix can be factorized into two smaller size matrices. By applying these properties, the 
multiplication complexity can be reduced by 75% and the efficiency of the DQ and HDQ methods can be 
significantly increased, which is also demonstrated by solving the free vibration of beams and plates in 
this Chapter. 
 
Secondly, the skew centrosymmetric matrix is defined and its properties are found to be similar to those of 
the centrosymmetric matrices. It is shown that this kind of matrix is related to the DQ and HDQ weighting 
coefficient matrices for all odd order derivatives. Third, the reducibility using the centrosymmetric 
properties in the DQ and HDQ methods is extended to non-systemic problems. Next, the properties of the 
Hadamard product and SJT product involving the centrosymmetric matrix are discussed. The reducibility 
for the nonlinear problems with symmetric structures is obtained by using these properties in the DQ-type 
methods. Finally, some conclusions are drawn based on the results reported herein. 
 
6.2.  Centrosymmetric Structures 
This section shows that the weighting coefficient matrices of the DQ and HDQ methods are either 
centrosymmetric or skew centrosymmetric depending on the order of the corresponding derivatives. Some 
properties of these matrices are briefly stated or discussed. 
 
6.2.1. Centrosymmetric structure of weighting coefficient matrices in the DQ method 
First, the definitions about centrosymmetric and skew centrosymmetric matrices are given 
Definition 6.2.1: A N×N matrix Q=[qij] is centrosymmetric if  
qij= qN+1-i,N+1-j,      I, j=1, 2, ...., N.                                                                                                            (6.2-1) 
Then, Q can be characterized by  
JQJ=Q                                                                                                                                                   (6.2-2) 
where J denotes the contra-identity matrix given by 
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"

                                                                                                                      (6.2-3) 

which has unit elements along the secondary diagonal and zeros elsewhere, noting that JT=J and J2=I, the 
unit matrix, The effect of premultiplying any matrix by J reverses the order of its rows, and postmultipling 
reverses the order of its columns. 
 
Definition 6.2.2: A new, skew centrosymmetric matrix R=[ rij]N×N  with the following property, is 
introduced:      
 rij =−rN+1-i,N+1-j,  i,j=1,2,....,N.                                                                                                               (6.2-4) 
and  
R=−JRJ                                                                                                                                                 (6.2-5) 
To our knowledge, this is a new form of matrix, which has not been reported previously. 
 
The grid spacings often used in the DQ method are symmetric such as equally spaced grids and the zeros 
of the shifted Legendre or the shifted Chebyshev polynomials. For symmetric grid spacings, over a 
domain 0≤ x ≤1, it is true that:  

N i ix x+ − = −1 1                                                                                                                 (6.2-6)  
where N is the number of grid points. Thus, substituting Eq. (6.2-6) into (1.2-3a) and (1.2-3b) yields 

ij
N j N i

N i k

N j kk N i N j
i j
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x x
x x
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…                               (6.2-7) 

and  

i i
N i kk N i

N

A
x x

i N=
−

=
+ −≠ + −

∑ 1
1 2

11
, , , , .…                                          (6.2-8) 

So  
i j N i N jA A= − + − + −1 1,                                                                                                              (6.2-9)   

According to the definition 6.2.1 given by Eq. (6.2-1), the weighting coefficient matrix for the 1st order 
derivative can be concluded to be skew centrosymmetric if the grid spacing is symmetric. Next, consider 
the coefficient matrix for the high order derivative. Using Eqs. (6.2-8) and (6.2-9) and the recursion 
formulas (1.2-4) and (1.2-5) and after some manipulations, it can be shown that 

( ) ( ) ( ) ( )w wi j
m m

N i N j
m+ +

+ − + −
+= −1 1

1 1
11 , ,                                                                                                (6.2-10) 

where the wij
(m+1) denotes the DQ coefficient for the (m+1)th order derivative. Therefore, the DQ 

weighting coefficient matrices are skew centrosymmetric for odd order derivatives and centrosymmetric 
for even order derivatives when the grid spacing is symmetric. 
 
6.2.2. Centrosymmetric structure of weighting coefficient matrices in the HDQ method 
The formula (1.2-1) for determining the HDQ weighting coefficients can be restated in matrix form as 
H w

(m) 
= H

(m)                                                                                                                                       (6.2-11) 
where matrix w

(m) denotes N×N  weighting  coefficient  matrix. m is the order of the derivative. matrix H 
is determined by the harmonic test functions (1.2-6) and the used grid spacing. Matrix H

(m) depends on the 
test functions, the grid spacing and  the  derivatives order m. Premultiplying Eq. (6.2-11) by H

T 
yields 
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H
T
Hw

(m) =H
T
H

(m)                                                                                                                                (6.2-12) 
If we choose symmetric grid spacings as shown in Eq. (6.2-6), it can easily proven that the product H

T
H is 

centrosymmetric. H
T
H

(m) 
is centrosymmetric if m is even number or skew centrosymmetric if m is odd 

number. From Eq. (6.2-12), we have 
w

(m) = (H
T
H)

-1 H
T
H

(m)                                                                                                                         (6.2-13) 
According to Lemmas 6.2.1 and 6.2.5 in the following discussions, (H

T
H)

-1
∈CN×N. Thus, the HDQ 

weighting coefficient matrices w
(m) are centrosymmetric for even order derivatives and skew 

centrosymmetric for odd order derivatives. 
 
6.2.3. Some properties of centrosymmetric and skew centrosymmetric matrices 
1. Centrosymmetric matrices 
For completeness, the interesting structure of the centrosymmetric matrix of (Good, 1970; Datta and 
Morgera, 1989) is briefly described here. CN×N denotes the set of N×N centrosymmetric matrices. 
 
Definition 6.2.3. A N dimensional vector γ is defined to be symmetric if 
J γ γ=                                                                                                                                           (6.2-14) 
or skew symmetric if 
J γ γ= −                                                                                                                                        (6.2-15) 
 
Lemma 6.2.1. If Q1, Q2∈CN×N  and Q1

-1  exists, then 
(1) Q=Q1Q2∈ CN×N 

(2) Q=Q1+Q2∈CN×N                                                                                                                               (6.2-16) 
(3) Q1

-1∈ CN×N 

 

Lemma 6..2.2. If Q∈ CN×N  and N=2M, Q can be written as  

Q
A J CJ
C J AJ

=
⎡

⎣⎢
⎤

⎦⎥
                                                                                                                          (6.2-17) 

where A and C are arbitrary M×M matrices. The determinant of matrix Q can be evaluated by 
Q A J C A J C= + −                                                                                                                  (6.2-18) 

and the inverse of the matrix is given as 

Q
P J RJ
R J PJ

=
⎡

⎣
⎢

⎤

⎦
⎥                                                                                                                             (6.2-19)  

where 2P=(A+JC)-1+(A-JC)-1 and 2R=(A+JC)-1  - (A-JC)-1.  
Applying Eqs. (6.2-18) and (6.2-19), the calculation effort of the inverse and determinant of a 
centrosymmetric matrix can be reduced  by 75%. Note that premultiplying or postmultiplying any matrix 
by J only moves the elements of the matrix and requires a very little computational time. 
 
Lemma 6.2.3. If Q∈CN×N and N=2M, then 

Q
A J CJ
C J AJ

and
A J C

A J C
=
⎡

⎣
⎢

⎤

⎦
⎥

−
+

⎡

⎣
⎢

⎤

⎦
⎥

0
0

                                                                 (6.2-20) 

are orthogonally similar. Thus, the evaluation of the eigenvectors and eigenvalues of Q is equivalent to 
that of two M×M matrices A-JC and A+JC.  
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If N is odd (N=2M+1), any matrix Q∈CN×N can be written as 

Q
A J s J CJ
t q t J
C s J AJ

=

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥                                                                                                                (6.2-21) 

where A and C are arbitrary M×M matrices, s and t are vectors of M×1 dimension, and q is a scalar. It is 
easily proved that  

Q
A J s J CJ
t q t J
C s J AJ

=

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥      and     

A J C
q t
s A J C

−

+

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

0 0
0 2
0 2

                                           (6.2-22) 

are  orthogonally similar. Thus, the evaluation of eigenvectors and eigenvalues of Q is equivalent to those 
of  both M×M and (M+1)×(M+1)matrices.                                                           
 
Lemma 6.2.4. The eigenvectors of centrosymmetric matrix Q in Lemma 3 are the sum of a symmetric 
vector and a skew-symmetric vector. If N is even, the N/2 skew symmetric orthonormal eigenvectors Ui 
and the corresponding eigenvalues λi  can be determined by 
( )A J C v vi i− = λ                                                                                                                        (6.2-23) 

and  

[ ]i

T
T T

U v J vi i= −
1
2 ( )                                                                                             (6.2-24) 

The N/2 symmetric eigenvectors Wi and the corresponding eigenvalues Pi are found by solving the 
following equation: 
( )A J C y P yi i+ =                                                                                                       (6.2-25) 

and  

[ ]i

T
T T

W y J yi i=
1
2 ( )                                                                                               (6.2-26) 

If Q has distinct eigenvalues and N is odd number (2M+1),  the M skew symmetric orthonormal 
eigenvectors Ui  and corresponding  eigenvalues can be determined  by    

( )A J C x xi i i− = λ ,                                                                                                (6.2-27) 

where  Ui = [xi
T, 0, -(Jxi

T)T]
T . The M+1 symmetric eigenvectors Vi  and corresponding eigenvalues ρi  

are obtained by solving the following equation 
q t
s A J C y y

i

i
i

i

i

2
2 +
⎡

⎣
⎢

⎤

⎦
⎥
⎧
⎨
⎩

⎫
⎬
⎭
=

⎧
⎨
⎩

⎫
⎬
⎭

α
ρ

α
,                                                                                  (6.2-28) 

where Vi = [yi
T, 2αi, (Jyi

T)T]
T . 

 
2 Skew Centrosymmetric Matrices 
Next, the structural properties of skew centrosymmetric matrix are discussed. The proofs for these 
properties are similar to those for centrosymmetric matrix (Good, 1970; Datta and Morgera, 1989), so 
they are omitted here for brevity. We analysis only the even order skew centrosymmetric matrix, but it 
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should be pointed out that there are similar properties for odd order skew centrosymmetric matrix. In the 
following, NCN×N  is the set of N×N skew centrosymmetric matrices. 
 
Lemma 6.2.5. If Q1, Q2∈NCN×N and Q1

-1  exists, then 
1) Q=Q1Q2∈ CN×N 

(2) Q=Q1+Q2∈NCN×N                                                                                                           (6.2-29) 
(3) Q1

-1∈NCN×N   
 
Lemma 6.2.6. If Q ∈NCN×N and N=2M, then Q can be stated as 

Q
A J CJ
C J AJ

=
−
−

⎡

⎣
⎢

⎤

⎦
⎥                                                                                                            (6.2-30) 

where A and C are arbitrary M×M matrices. The determinant of matrix Q can be expressed as 
 Q A J C A J C= + −                                                                                                    (6.2-31) 

and the inversion of the matrix is given as  

Q
P J RJ
R J PJ

=
−
−

⎡

⎣
⎢

⎤

⎦
⎥                                                                                                            (6.2-32)  

where 2P=(A+JC)-1+(A-JC)-1 and 2R=(A+JC)-1  - (A-JC)-1.  
 
Lemma 6.2.7. If Q∈NCN×N and N=2M, then 

Q
A J CJ
C J AJ

and
A J C

A J C
=

−
−

⎡

⎣
⎢

⎤

⎦
⎥

−
+

⎡

⎣
⎢

⎤

⎦
⎥

0
0

                                                      (6.2-33) 

are orthogonally similar. Thus, the evaluation of the eigenvectors and eigenvalues of Q is equivalent to 
that of a M×M matrices. 
 
If Q∈CN×N and N=2M+1, Q can be restated as   

Q
A J s J CJ
t t J
C s J AJ

=
− −

−
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0                                                                                                 (6.2-34) 

where A and C are arbitrary M×M matrices, s and t are vectors of M×1 vector. We can prove that 

Q
A J s J CJ
t t J
C s J AJ

=
− −

−
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0       and        

0 2
2 0 0

0 0

− −

+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

s A J C
t

A J C
                              (6.2-35) 

are  orthogonally  similar.  Thus,  the evaluation  of eigenvectors and eigenvalues of Q is equivalent to  
that  of a (M+1)×(M+1) matrix.  
 
As can be observed from the foregoing Lemmas. the calculation of the eigenvalues and eigenvectors of a 
centrosymmetric matrix be reduced to those of  two smaller matrices, which expedites the computational 
effort by nearly 75%. For skew centrosymmetric matrices, we find that there are similar computational 
reduction effects for the determinant, inverse, eigenvalues and eigenvectors. 
 
We also give the following lemma on the Kronecker product involving the centrosymmetric and skew 
centrosymmetric matrices, e.g. 
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Lemma 6.2.8. If A1, A2∈VN×N and B1, B2∈NVN×N ,  then 
(1) A1⊗A2∈VN×N 

(2) B1⊗B2∈VN×N                                                                                                                    (6.2-36) 

(3) A1⊗B1∈NVN×N 
The proof is straightforward and, thus, is omitted for the sake of brevity. 
 
6.3. Applications 
In this section several examples are solved by the DQ and HDQ methods, and the aforementioned 
centrosymmetric properties of the weighting coefficient matrices are applied to reduce the computational 
effort and storage requirements.  
 
Wang and Bert’s DQU approach is used in the DQ and HDQ analysis of structural components, the 
weighting coefficient matrices are modified in terms of the specific boundary conditions. Such coefficient 
matrices are also centrosymmetric when the boundary conditions are symmetric. For example, Wang and 
Bert (1993a) gave a detailed description for a simply supported beam. When the symmetric grid spacing is 
used, obviously, the modified 1st order derivative weighting coefficient matrix [ ]A  (Eq. (3) of Wang and 

Bert (1993a)) is a skew centrosymmetric matrix like [A] (Eq. (2) of Wang and Bert (1993a)). The 
modified weighting coefficient matrix for the 2nd order derivative is given by (Eq. (4) of the same 
reference) 
[ ] [ ][ ]B A A=                                                                                                                  (6.3-1) 
According to Lemma 6.2.5, [ ]B  is a centrosymmetric matrix. The modified weighting coefficient matrix 
for the 4th order derivative [ ]D  is decided by (Eq. (6) of Wang and Bert (1993a)) 
[ ] [ ][ ]D B B=                                                                                                                  (6.3-2) 
According to Lemma 6.2.1, [ ]D  is also a centrosymmetric matrix.   

 
Example 1: Flexural Vibration of a Simply Supported Beam 
The governing differential equation for this example can be expressed as: 

i vW W x= 2ϖ ( )                                                                                                         (6.3-3a) 

where the nondimensionalized frequency is ϖ2=ρA0L4ω2/EI. A0, L and ρ are the constant cross-sectional 
area, the length of the beam, the density and I the constant area moment of inertia about the neutral axis, 
respectively. The boundary conditions at the simply supported ends are given by: 
w w( ) , ( )0 0 0 0= ′′ =                                                                                          (6.3-3b) 
w w( ) , ( )1 0 1 0= ′′ = ,                                                                                      (6.3-3c) 

In terms of DQU, Eq. (6.3-3a) is expressed as: 

i j
j

N

j iD W W i N
=

−

∑ = = −
2

1
2 2 1ϖ , , , ( ) .…                                              (6.3-4) 

Note that the boundary conditions have been applied in the formulation of the weighting coefficient 
matrix i jD  , which is a centrosymmetric matrix as shown in Eq. (6.3-2) and can be written in the matrix 

form as: 

22 23 2 1

32 33 3 1

1 2 1 3 1 1

2

3

1

2

2

3

1

D D D
D D D

D D D

w
w

w

w
w

w

N

N

N N N N N N

"
"

# # # #
"

# #

,

,

, , ,

−

−

− − − − − −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ϖ                                          (6.3-5) 
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According to Lemma 6.2.2, we have 

{ }
( ) ( )

D
N N

i j
P J RJ
R J PJ− × −

=
⎡

⎣⎢
⎤

⎦⎥2 2
                                                                                (6.3-6) 

In the present study, eight equally spaced grid points are used. Therefore, the order of the matrices P and 
R is 3. In addition, it is known that the eigenvectors corresponding to the fundamental frequency of a 
simply supported beam is symmetric. Thus, according to lemma 6.2.4, the fundamental frequency and the 
corresponding eigenvector can be computed by: 
( )P J R u ui i+ = 2ϖ                                                                                                   (6.3-7) 

Similarly, the 2nd order frequency with skew-symmetric eigenvector can be calculated by: 
( )P J R v vi i− = 2ϖ                                                                                                  (6.3-8) 

The fundamental frequency obtained by the present method is 9.8683, comparing well with the exact 
solution of 9.8696. The relative error is -0.006%. The 2nd order frequency is 39.2411, and the exact 
solution 39.4784, hence the relative error is 0.6%. If  a nonuniform grid formed from the Chebyshev 
polynomials given in section 3.3 are used, the errors are further reduced to 0.000% for the fundamental 
frequency and to -0.17%for the 2nd frequency. In contrast with Wang and Bert (1993a), the present 
computational effort and storage requirements are reduced by 87.5% and 50%, respectively, due to the use 
of the centrosymmetric property of weighting coefficients matrix.  
 
Example 2: Transverse vibration of thin rectangular SS-SS-SS-SS and C-SS-C-SS plates 
The transverse vibration of thin rectangular SS-SS-SS-SS plate and SS-C-SS-C plates are considered in 
this study, where C and SS denote clamped and simply supported boundary conditions, respectively. 
Applying the DQ or HDQ method , the governing equation (Wang et al., 1993a, Striz et al., 1995) for this 
case is given by: 

 i k
k

N

k j j m
m

N

i k
k

N

k m j k i k
k

N

i jD W B B W D W W
=

−

=

−

=

−

=

−

∑ ∑ ∑ ∑+ + =
2

1
2

2

1

2

1
4 2

2

1

2( ) ( )α α ϖ       (6.3-9) 

where ϖ2=ρha4ω2/D, and α=a/b=1.5, and D  and B  are the modified weighting coefficient matrices for 

the fourth and second derivatives, respectively. Nx and Ny are the number of grid points in the X- and Y-
directions (Cartesian coordinates). 
 
The DQ method with a rather small number of grid points can produce very good results. In this case, 8×8 
equally spaced grids are used. The DQ results for the fundamental of ϖ=32.0721 and for the 2nd 
frequency of ϖ=61.4449 agree well with the exact solutions of 32.0762 and 61.6850. The relative error is 
-0.01% and -0.39%. If the zeros of the shifted Chebyshev polynomials are used as the grid points, the DQ 
solutions for 1st and 2nd frequency are calculated as 32.0761 and 61.6159, and the errors are further 
reduced to -0.0003% and 0.11%. For the same problem, Wang and Bert (1993a) need compute a (N-
2)2×(N-2)2 order matrix eigenvalue problem. In contrast, the present approach only requires solving a (N-
2)2 /2 ×(N-2)2 /2 matrix due to the use of the reducibility of centrosymmetric matrix. Therefore, the 
computational effort are only 12.5% of that of Wang and Bert (1993a). 
 
The HDQ method employed equally spaced grid point and weighting coefficient matrices are modified by 
a combined use of the DQU and DQN techniques. HDQ with a rather small number of grid points can 
produces very good result. For square SS-SS-SS-SS plate, five grid points are used and the HDQ results 
for the fundamental frequency of ϖ =π  and for the 2nd frequency of ϖ=2π are coincident with  exact 
solutions. For SS-C-SS-C plate, we use eleven grid points and list some HDQ results in table 6-1, which 
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are coincident with HDQ solutions (Striz et al., 1995) and  very close to those of Leissa (1973), while the 
computational effort in this paper is reduced  to  only about 1.6% as much as that in Striz et al. (1995). 
This computational savings is achieved by using centrosymmetric properties of the HDQ weighting 
coefficient matrices (Lemmas 6.2.2 and 6.2.3 in section 6.2). We computes only a (N2 -2)/4×(N2-2)/4 
matrix for the present case. In contrast,  references [2] need to solve a (N2 -2)×(N2-2) matrix. For all other 
examples with systemic boundary given in reference [2], we obtain the same results by this reduced HDQ 
method. It is known that when more grid points is used, the accuracies of HDQ results can be improved. 
Unlike the DQ method, the HDQ method have not limitation for the number of grid points. However, 
when more grid points is used, computing effort increases rapidly especially for multi-dimensional 
problems. Thus, the present reduced method will be significant in practice. 

Table 6-1. Fundamental frequency (ϖ
2
=ρha

4
ω

2
/D) for SS-C-SS-C plates 

a/b 0.4 2/3 1.0 1.5 2.5 

HDQ 12.1408 17.3821 28.9656 56.3752 145.550 

Leissa 12.1347 17.3703 28.9509 56.3481 145.484 

 
Example 3. The transverse vibration  of a thin, isotropic, skew plate vibration 
This problem have been handled by the DQ method in (Wang et al. 1994). However, since its governing 
and boundary condition equations contain cross derivative term, its DQ formulation includes the 
centrosymmetric and skew centrosymmetric matrices simultaneously. We recalculate this problem to 
demonstrate the computing reduction for problems of this type by the centrosymmetric properties. The 
governing equation for this case is given by 

( ) ( ) ( )
( )

, , , ,

,

c os c os c os

/ s i n

ξξξξ ξξξη ξξηη ξηηη

ηηηη

θ θ θ

ρ ω θ

w w w w

w h D

− + + −

+ =

4 2 1 2 42

2 4
         (6.3-10a) 

where θ=skew angle. ρ density, ω circular natural frequency and D flexural rigidity. The simply supported 
boundary conditions are 
w w w at a
w w w at b

n

n

= − = =

= − = =

0 2 0 0
0 2 0 0
, c os , ,
, c os , ,

, ,

, ,

ξξ ξ

ηη ξ

θ ξ
θ η

                             (6.3-10b)  

The clamped boundary conditions are 
w w at a
w w at b

= = =

= = =

0 0 0
0 0 0
, , ,
, , ,

,

,

ξ

η

ξ
η

                                                             (6.3-10c) 

let x=(2ζ-a)/a, y=(2η-b)/b. In terms of the matrix formulations (4.2-1) in section 4.2, the DQ formulation 
for the governing equation (6.3-10a) can be stated as  

( ) ( )
( ) ( )
D W C WA B wB

A wC wD w
x x y

T
x y

T

x y
T

y
T

− + + −

+ =

4 2 1 2

4 16

2 2

2

β θ β θ

β θ β ω

c os c os

c os
.                                                       (6.3-11) 

Note that W is (n-2)×(n-2) matrix. Applying the Kronecker product of matrix to the above equation, we 
have 
[ ]{ [ ] ( )[ ] [ ] ( )[ ] [ ]
( )[ ] [ ] [ ] [ ]} { } ( ) { }

n x y x y x

y x y n

I D A C B B

C A D I v e c W v e c W

−

−

⊗ − ⊗ + + ⊗ −

⊗ + ⊗ =

2
2 2

4
2

2

4 2 1 2

4 16

β θ β θ

β θ β ω

c os c os

c os

,               (6.3-12) 
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 where ⊗ denotes the kronecker product in matrix computation (the DQ formulation for this case in Eq. 
(10) of Wang et al.  (1994a) was incorrectly expressed). [ ]nI − 2  represents a unite matrix, whose n is the 

number of grid points. vec(w) is the vector-function of a rectangular matrix formed by stacking the 
columns of matrix into one long vector. ϖ2=( )ρ ω θh a D4 2 4s i n .    β and D are aspect ratio and 
flexural rigidity, respectively. Weighting coefficient matrices A C, , D  and B  are modified by the 
boundary conditions. For clamped boundary conditions, the D  and B  are the same as the rectangular 

plate. But the problem is more complex for simply supported boundary conditions because it contain cross 
derivative term , x yw . Using the DQ method, we have 

, ( ) ( )x y x

T
y y xw A w A A A v e c w= = ⊗ . According to Lemma 6.2.8, x yA A⊗   is a 

centrosymmetric matrix since Ax and Ay are the skew centrosymmetric matrices in using symmetric 
distributed grid points as in Wang et al. (1994a). Therefore, D  and B  are centrosymmetric matrices and 
A C,   the skew centrosymmetric matrix. Obviously, the resulting coefficient matrix in the formulation 

equation (6.3-12) has centrosymmetric structure. Thus, we can apply the computational reduction of 
centrosymmetric matrix for this case similar to example 2. Namely, the computational effort is reduced by 
87.5%. 
 
Example 4. ON ANISOTROPIC PLATES 
The equation governing the behaviors of mid-plane symmetric laminated plates was given by Bert et al. 
(1993) 

( )D w D w D D w D w D w

q h w N w N w
xxxx xxxy xxyy xyyy yyyy

x xx y yy

11 16 12 66 26 22

2

4 2 4, , , , ,

, ,

+ + + + +

= + − −ρ ω
,                      (6.3-13) 

where Di j  are the plate stiffness, h is the total plate thickness, ρ is the density, w is the model deflections, 

q is the pressure only for deflection analysis, ω is the natural frequency only for free vibration analysis, Nx 
and Ny are uniform compression in-plane loads in x- and y- directions for buckling analysis. 
 
In terms of the present DQ or HDQ approximate formulas (4.2-1) (Chen et al., 1996d), we have 

( )
( )

D D w D C wA D D B wB D A wC

D wD qa w Na B w wB
x x y

T
x y

T
x y

T

y
T

x y
T

11 16
2
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22
4 4 2 2

4 2 4� � � �
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+ + + +

+ = + − +

β β β

β ϖ
,                 (6.3-14) 

where β=a/b denotes the aspect ratio, N N Nx y= = , ϖ ρ ω2 4 2= ha . The relative boundary 

conditions have been taken into account in the formulation of weighting coefficient matrices by using the 
DQU technique, no additional equations are more required.  
 
Applying Lemma 4.2.1 and relative corollaries, the above equation can be converted into  

( ) ( ) ( )( )[
( ) ( )]

( )

D D I D C A D D B B

D A C D I D w qa w

Na B I I B w

x y x y x y

x y x y

x y x y
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2

12 66
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22
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β β

β β ϖK K

K
.         (6.3-15) 

The above formulation equation is equivalent to equation (13) of Bert et al. (1993, 1994a). The present 
procedures obviously simplify formulation effort and are much more easy for programming, and the 
resulting formulation has a explicit matrix form. 
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For problems with symmetric boundary conditions such as the simply supported or clamped anisotropic 
plates as discussed in Bert et al. (1993, 1994a), it is straightforward that A x, A y, C x and C y are skew 
centrosymmetric matrix and B x , B y, D x  and D y are centrosymmetric matrix when the uniform gird 
points or the zeros of the Chebyshev polynomials are used. According to Lemmas 6.2.2 and 6.2.8, the 
resulting coefficient matrix in the formulation equation (6.3-15) is a centrosymmetric matrix. Therefore, 
the reduction algorithm based on the factorization properties of centrosymmetric matrix (Chen et al., 
1996a, b) is applicable for the cases, namely, the computational effort is reduced to 75 per cent as much as 
that in Bert et al. (1993, 1994a).  
 
Bert et al. (1993, 1994a) pointed out that the DQ and HDQ methods were very competitive technique to 
analyze static and dynamic behaviors of the anisotropic plates. The present work makes the methods more 
computationally efficient and easier to be used for these problems. But it is regret that the reduced method 
is only available for problems with systemic boundary conditions in the DQU approach. For the deflection 
and vibrational analysis of plates and beams with non-systemic boundary conditions, the present reduction 
approach is also applicable, but the DQU approach can be not used for the cases. The  DQN and DQZ 
approaches discussed in section 4.4 should be used, in which the governing and boundary condition 
equations can be handled separately. 
 
Example 5. Convection-diffusion problem  
Civan and Sliepcevich (1984b) computed the convection-diffusion problems by the differential quadrature 
method. We analyze this example again to show that the computational reduction in centrosymmetric 
matrix can be used for those problems with non-symmetric boundary conditions. We consider the steady-
state case. In terms of the DQ method,  the governing equation (Civan and Sliepcevich, 1984b) can be 
expressed as  

− + + =
= =
∑ ∑i j x

i k
k

x
N

k j

y
j k

k

y
N

j ka b b
φ

α φ β φ4
0

1 1
,                                                  (6.3-16a) 

where α and β are constant quantities. bik‘s are the DQ weighting coefficient for the second derivative and 
have been not modified by boundary conditions, which is different from examples 1-3. The boundary 
conditions are approximated by the DQ method as 
φij=prescribed value,   j=1,2, ..., Ny                                                                                   (6.3-16b) 
φiN

y = 0,  j=1,2, ..., Nx                                                                                                        (6.3-16c) 
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∂ φ= =

=
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1
,   at j=1.                                                                          (6.3-16d) 

φN
x 

j
  =0,     j=1,2, ..., Nx.                                                                                                   (6.3-16c) 

Since the boundary conditions in this problem are not systemic, we need handle with Eq. (6.3-16a) and 
Eqs. (6.3-16b,c) separately. Obviously, the resulting coefficient matrix in Eq. (6.3-16a) is a 
centrosymmetric matrix irrespective of whether the boundary conditions are symmetric or non-symmetric. 
Solving the Eq. (6.3-16a) by using the centrosymmetric properties, the function values at inner grid points 
are expressed by the side lateral function values using a matrix formula. Substituting this formula into the 
boundary condition equations (6.3-16b, c), we can obtain the algebraic equations only containing the side 
lateral function values. The order of the equations is much smaller than that of Eq. (6.3-16a). The 
computational effort for solving it will be little. The main computational effort in this procedure is solving 
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Eq. (6.3-16a), while the computational reduction by using the centrosymmetric matrix can be achieved in 
this step. So the present computational effort is nearly only 25% as that in Civan and Sliepcevich (1984b). 
 
In section 4.3 we discussed the reducibility in computing the Poisson equation and convection-diffusion 
equations by means of the fast algorithms in the solution of the Lyapunov equation. In th0se cases with 
symmetric boundary conditions, we can factorize the respective centrosymmetric coefficient matrices Bx  
and B y  into  two  smaller  size sub-matrices, nearly half, in all the four computing steps of the BS, HS 

and R-THR methods. Therefore, the computing effort can be further reduced to 8.5% under 7×7 grid 
points and 1.5% under 11×11 grid  points as that in Civan and Sliepcevich (1983b; 1984b). 
 
6.4. Nonlinear Computations and Centrosymmetric Matrix  
Section 6.3 applies the factorization properties of  the centrosymmetric and skew centrosymmetric 
structures to reduce computing effort and storage requirements in the DQ solution of the linear problems 
by 75% and 50%, respectively. For nonlinear differential equations, the centrosymmetric structure of the 
DQ weighting coefficient matrices can be also exploited to reduce the computational effort by using the 
Hadamard product and SJT product concept. We present the following lemmas on the Hadamard product 
and SJT product involving the centrosymmetric and skew centrosymmetric matrices. The proofs for them 
are straightforward and thus omitted for brevity. 
 
Lemma 6.4.1. If A1, A2∈VN×N and B1, B2∈NVN×N ,  then 
(1) A1°A2∈VN×N 

(2) B1°B2∈VN×N 

(3) A1°B1∈NVN×N 
 
Lemma 6.4.2. If A1∈VN×N, B1∈NVN×N and P1,  P2∈CN×1, P1 is symmetric P2   is skew symmetric, then 
(1) A1◊ P1  ∈VN×N 

(2) B1◊ P1∈NVN×N 

(3) A1◊ P2∈NVN×N 
(4) B1◊ P2∈VN×N 
 
According to Lemmas 6.4.1 and 6.4.2, we can find that the computational reduction by using the 
factorization properties of centrosymmetric matrix can be easily extended to matrix computations 
involved the Hadamard product and SJT product. We recalculate equations (2.8-15) and (2.5-1a, b) by the 
DQ method to demonstrate the computational reduction by using the factorization properties of 
centrosymmetric matrices when the symmetric grid spacings such as the equally spaced grid points and 
the roots of the shifted Legender or the shifted Chebyshev polynomials, are employed. For the DQ 
solution of geometrically nonlinear bending of the orthotropic rectangular plates with symmetric 
boundary conditions, the computing effort and storage requirements can be further reduced by 75% and 
50%, respectively, using such reduction technique. The details on these applications are straightforward 
and not presented for brevity. It should be pointed out that the reduction technique is in general applicable 
for the nonlinear problems with symmetric structures.  
 
6.5. Conclusions 
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The study in this chapter proves in general the centrosymmetric structures of the weighting coefficient 

matrices of the DQ and HDQ methods when the grid spacing is symmetric. Also a new type of matrix, 

called as the skew centrosymmetric matrix, is defined and its main properties are discussed. The work 

furthers the knowledge and understanding of the DQ and HDQ methods. The structure of such matrices 

allows for factorization of the determinant and the characteristic equations into two, smaller and nearly 

equal size matrices. Therefore, the computational complexity can be reduced by 75%. Furthermore, it is 

shown that these matrices possess either symmetric or skew-symmetric eigenvectors. In many problems, 

the need of symmetric or skew-symmetric eigenvectors can be applied as a constraint. Therefore, the 

computational effort can be reduced further. The present work emphasizes the importance of the analysis 

of the weighting coefficient matrices in the DQ-type methods and makes the methods even more attractive 

for the engineering analysis. 
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CHAPTER 7.  
SUGGESTIONS FOR FUTURE WORK 

 
The current situations for the research of the DQ-type methods are somewhat similar to those for the FEM 
in the early 60’s and for the BEM in the early 70’s, while the Hadamard product and SJT product are still 
at an early developing stage for nonlinear computation and analysis of general purpose. Several major 
obstacles, which have always impeded the DQ methods, have been overcome due to our and other 
researchers’ recent work. However, some important aspects remains largely an unclear matter in the DQ 
method and relative applications, for example, round off error, numerical stability, and applications for 
problems with complex geometries. In many cases, the complexity of problems manifests itself in the 
degree of nonlinearity of the system, its scale, transient nature or the interaction between components of 
the system, while the salient merit of the DQ method is not well explored and demonstrated in solving a 
fairly wide range of complex problems. The differential cubature method is a new development of the 
differential quadrature method and show good promise for multidimensional problems, but many essential 
aspects of this method are not involved in the literature, and the applications are very limited. In this 
chapter, we hope to outline a few key problems in applying the DQ-type methods and the Hadamard 
product and SJT product techniques to practical engineering. Both theory and applications should be 
equally emphasized. 
 
Coordinate mappings (Lam, 1993; Bert and Malik, 1996c) and multidomain approaches (Civan, 1985; 
Shu and Richards, 1992; Striz, Chen and Bert, 1994) have been used to maintain the high accuracy and 
convergence properties in the DQ method for handling problems with complex geometries. By using 
multidomain technique, the DQ method can effectively analyzed the problems with irregular domain, 
which is composed of some regular domains. Coordinate mappings approach is exploited for arbitrary 
irregular shaped problems. The applications are successful for systems of no higher than second order. 
However, the governing equations in structural mechanics problems are in general higher order 
differential equations. The coordinate mappings approach encounters some limitations for structural 
problems with simply-supported or free boundary conditions due to inaccuracies of geometric mapping. 
Also, it was found that the approach seems not to be suitable for the curvilinear non-quadrangular shaped 
problems for the same reason. It was proposed by Bert and Malik (1996c) to use more accurate mapping 
approach to overcome these difficulties, but the method may require more mapping effort. We have a 
different idea for handling this problem. For example, considering a two-dimensional problems, we 
suggest applying the DQ method to analogize the spatial derivatives or integral in one direction only, and 
then, the governing equations for this problem are transformed into a set of ordinary differential equations 
of boundary value problem, while the solution procedures for ordinary differential equations have been 
well developed. The simplicity and efficiency of the approach can be demonstrated via some simple 
examples. The further work is hoped. In addition, a combined use of the DQ method and other numerical 
techniques such as the FE, FD and BE methods is expected to be effective for problems with irregular 
shape, since the similar idea has been applied in the collocation, pseudo-spectral, spectral and Galerkin 
methods for the same purpose. 
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From the standpoints of engineering applications, the DQ method is still at its very first step. The 
extension of the technique to analyze complex problems in new realm is another important task in the 
future study. In recent research, a neglected issue in the DQ method has been inverse problems, which 
arise in such diverse areas as the study of drug distributions in the body, weather prediction, structural 
optimization designs, and modal parameter identifications. The DQ method has been shown to be a 
efficient approach in system identification problems in its early study (Bellman et al., 1974a, b, 1979; Hu 
et al., 1974). However, the work in this direction can not be continued due to the lack of understanding in 
some basic aspects of the method. Now these impedances have been overcome. The DQ method is hoped 
to be very efficient for handling problems of structural optimization designs and modal parameter 
identifications. Of course, the DQ method also has its disadvantages for certain problems. Therefore, it is 
necessary to employ a combination of a few methods for some complex problems so as to utilize their 
respective advantages. For example, a combined use of the DQ and BE methods may be useful for some 
problems such as elasto-plastic fracture mechanics problems. 
 
Some basic aspects of the differential cubature method such as stability analysis, truncation error, 
accuracy and structures of weighting coefficients, and the choice of test functions and sampling points 
have not been fully studied. It is also claimed that the DC method is a superior numerical technique for 
multidimensional problems. However, its potential in the solution of a varied class of problems has been 
not sufficiently explored. It is hoped to apply the DQ and DC methods to the weather prediction problems 
(Chen and Zhong, 1996c). The nonlinear differential equations occurring in global and hemispheric 
weather prediction are traditionally computed by the finite difference method and the spectral method 
based on the spherical harmonics (Haltiner and Williams, 1980; Jarrand and Simmons, 1983). A 
combination of the DQ and DC methods may yield a potential alternative numerical modeling for such 
kind of problems. The spherical harmonics can be chosen as the test functions in the DC method instead 
of the conventional monomials to approximate partial derivatives with respect to variables along the 
spherical surface coordinate direction, while the partial derivative with respect to the vertical direction 
variable can be approximated by the DQ method. The variable domain of global and hemispheric weather 
prediction is regular, while the DQ and DC methods have been very successfully applied for some simpler 
nonlinear problems with regular geometries. Therefore, it is expected that the DQ and DC methods can 
also succeed in this task. 
 
Another important aspect in applying the DQ method to engineering is nonlinear stiff initial value 
problems. The detailed discussions can be found in section 5.7. Bert’s group as well as other researchers 
has analyzed the bending, vibration, and buckling problems for a variety of structural components, which 
are mainly limited to regular domain. We think that the work in this field has been rather sufficient for 
research purpose. More work should be place on the applications of the DQ method for structural 
problems involving nonlinearity and irregular domain. The boundary value problems with irregular 
geometries and nonlinear stiff initial value systems will be key to apply the DQ method to engineering. 
The similarity between the DQ method and the numerical integration methods (Philip et al., 1975) can 
provide some new insights in the study of round off error, convergence properties, numerical stability, and 
inherent limitations of the DQ method. The properties of the Hadamard product may provide some 
innovations in a further study of stability and round off in the nonlinear computations of the DQ method. 
Also, since the DQ method has close relation with the method of weighted residuals (MWR), the 
knowledge on the MWR (Xu, 1987) can be introduce to the study of the DQ method and its applications. 
In addition, the semi-analytical technique (Zao, 1992) can be extended to the DQ method.  
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The Hadamard product and SJT product approach will provide a new framework to general nonlinear 
computations, modeling and analysis from the standpoints of algorithmic simplicity, numerical accuracy 
and computational efficiency. However, their applications are now in the beginning development stage. 
The efficiency and simplicity of the techniques are not sufficiently investigated in the other numerical 
computational methods, including the FE, FD, BE, spectral, pseudo-spectral, collocation, Rayleigh-Ritz, 
Galerkin, Wilson θ, Houblot, Newmark, Runge-Kutta, Gear, and some variants of these methods. Some 
important nonlinear problems such as nonlinear system identifications and optimization design are not 
involved in the existing work. Recently, the Hadamard product has been found to be a very powerful 
concept in several engineering areas. Song and Middleton (1992) applied the Hadamard product to 
construct the robot dynamics of parameter-isolated form and presented a new effective control scheme for 
systems with rapidly varying parameter. Diggelen and Glover (1994) introduced the Hadamard product to 
linear controllers design for robust decoupling. Ahn’s paper (1993) was concerned with  exploiting the 
Hadamard product to formulate an adaptive algorithm for parameter identification problem in IIR 
systems. These work centered on stability problems in optimal control theory. On the other hand, 
structural optimum design has been a very important branch in computational mechanics and has 
widespread applications in practical engineering design. As was pointed out by Zhong et al. (1992), the 
mathematical problems in optimal control theory simulates the structural static problems. Based on the 
work of Zhong et al. (1992), the present authors think that the foregoing work can be extended to solve 
structural optimum design problems. It is worth pointing out that the Hadamard product and SJT product 
approach can make nonlinear computations be easily accomplished in a parallel treatment way. This is of 
vital importance for analysis of nonlinear problems of large scale. 
 
What is quite important is that the numerical techniques are straightforward, easily learned, readily 
programmed, and easily used. We think the DQ-type methods and Hadamard product and SJT product 
techniques do have these merits. It is essential that new contributions in numerical methodology and 
associated algorithms be applied rapidly to the practical engineering and scientific areas. Therefore, it is 
also our hope that a further work will provide a solid basis for developing an efficient commercial 
software package so that the DQ-type methods and Hadamard product and SJT product techniques are 
firmly established as one of the most popular numerical techniques in engineering. 
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APPENDIX A.  
On Algebraic and Analysis Properties of Hadamard product 
There exists some significant algebraic and analysis properties in the Hadamard product, power and 
function, which are found similar to those in elementary algebra and scalar function. Section 2.2 has 
stated some properties of the Hadamard product. Horn’s paper (1990) gave an comprehensive review on 
the Hadamard product and its applications. But we think that a systematic discussion from computing and 
analysis viewpoint may prove beneficial to further apply the Hadamard product to a wide range of 
nonlinear analysis. Horn (1990) discussed the properties of the Hadamard product involving norm 
inequality in great detail. Thus, we do not repeat the work of this aspect. The following brief discussions 
center on the algebraic and analysis properties of the Hadamard product, and let A, B, C, D, E, F, 

X∈Cn×m, and ( ) ( )D −1
 is denoted by ( )

1
. 

 
Theorem 1. Multiplication and factorization 

( ) ( ) ( )1 2. X A X B X A B X A B+ + = + + +D D DD  

( )2 22 2 2. A B A A B B± = ± +
D D DD  

 
Theorem 2. Fraction 
If the following Hadamard power and inverse exist, we have 

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )

1
1 1 1 1

2 1 2 3

.

.

X A X B A B X A X B

P X
X A X B X C

A
X A

A
X B

A
X C

− −
=

− −
−

−

⎛

⎝
⎜

⎞

⎠
⎟

− − −
=

−
+

−
+

−

D
D

D D

D
 

in which A1, A2 and A3 are the desired constant matrices, P(x) is a polynomial.  
 
Theorem 3. Radical expression 

If n and p are scalar,  A n
D

1

 and B n
D

1

 exist,  we have 

( )

( )

1

2

1

1 1 1

.

.

A A

A B A B

mp np
m
n

n n n

D D D

D D D
D D

=

=
 

 
Theorem 4. Rule of proportion 

If 
A
B

C
D

=  and  the related Hadamard inverses exist, we have 

1

2

.

.

A D B C
A B

B
C D

D

D D=
±

=
±  

3. A B
A B

C D
C D

+
−

=
+
−

 

 
 
Theorem 5. Inequality 
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If A-B is positive semidefinite, we define A≥B; If A-B is positive definite. A ;B.  A;0 means that A is 

positive definite, A≥0 denotes that A is positive semidefinite. In the following if A;0, B;0,  A;B, and all 

involved Hadamard inverse and power exist, we have 
1>  A°B;0 

2> A°C; B°C (C;0)  and  A°C∠B°C (C≺0) 

3> ( )A B
A B

+
≥

2

1
2D  

4> ( )A A A
n

A A An
n

n1 2
1 2

1+ + +
≥

"
D D"D   if Ai>0. 

5> 
A A A

n
A A A

n
n

r r r
n

r
1 2 1 2+ + +⎛

⎝
⎜

⎞
⎠
⎟

+ + +"
≺

"D D D D

, if r>1, Ai>0. 

6> 
A A A

n
A A A

n
n

r r r
n

r
1 2 1 2+ + +⎛

⎝
⎜

⎞
⎠
⎟

+ + +"
;

"D D D D

, if r∠1, Ai>0. 

7> If A≥0 and B≥0, then A°B≥0. 
8> A°2;0 irrespective of whether A;0 or A∠0.  

Formulas (1) and (7) are famous Schur inequality theorem (Ni, 1984; Horn, 1990) .  The proofs for other 
inequalities are straightforward by using formulas (1) and (7) and the following Lemma I (Horn and 
Johnson, 1985):  
 
Lemma I. If matrix A and B are positive definite or positive semidefinite, A+B is positive definite or 
positive semidefinite.  
 
Theorem 6. Hadamard function 
1. ( )s i n s i n c os c os s i nD D D D DD DA B A B A B± = ±  
2. ( )c os c os c os s i n s i nD D D D DD ∓ DA B A B A B± =  

3. ( )e e eA B A BD D DD+ =  
4. ( )e eA m mAD D D=  

From the above formulas, it can be found that the Hadamard functions have the same properties as the 
scalar function.  
 
Theorem 7. Differentiation and derivation 
The differentiation properties of the Hadamard product on matrix-valued function of a variable vector or 
matrix are equivalent to those on the Jacobian derivative matrix,  and thus can be found in section 2.3 
involving the operation rules of the SJT product, namely, equations (2.3-4a, b, c, d, e, f). We herein 
discuss the properties of the Hadamard product involving matrix-valued function of a scalar variable. 
Such matrix-valued function is often encountered in perturbation theory (Horn, 1990) and the initial-
boundary problems including time-derivative. The differentiation or integration of such function is the 
matrix obtained by entry-wise differentiation or integration. 
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Lemma II. If scalar function F(x) and matrix-valued functions A=[aij(t)] of a real variable t are 
continuous, differentiable and integrable,  the Hadamard function F°(A) is continuous, differentiable and 
integrable.  

In the following 
d

dt
  is also represented by ( ) ′, 

1. 
( ) ( )dC A t

dt
C

dA t
dt

D
D= , where C is a constant matrix.  

2. 
( ) ( ) ( ) ( ) ( ) ( )dA t B t

dt
dA t

dt
B t A t

dB t
dt

D
D D= +  

3. 
( )( ) ( ) ( )df A t

dt
df A

dA
dA t

dt

D D

=                                                                                                               

For example,                             

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

A nA A In A A A e e A

A A A A A A

sh A ch A A ch A sh A A

n n A AD D D D D D

D D D D

D D D D

D D D

D D

D D

′
= ′

′
= ′

′
= ′

′
= ′

′
= − ′

′
= ′

′
= ′

− −1 1, , ,

sin cos , cos sin ,

,

                               

where A=A(t),  In( ) denotes natural logarithm function, sh( ) and ch( ) represent hyperbolic sine and 
cosine functions, respectively. 

4.  ( ) ( )C A t dt C A t dt
t

t

t

t
D D

0

1

0

1∫ ∫= , where C is a constant matrix. 

 
 
APPENDIX  B. 
Circulant Matrix Structures in the Weighting Coefficient Matrices of the Quadrature 
Method Based on the Fourier-type Trigonometric Interpolation 
In chapter 6 we have proven the centrosymmetric structures of weighting coefficient matrix of the DQ and 
HDQ methods under conditions of symmetric grid spacing. In this appendix we will show that the 
weighting coefficient matrices possess circulant structures in the quadrature method using the Fourier 
interpolation principle. For simplicity, the quadrature method is denoted as the FDQ method. 
 
The Fourier trigonometric basic functions are equal to those in equation (1.2-6) for the HDQ method. The 
only difference between the HDQ and so-called FDQ methods is the coordinates of sampling points when 
the equally spaced grid points are used. The HDQ method uses the spacing points as sampling points, 
while the FDQ method employs middle inner points between the respective two spacing points as its 
sampling points, which is similar to the choice of grid points in the discrete Fourier transformation (DFT) 
approach. To clearly illustrate the difference, the grid points for the HDQ and FDQ methods are shown in 
Figs. 1 and 2, respectively. 
 
 
0                                                                                                                                               2π 
 
 1                2                3                4  .  .   .   .   .   . N-3                N-2                N-1                N 
 
Fig. 1. Equally spaced grid points for the HDQ method 
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 0                                                                                                                                             2π 
        (1)             (2)             (3)                                           (N-2)             (N-1)             (N) 
 
 1                2                3                4  .  .   .   .   .   . N-2                N-1                N                 N+1 
 
Fig. 2. Equally spaced grid points for the FDQ method 
 
The numbers with parentheses in Figure 2 indicate the sequence of sampling points in the FDQ method. 
Obviously, the grid points in the Fourier interpolation principle do not include the boundary points, but 
this does not matter. A simple algebraic transformation can overcome the difficulty as we have done for 
the zeros of orthogonal polynomials in section 3.3. Applying equation (6.2-13) and some properties of 
trigonometric functions, we obtain the following direct computing formulas for computing the FDQ 
weighting coefficients of the 1st order derivative in the normalized domain (0≤x≤1), namely,  

( )
( )A
i j

N

N
Ni j

i j

=
−

−
−

−1 1

s i n π
π ,  i≠j                                                                       (B1) 

and 
Ai i = 0,                                                                                                                             (B2) 

where N is the number of grid points. Considering the completeness requirements in the choice of the test 
functions, N is in general odd integer. Here the coordinates of grid points are  

x
i
Ni =

−
−

1
1

.                                                                                                                    (B3) 

It is stressed that the FDQ method usually employs the equally spaced grid points. According to equations 
(B1) and (B2), the weighting coefficient matrix [A] is a circulant one. It is known that the ordinary 
product of two circulant matrices produces a circulant one. The inverse of a circulant is also circulant one. 
In section 1.2 we have shown that the weighting coefficients of the DQ-type methods can be obtained by 
using successive multiplications of the [A] matrix by itself, namely, equation (1.2-7). Therefore, it is 
straightforward that the FDQ weighting coefficient matrices are in general circulant matrix for the various 
order derivatives. For example, considering five equally spaced grid points, we have 
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and 
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where [Bij] denotes the weighting coefficient matrix for the 2nd order derivative. The number of 
independent elements in the weighting coefficient matrices of N order are N. In fact, there is only (N-1)/2 
independent elements for the odd order derivatives and (N+1)/2 ones for the even order derivatives. The 
weighting coefficient matrices in the FDQ method are also real, symmetric or skew symmetric finite 
Toeliptz matrices. The circulant structures of the FDQ weighting coefficient matrices are closely related to 
the periodic behavior of trigonometric functions. The circulant matrix as well as symmetric finite Toeliptz 
matrices has many interesting properties (Cheng, 1989; Roebuck and Barnett, 1978). Some very efficient 
algorithms have been well developed for solving such kind of matrices (Morgera, 1982; Cantoni and 
Butler, 1976; Cheng, 1989; Roebuck and Barnett, 1978). The further work in this direction may be very 
beneficial to reduce computation effort and storage requirements in the FDQ method.  
 
We apply the FDQ method to analysis the free vibration of a simply supported beam. The corresponding 
FDQ formulation and solution procedures are the same as those in the example 1 of section 6.3. The FDQ 
solutions1 using thirteen grid points are tabulated in table 1.  
 
Table 1. FDQ solutions of free vibration of a simply supported beam (ϖ2=ρA0L4ω2/π2EI) 

n 1 2 3 4 5 6 7 8 9 10 11 
exact 1 4 9 16 25 36 49 64 81 100 121 
FDQ 1.03 4.20 9.27 16.8 25.7 37.95 50.3 67.8 82.7 106.8 122.3 

 
n in table 1 means the modal order. It is noted that the FDQ solutions for the odd order modals are 
obviously better than those for the even odd order modals. Moreover, as the modal increases, the 
accuracies improves. This phenomena is abnormal and does not occur in the HDQ and DQ solution of the 
similar problems. In this case, the HDQ method gives the exact solution, but the HDQ method yields the 
significant real solutions only in the first several order modals. Therefore, it is concluded that the FDQ 
method may be advantageous for the cases in which the high order modals are desired. In addition, the 
symmetric Toeliptz matrix structures in the FDQ weighting coefficient matrices may be more valuable for 
reducing computational and storage requirements than the centrosymmetric structures in the DQ and HDQ 
methods (Cantoni and Butler, 1976; Cheng, 1989).  
 
In addition, it is worth pointing out that the FDQ method is in fact equivalent to the discrete Fourier 
transformation approach in the solution of differential equations. The only difference between them is that 
the desired values in the FDQ method are the unknown function values rather than the spectral 
coefficients as in the DFT method. Direct computing the unknown function values has somewhat 
advantage in some situations. Especially if the desired spectral coefficients for the considered problems 
have no practical physical significance, the DFT technique will require an inverse Fourier transformation 
and suffer from the difficulty in the choice of starting guess in the iteration solution of nonlinear 
problems. In addition, the FDQ weighting coefficients need to be computed only once and are 
independent of any special problems. Therefore, these weighting coefficients can be used repeatedly for a 
variety of problems. The FDQ method may be a potential alternative to the DFT technique in the solution 

                                                           
1  The FDQ solutions for this case were provided by professor Xinwei Wang (1994c). 
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of some differential systems in engineering such as electromagnetism, electronic analysis, and computing 
microwave, etc. The subject is currently in active study. 
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