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ABSTRACT

Biomathematics use mathematics to quantitatively represent the dynamics of biological or

biomedical systems and thereby analyze and predict system behavior. This work addresses

an application of bioacoustic modeling and computations to a clinical imaging technique for

breast cancer detection. The mathematical model consists in a damped wave equation incor-

porating a frequency-dependent attenuation, which describes ultrasound propagating in the

human breast tissue. 3D numerical simulations are presented to investigate the detectability

of breast tumors. An extension to a more general model for the acoustic attenuation is also

discussed. For this, 2D numerical experiments are presented to illustrate the issue in the

case of the CARI technique.

Keywords: breast cancer detection, ultrasound propagation, fractional derivative for acous-

tic attenuation.
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1 Introduction - Clinical description

Breast cancer became the most widespread female disease, in particular in western countries.

Lives can be saved and treatment can be more effective if the diagnosis is made early. Ul-

trasonography is a common technique used in breast screening due to its low cost and large

availability. Moreover, it is a good adjunct to mammography in differentiating cancerous from

non-cancerous breast tumors. In this study, we are interested in the CARI (clinical amplitude-

velocity reconstruction imaging) ultrasonic technique that was developed by Dr. K. Richter

[8, 9].

The breast, in the CARI device, is fixed between two plates as schematically illustrated in Fig-

ure 1. The stainless steel plate, opposite to the transducer, plays the role of a reference structure
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Figure 1: Two frontal views of the ultrasonic CARI technique for breast tumor detection taken

from [9].

producing a reflecting line (RL). The CARI modality operates in such that the RL is straight if

the sound velocity in the intervening tissues is roughly homogeneous while it is elevated if the

tissue contains a suspicious tumor as shown from the CARI-ultrasonic image in Figure 2. The

CARI technique is characterized by two important acoustic components of breast evaluation,

namely the sound speed and the attenuation. Moreover, the CARI method is more sensitive

than the conventional ultrasound, especially in assessing cancer surrounded by the breast fatty

tissue.

In general, experimental study in living tissues is not practical, and acoustic phantoms are

useful but limited. Therefore, mathematical computer modeling of ultrasound propagation and

scattering complement to both approaches, although it has its own limitations. Moreover, recent

advances in high-performance computing enable large-scale simulations such those occurring in

high frequency acoustic wave propagation.

2 Mathematical and geometrical modeling

To simulate ultrasound in breast models taking into account the two tissue parameters of the

CARI technique, we solve the damped linear wave equation in an inhomogeneous lossy acoustic

medium representing the breast fatty tissue:

1

c2

∂2p

∂t2
+ γ

∂p

∂t
= ∇2p, (2.1)

where p is the pressure, c is the sound velocity, and γ is the damping or attenuation parameter.

Note that wave attenuation is an essential tissue characteristic. There are various attenuation

mechanisms where few of them can be isolated, and commonly the attenuation follows a power

law in frequency f expressed as

γ = αfy, (2.2)

where coefficients α and y depend on the tissue. For example, in water α ≈ 0.0022dB/cm/MHzy,

y= 2.0, and in muscle tissue α ≈ 0.7dB/cm/MHzy, y= 1.1. In our simulations, α = 2α0/c and
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Figure 2: A CARI-ultrasound image showing the elevation of the reflecting line due to the

presence of a tumor in the breast tissue.

the values of c, α0 and y are deduced from clinical experiments and will be specified later.

In the last section we introduce a more general attenuation model using Laplacian fractional

derivative.

The equation (2.1) is supplemented with initial and boundary conditions according to the 3D

configuration in Figure 3. The transducer is represented by a Dirichlet condition

p(xtrsd, t) = ptrsd(x, t). (2.3)

The RL in the CARI setup is modeled by reflecting boundary (RB) conditions

∂p

∂n
(xRB, t) = 0, (2.4)

while the remaining boundaries are represented by first-order absorbing or non-reflecting bound-

ary (NRB) conditions:

∂p

∂n
(xNRB, t) = −1

c

∂p

∂t
. (2.5)

The system is initialized with the conditions:

p(x, t0) = patm and
∂p

∂t
(x, t0) = 0. (2.6)

The FETD (finite element time domain) approach used to discretize the equation (2.1) and the

corresponding boundary conditions consists of a finite element method in the spatial domain and

a second order finite difference representation to evaluate the time derivatives. A semi-discrete

time scheme of (2.1) writes

pn+1 − 2pn + pn−1

Δt2
+ γc2 pn+1 − pn−1

2Δt
= c2∇2pn, (2.7)
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Figure 3: 3D configuration of the CARI technique for ultrasound breast tumor detection

where Δt is the time step size and the superscript n denotes the nth time iterate of the pressure

field. Then, by decomposing pn in a finite element basis and incorporating the boundary

conditions, (2.7) leads to

A1p
n+1 = A2p

n + A3p
n−1, (2.8)

where the matrices Ai, (i = 1, 2, 3) result from the finite element matrices and depend on the

parameters c, γ, and Δt. In summary, the problem is reduced to the solution of a linear

system at each time step. The numerical implementation is carried out using Diffpack, a finite

element library based on C++ and object-oriented programming [7]. We refer to [3] for a

detailed description of the FETD discretization method as well as a review on the stability of

the numerical scheme.

3 Numerical results and discussions

Geometrically, the breast tissue is assimilated to a 3D box of size 22mmx24mmx20mm con-

taining an ellipsoid-shaped tumor of axes 2a, 2b and 2c as shown in Figure 3. The transducer

is a 12mmx8mm-rectangle from which a 3.5MHz signal is transmitted into the breast tissue.

The sound speed in the breast tissue and the tumor are extracted from clinical experiments

[10] together with the attenuation parameters, and are summarized in Table 1. Note that the

transducer signal has a wavelength of λ = f
c
≈ 0.4mm. Thus, for a better resolution of the

spatial features, a grid is chosen able to resolve 2 finite elements per wavelength which requires

a grid of approximately 1.5x106 nodes. The numerical scheme is then stable for a time step

Δt =26x10−9s, and two ways of the wave traveling along the 3D breast model is achieved over

1125 time steps.

As shown in Figure 5, the waves are perturbed due to the presence of the tumor in the abnormal

tissue compared to the healthy (or homogeneous) one. Here, the tumor is an ellipsoid of axes
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Table 1: Sound velocity and coefficients of frequency-dependent power law attenuation of the

breast tissue and tumor.

breast fatty tissue breast cancer

c(m/s) 1475 1527

α0(dB/MHzy) 15.8 57.0

y(s/m2) 1.7 1.3

(12mm,8mm,8mm), and the views represent cross-sections normal to the wave propagation

direction.

Clinically, the ultrasound imaging techniques have some limitations and lesions as small as

1cm-diameter can hardly be detected. The numerical experiments show instead that smaller

lesions can be readily recognized in the tissue, an observation confirmed by 2D simulations in

[3], which mimic cross-sections in 3D breast model.

Besides the disturbance of the echo pattern around the lesion, snapshots from Figure 5 show

that the ultrasound pressure is attenuated as the wave propagates along the tissue towards

the RL and back to the transducer. Moreover, ultrasound pressure of a layer traversing the

tumor (z=5mm) displayed at successive time steps on Figure 7 gives a quantitative evaluation

in detecting the tumor and recognizing its shape.

4 On a fractional derivative attenuation model

Acoustic waves propagating in media exhibiting arbitrary frequency power law attenuation can

be modeled by time-domain partial differential equations given by (2.1). However, for non-

integer power exponent y of the attenuation parameter γ, these models may not accurately

describe more realistic media such as soft biological tissues. Therefore, we introduce in this

section a new model for the dissipative term using a Laplacian fractional derivative developed

by Chen and Holm [5, 6]:

1

c2

∂2p

∂t2
+ 2

α0

c1−y

∂

∂t
((−Δ)y/2) = ∇2p, (4.1)

where the coefficients are similar to those introduced earlier. Chen and Holm note that the

spatial fractional Laplacian models reflect the fractal microstructures of the media and describe

quite well the frequency power law attenuation.

We aim in this section to develop a finite element approach to the new wave equation.

Using a finite element approach to the equation (4.1) and the Green’s formula for the right

hand side term, we assume we obtain the pseudo-spatial approximation:

1

c2

∂2(Mp)

∂t2
+ 2

α0

c1−y

∂

∂t
(Ky/2p) = −Kp + Bp. (4.2)

The matrices M , K, and B are given, respectively, by

[Mij ] =

∫
Ω

NiNjdx, [Kij ] =

∫
Ω
∇Ni∇Njdx, [Bij ] =

∫
∂Ω

NR

NiNjdσ, (4.3)
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Figure 4: 2D configuration used for the FEM simulations of the wave propagating in attenuated

medium

where Ni are the finite element basis functions and ∇Ni their gradients. ΩNR refers to as the

non-reflecting boundaries of the computational domain as illustrated on Figure 4.

Then, using a second-order finite difference approximation in time, we get the discrete matrix

form [
2M + 2α0c

1+yΔtKy/2 + cΔtB

]
pn+1 =− 2c2Δt2Kpn + 4Mpn − 2Mpn−1

+ 2α0c
1+yΔtKy/2pn−1 + cΔtBpn−1.

The pressure is then calculated by a process solving a linear system at each time step.

4.1 Some 2D numerical results

To our knowledge, numerical simulations involving fractional derivative are not widely treated

in the literature. In this section, we investigate the feasibility of the finite element approach

to give quantitative results on the behavior of the wave propagating in media presenting a

fractional derivative attenuation model. We especially study the effect of the power exponent

y on the presence or not of the oscillations within or outside the tumor region.

The domain is a 10mmx10mm square meshed with a 26x26nodes-grid, the sound speeds in the

breast and the tumor respectively are cbreast = 1475ms−1, ctumor = 1527ms−1, and α0 = 1 is the

first attenuation coefficient. The matrix Ky/2 is computed using one of the matrix functionalities

of MatLab. The process is time consuming and results, in particular, in a full matrix.

Two series of numerical experiments are carried out for different values of y when the wave

travels in the 2D breast model outside the tumor region: (1) for 5 values of y close to 0,

Figure 8 shows that the oscillations are very similar; (2) for 5 values of y between 0.2 and 2,

the results from Figure 9 show that the oscillations are present for y=0.2 and y=0.5, but then
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disappear when y ≥ 1. It is also observed that the amplitude is smaller than the above case.

In Figures 10 and 11, the same observations are made from the results when the wave propagates

across the tumor region. Other results are presented in [4].

5 Conclusions and perspectives

This paper addresses bioacoustic numerical modeling for the CARI ultrasonic breast imaging

technique. A finite element approach is presented and numerical experiments for a 3D breast

model illustrate the detectability of lesions in the breast fatty tissue.

The attenuation model is extended by introducing a Laplacian fractional derivative. The dis-

cretization of the wave equation incorporating the new attenuation model is achieved by a finite

element method. The numerical results, although limited to bi-dimensional case and simple

boundary conditions, give insights in the feasibility of the attenuation modeling in human soft

tissues. However, further analysis can be done to achieve a more accurate numerical approxi-

mation of the presented attenuation model.
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[8] K. Richter and SH. Heywang-Köbrunner, Quantitative parameters measured by a new

sonographic method for detecting breast lesions, Invest. Radiol., Vol 30, pp. 401-411, 1995.

Int. J. Tomogr. Stat.; Fall 2008; Vol. 10; No. F08 37



(a)

(b)

Figure 5: Ultrasound pressure in a cross-section (z=7mm) normal to the z-axis and traversing

the tumor for two breast fatty tissues at t=23.9μs: (a) homogeneous tissue; (b) containing

a (12mm,8mm,8mm)-ellipsoid tumor. The shape of the section is readily recognized in the

background medium.
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(a)

(b)

Figure 6: Ultrasound pressure in a cross-section normal to the y-axis and traversing the

tumor for two breast fatty tissues at t=23.9μs: (a) homogeneous tissue; (b) containing a

(12mm,8mm,8mm)-ellipsoid tumor. The wave travels back to the transducer, and it is noted

that it is disturbed around the tumor compared to the tissue without tumor.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: History of the ultrasound pressure in the breast tissue containing an ellipsoid tumor

at 8 successive time steps:(a) t=26.6ns; (b) t=2.6μs; (c) t=7.9μs ; (d) t=15.9μs; (e) t=18.6μs;

(f) t=29.3μs. The color scale shows also the attenuation of the pressure during the two-way

travel of the wave along the tissue.
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Figure 8: Normalized ultrasound pressure in 5 different media presenting a fractional Laplacian

derivative attenuation model. The media are varying according to 5 values (close to 0) of the

power exponent parameter y. The plots represent the pressure field as a function of the axial

distance (z) when the lateral distance is fixed to x=-3mm, i.e., the wave travels outside the

tumor region.
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Figure 9: Normalized ultrasound pressure in 5 different media presenting a fractional Laplacian

derivative attenuation model. The media are varying according to 5 values (between 0.2 and 2)

of the power exponent parameter y. The plots represent the pressure field as a function of the

axial distance (z) when the lateral distance is fixed to x=-3mm, i.e., the wave travels outside

the tumor region.
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Figure 10: Normalized ultrasound pressure in 5 different media presenting a fractional Laplacian

derivative attenuation model. The media are varying according to 5 values (close to 0) of the

power exponent parameter y. The plots represent the pressure field as a function of the axial

distance (z) when the lateral distance is fixed to x=1mm, i.e., the wave travels through the

tumor region.

0 1 2 3 4 5 6 7 8 9 10
0.9

1

1.1

1.2

axial distance z[mm]

no
rm

al
iz

ed
 p

re
ss

ur
e

y=0.2
y=0.5
y=1.
y=1.5
y=2.0

Figure 11: Normalized ultrasound pressure in 5 different media presenting a fractional Laplacian

derivative attenuation model. The media are varying according to 5 values (between 0.2 and 2)

of the power exponent parameter y. The plots represent the pressure field as a function of the

axial distance (z) when the lateral distance is fixed to x=1mm, i.e., the wave travels through

the tumor region.
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