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speculative study of 2/3-order fractional Laplacian modeling
f turbulence: Some thoughts and conjectures
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This study makes the first attempt to use the 2/3-order fractional Laplacian modeling of Kolmog-
orov −5/3 scaling of fully developed turbulence and enhanced diffusing movements of random
turbulent particles. Nonlinear inertial interactions and molecular Brownian diffusivity are consid-
ered to be the bifractal mechanism behind multifractal scaling of moderate Reynolds number
turbulence. Accordingly, a stochastic equation is proposed to describe turbulence intermittency. The
2/3-order fractional Laplacian representation is also used to model nonlinear interactions of fluc-
tuating velocity components, and then we conjecture a fractional Reynolds equation, underlying
fractal spacetime structures of Lévy 2/3 stable distribution and the Kolmogorov scaling at inertial
scales. The new perspective of this study is that the fractional calculus is an effective approach to
modeling the chaotic fractal phenomena induced by nonlinear interactions. © 2006 American In-
stitute of Physics. �DOI: 10.1063/1.2208452�
urbulence occurs throughout nature, from the atmo-
phere to the oceans to electronics to inside stars and
nternal combustion chambers. Scaling methods are used
o explore hidden structures in the random behavior of
urbulent fluid flow even without a detailed solution of
he equations of motion. Experimental measurement and
irect numerical simulation data from finite Reynolds
umbers turbulence, however, have observed a clear de-
arture from the celebrated Kolmogorov scaling theory,
lso known as intermittency. This study makes the first
ttempt to develop an original stochastic intermittent
quation and a Reynolds equation via the innovative
ractional derivative approach. In addition, we propose a
imple bifractal model to explain the well-known multi-
ractal scaling of turbulence. We introduce a novel expla-
ation of the fundamental mechanism behind intermit-
ency, and we also provide a solution for the perplexing
losure of the turbulence Reynolds equation.

. INTRODUCTION

The Kolmogorov −5/3 scaling characterizes the statisti-
al similarity of turbulent motion at small scales based on the
rgument of local homogeneous isotropy.1 To some extent,
he scaling law has been validated by numerous experimental
nd numerical data of sufficiently high Reynolds number
urbulence.1,2 However, a clear departure from the −5/3 scal-
ng exponent is also often observed in various turbulence
xperiments at finite Reynolds numbers, i.e., the so-called
ntermittency. The consensus is that the intermittent property
f turbulence calls for a power law of the energy spectrum
aving an exponent −5/3-c �c�0�. There are a few theories
n the derivation of the correction exponent c. For instance,
he � model, the various multifractal model,3,4 and Kolmog-

�
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orov himself also refined his original −5/3 scaling by assum-
ing that the kinetic energy dissipation rate � is scale-
dependent and obeys a log-normal distribution leading to the
so-called intermittency correction.1

A school of researchers consider that the non-Gaussian
distribution of turbulence velocity increments leads to a vio-
lation of the original Kolmogorov scaling, and in fact inter-
mittency manifests a non-Gaussian velocity distribution.4

This argument has been controversial since many believe
that the Kolmogorov theory does not assume the velocity
increment Gaussianity. In Sec. II, we revisit this issue and
show that the Kolmogorov scaling indeed underlies the
Gaussian distribution of velocity increments. It is noted that
the Kolmogorov turbulence diffusion is consistent with
Richardson’s superdiffusion.5–9 Then we propose a fractional
Laplacian stochastic equation to describe the Richardson-like
scaling of fully developed turbulence. It is worth stressing
that the proposed model equation encounters the infinity of
the second and higher moments. Thus, our model is physi-
cally significant only for finite domain turbulence. In other
words, this model is based on the assumption of the suffi-
ciently high but finite Reynolds number, which is weaker
than the one for the original Richardson scaling. On the other
hand, there exist quite a few statistical models of turbulence
intermittency. To the best of my knowledge, however, little
has been achieved in the partial differential equation model-
ing of the intermittency phenomenon. The addition of mo-
lecular diffusivity into the above-mentioned fractional La-
placian stochastic equation gives rise to a partial differential
equation of intermittency. In Sec. III, by representing the
nonlinear interactions of fluctuating velocity components
with the 2/3 fractional Laplacian, we conjecture the frac-
tional Reynolds equation underlying the Lévy 2/3 stable dis-

tribution of random turbulence displacements and the
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olmogorov scaling. Finally, Sec. IV concludes this paper
ith some remarks.

The profound understanding of turbulence has been re-
arded up to now as an unsolved problem. We consider that
ne major reason for this long-standing difficulty is the lack
f an appropriate mathematical device. In this study, innova-
ive fractional calculus modeling is attempted to describe the
omplicated random phenomena of turbulence. The work de-
cribed here is of a speculative nature.

I. INTERMITTENT STATISTICAL EQUATION
F TURBULENT DIFFUSION

In Kolmogorov’s view of local homogeneous isotropic
urbulence, the second-order structure function of velocity
ncrements �u=u�x+r�−u�x� over a distance r within the
nertial range of scales is considered a stochastic variable and
beys a scaling law5

���u�2� � r2/3 for � � r � L0, �1�

here the brackets represent the mean value of the random
ariable ensemble, � denotes the kinetic energy dissipation
ate per unit mass and is considered scale-independent, and
= ��3 /��1/4 is the Kolmogorov dissipation length. The cor-

esponding Kolmogorov scaling of turbulence kinetic energy
ransportation is

E�k� = C�2/3k−5/3, �2�

here E�k� is the energy spectrum in terms of wave number
, and C denotes the Kolmogorov constant. On the other
and, it is well known that the diffusion of displacements in
he Kolmogorov turbulence is consistent with Richardson’s
article pair-distance superdiffusion5–9 �enhanced diffusion�
f a fully developed homogeneous turbulence, namely

�r2� = C̄��t3, �3�

here �t denotes time interval, and the experimental value

f the dimensionless constant C̄ is 0.5, given in Ref. 6. Equa-
ion �3� means particles move much faster than in normal
iffusion ��r2���t�. Through a dimensional analysis of Eqs.
1� and �3�, we can derive

���u�2� � �t . �4�

quations �3� and �4� show that the Kolmogorov turbulence
n the inertial range of scales is of the normal diffusion of the
elocity difference and the enhanced diffusion of displace-
ents. Consequently, turbulence in the inertial range is con-

idered to have a Gaussian velocity field and a non-Gaussian
isplacement field. Laboratory experiments and field obser-
ations have found that the statistics of the velocity incre-
ents in the inertial range of sufficiently high Reynolds

umber turbulence is often close to Gaussian.6 The displace-
ent diffusion equation �3� can be restated as

�r2� = C̄��t2/	, 	 = 2/3. �5�

quation �5� can be interpreted as the displacement incre-
ents in turbulence that obey the Lévy 	-stable

istribution,11 where 	 represents the stability index of the

évy distribution. The rigorous mathematics proof shows

wnloaded 30 Sep 2006 to 202.119.63.68. Redistribution subject to AIP
that Lévy stability index 	 must be positive and not larger
than 2 �0
	�2� with the Gaussian distribution being its
limiting 	=2 case.10,11 The non-Gaussian Lévy stable distri-
bution of velocity difference has an algebraic decay tail. It is
noted that the Gaussian distribution drastically underesti-
mates the occurrence probability of the large events, while
for heavy tailed statistics such as the Lévy stable distribu-
tion, the occurrence of extreme events is drastically en-
hanced.

The Lévy distribution has long been used to describe
strong long-range spatiotemporal correlation, featuring
heavy tails, of anomalous diffusion in turbulence.12–14 To the
best of my knowledge, the corresponding differential equa-
tion model, however, has been missing. The fractional La-
placian has been a popular approach in recent years to model
the Lévy statistical superdiffusion in a variety of physical
master equations such as the Fokker-Planck equation15 and
the anomalous diffusion equation.10,16 Intuitively, we con-
struct a linear phenomenological statistical equation within
the inertial range of scales of fully developed isotropic ho-
mogeneous turbulence at sufficiently high Reynolds numbers

�P

�t
+ ��− ��	/2P = 0, 	 = 2/3, �6�

where P�x , t� is the probability density function �pdf� to find
a particle at x at time instant t, which is initially situated at
origin. �−��	/2 represents the homogeneous symmetric �iso-
tropic� fractional Laplacian,17,18 and � is the turbulent diffu-
sion coefficient. 	 can be understood as the fractal dimension
in this study. In terms of the generalized Einstein dissipation-
fluctuation theorem19 and Eq. �3�, we can derive �

= �C̄� /2�1/3. The Green function of the Cauchy problem of
Eq. �6� results in the time-dependent Lévy pdf, which natu-
rally leads to Richardson’s turbulence superdiffusion �3�
through the so-called Lévy walk mechanism7,12 while under-
lying the Gaussian velocity increments field and the Kol-
mogorov scaling in the inertial range of scales.

Unlike the Gaussian process, the Lévy process is known
for infinite moments of second or higher order, which has
been seen as a major drawback from a purely theoretical
point of view. The truncated Lévy distribution was thus pro-
posed in turbulence modeling,14 in which the long fat tails of
algebraic decay of the original Lévy distribution are trun-
cated and replaced by the corresponding Gaussian distribu-
tion of exponential decay, and then the divergent second mo-
ments are cured.20 It is noted that both the standard Lévy
distribution and fractional Laplacian are defined under the
infinite domain. However, this truncation is somewhat arbi-
trary and the Lévy distribution truncated in this way can no
longer exactly underlie the fractional Laplacian of the infi-
nite domain in the governing equation. The real-world turbu-
lences all have finite Reynolds numbers, i.e., the finite size of
the turbulence region. Thus, the moment of second or higher
orders of the Lévy distribution in a finite domain must be
finite, and the artificially truncated Lévy process is not nec-
essary. It is noted that the standard definition of the fractional
Laplacian under the infinite domain encounters
hypersingularity,18 corresponding to the infinite moment of
the second and higher orders of Lévy distribution.11,16
 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



C
p
b
c
t
i
b
c
m
R

t
S
c
b
s
p
b

t
s
s
i
e
o
i
�
n
s

l
fi
b
m
t
n
m

w
m
s
d
t
o
s
F

T

T
f
d
d

023126-3 Fractional derivative turbulence Chaos 16, 023126 �2006�

Do
hen17 recently introduced a definition of the fractional La-
lacian under the finite domain that naturally includes
oundary conditions and eliminates hypersingularity. Ac-
ordingly, the Lévy distribution corresponding to the frac-
ional Laplacian of the finite domain in the fractional Laplac-
an NS equation �6� can be naturally truncated in terms of
oundary conditions. Therefore, it is stressed that the sto-
hastic model equation �6� is effective only in bounded do-
ains underlying real-world turbulence flows of the finite
eynolds number.

As mentioned before, Refs. 8 and 12–14 have employed
he Lévy distribution to analyze various turbulence data.
hlesinger et al.12 also proposed a Lévy walk model to over-
ome the appearance of infinite moments. The novel contri-
ution of this study is to make the first attempt to develop a
tochastic partial differential equation via a fractional La-
lacian to describe turbulence superdiffusion characterized
y Richardson’s third power of time �3�.

It is known that the scalings �Eqs. �3� and �4�� are ob-
ained for fully developed homogeneous turbulence under
ufficiently high Reynolds numbers and reflect the statistical
elf-similarity of eddy structures generated from nonlinear
nertial interactions. Therefore, the superdiffusion diffusion
quation �6� actually describes the enhanced diffusivity
riginating from the coarse-grained average of the nonlinear
nertial term in the Navier-Stokes equation. Also we call Eq.
6� the inertial diffusion equation, serving as a linear phe-
omenological model to characterize the fractal self-
imilarity of complicated nonlinear interactions.

On the other hand, for the finite Reynolds number turbu-
ence, a clear deviation from the Gaussian velocity increment
eld and t3 displacement superdiffusion at small scales has
een observed in various turbulence experiments and nu-
erical simulations, namely turbulence intermittency.21,22 In

he absence of molecular diffusion, model equation �6� can-
ot describe the intermittency. Otherwise, the addition of
olecular diffusion will reflect intermittency, i.e.,

�P

�t
+ ��− ��1/3P − ��P = 0, �7�

here � represents the Laplacian operator and � denotes
olecular viscosity. Equation �7� is called the intermittent

tochastic equation in this study. It is noted that the two
iffusion terms in Eq. �7� are induced by the inertial interac-
ions and molecular viscosity in the Navier-Stokes equation
f motion, respectively, reflecting the two inherent physical
ystems behind stochastic turbulence phenomena. A space
ourier transform of Eq. �7� results in

�P�k,t�
�t

+ �k2/3P�k,t� + �k2P�k,t� = 0. �8�

hen we have the probability characteristic function

P�k,t� = exp�− ��k�2/3 − ��k�2�t . �9�

he pdf P�x , t� can be evaluated by an inverse Fourier trans-
orm. It is apparent that the appearance of the molecular
iffusivity in Eq. �6� destroys the Richardson displacement

iffusions. Reference 32 makes detailed analyses and discus-

wnloaded 30 Sep 2006 to 202.119.63.68. Redistribution subject to AIP
sions on the multifractal nature of the solution of such frac-
tional Laplacian equations as Eq. �7�.

Compared with Kraichnan’s direct-interaction approxi-
mation �DIA� theory,23 Eq. �7� describes a phenomenological
linear stochastic turbulence field in the presence of molecular
diffusivity, while the DIA considers turbulence a nonlinear
stochastic field. The Green functions of these two approaches
are the statistical distribution of turbulence. However, the
DIA is mathematically very complicated thanks to its nonlin-
earity, while the present fractional Laplacian model captures
the major fractal feature of nonlinear inertial interactions via
a mathematically far simpler approach, namely the fractional
Laplacian.

To measure the intermittency in terms of Eq. �9�, we
introduce the dimensional ratio value

� = �/�k4/3. �10�

The inertial diffusivity � is considered much larger compared
with the molecular diffusivity �. However, we note from Eq.
�10� that the extent of intermittency is also dependent on
wave number and increases with it. Through a dimensional
analysis, we find ��Re2/3 / �Lk�4/3, where Re and L are the
Reynolds number and characteristic length of fluid flows,
respectively. The larger the Reynolds number, the more
dominant is the inertial diffusion. This conforms the consen-
sus that the intermittency is of Reynolds-number depen-
dency.

For fully developed isotropic homogeneous turbulence at
sufficiently high Reynolds numbers, the intermittency pa-
rameter � is very large for relatively low wave numbers in
the so-called convective-inertial range. And the molecular
diffusivity vanishes or is small enough that its effects are
negligible. Consequently, Eq. �7� is reduced to the limiting
equation �6� and the turbulence displacement is dominated
by the third power of time law �Eq. �3�� and the Gaussian
velocity increments field in the classical K41 inertial range.
On another extreme limit when the value of � is very small
for very high wave numbers toward molecular scales, the
inertial diffusivity is relatively weak and Eq. �7� is reduced
to the normal diffusion equation for the molecular Brownian
motion. And in this case, the turbulence displacement field is
Gaussian,

�r2� = 2�t , �11�

while the velocity field is described by4

���u�2� = A
�

�
r2. �12�

It is clear that the displacement fields vary from the 2/3
Lévy stable distribution to the Gaussian distribution. The
nonlinear inertial interactions yield the Gaussian velocity in-
crements field and the 2/3 Lévy stable distribution displace-
ment, while the molecular viscosity is responsible for the
non-Gaussian velocity field and the Gaussian displacement.
The resulting velocity and displacement fields are a com-
bined effect of these two contributing sources24 to display
varied degrees of intermittency. Therefore, the inertial range
is split into the two parts: �i� the convective-inertial range,

where the inertial interaction diffusion dominates and inter-

 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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ittency is less apparent, and �ii� the inertial-viscous range,
here the molecular diffusion cannot be neglected and inter-
ittency is sensibly observed.

The power spectral of kinetic energy of turbulence obeys
he scaling law

E�k� � k−�, �13�

here the exponent parameter � has a simple relation with
he exponents q of the corresponding second moment
���u�2��rq� of velocity random fields:25 �=q+1. For the
olmogorov Gaussian velocity field �1�, q=2/3 and �
5/3, while for the velocity field �12�, q=2 and �=3. The
alue of � between these two extreme cases ranges from 5/3
o 3 as q varies from 2/3 to 2 as a function of wave number.
or instance, q=1 and �=2. Thus, turbulence scaling is mul-

ifractal in nature. The stochastic essence of turbulence flows
ies in its diffusion behaviors.

Turbulence intermittent stochastic equation �7� can be
onsidered a special type of the fractional Laplacian Fokker-
lanck equation �FFPE�,11,15,16 which has been used often in
ecent years to describe the evolution of the probability dis-
ribution function. The FFPE is known as the stochastic
odel equation of anomalous diffusion. Equation �7� is dif-

erent from the standard FFPE in the literature in that it omits
he convection term but instead contains the two diffusion
erms. It is well known that the Fokker-Planck equation un-
erlies the Navier-Stokes equation. And the present FFPE-
ike intermittent equation �7� may underlie the fractional La-
lacian Navier-Stokes equations, a major subject to be
iscussed in the next section.

II. REYNOLDS EQUATION MODEL
ITH FRACTIONAL DERIVATIVE

The intermittent statistical equation �7� can be consid-
red the fractional Fokker-Planck equation �FFPE� with the
ractional Laplacian to describe anomalous diffusion. It is
ell known that the classical Fokker-Planck equation under-

ies the classical Navier-Stokes equation. This inspires us to
pply the fractional representation in the Navier-Stokes
quation modeling of turbulence. The equations of motion of
n incompressible fluid are

�u

�t
+ u · �u = −

1



� p + ��u , �14a�

� · u = 0, �14b�

here u is the velocity vector and p represents pressure.
ollowing Reynolds, velocity and pressure can be decom-
osed as a sum of mean flow components ū , p̄ and small-
cale fluctuating components ũ , p̃. The mean value of fluctu-
ting quantities is considered to be zero. Substituting the
ecomposition of velocity and pressure into Eqs. �14�, we
ave the following Reynolds equations:26

�ūi + ūj ·
�ūi = −

1
� p̄ + ��ūi −

�
�ũiũj� , �15a�
�t �xj 
 �xj

wnloaded 30 Sep 2006 to 202.119.63.68. Redistribution subject to AIP
� · ūi = 0. �15b�

The nonlinear fluctuation term ��uiuj� /�xj gives rise to the
controversial closure problem in the Reynolds equations. For
the fully developed homogeneous isotropic turbulence, the
fluctuating velocity components are considered to exhibit a
variety of universal features, namely statistically homoge-
neous isotropy and self-similar eddy structures, correspond-
ing to the Richardson and Kolmogorov picture of cascade
transport of kinetic energy in the inertial range of scales.
Intermittency is interpreted as the joint action of the mean
zero random velocity field and molecular diffusion on the
large scale and long times. By analogy with the previous
statistical equation �7�, we conjecture a representation of
these universal characteristics of the Reynolds nonlinear
fluctuation interactions by

�

�xj
�ũiũj� = ��− ��1/3ūi. �16�

Equation �16� can be considered the turbulence diffusivity
that leads to the enhanced diffusion. It is noted that Eq. �16�
is different from the traditional eddy �effective� diffusivity of
empirical turbulence models in that it underlies Gaussian ve-
locity increments and agrees with Kolmogorov’s key hypoth-
esis that the small-scale structures of turbulence flows, away
from boundaries, are independent of the large-scale configu-
ration. Then we present the fractional derivative Reynolds
equation

�ūi

�t
+ ūj ·

�ūi

�xj
= −

1



� p̄ + ��ūi − ��− ��1/3ūi. �17�

Here the fractional Laplacian �−��1/3 serves as a stochastic
driver underlying statistical self-similarity in the inertial
range and guarantees the positive definiteness of energy dis-
sipation. The molecular diffusivity is a property of fluids,
while the inertial diffusivity is a characteristic of flows26

where the fractional Laplacian reflects the long-range corre-
lation in chaotic turbulence motions, apparently resembling
an inherent property of non-Newtonian fluids. In other
words, the fractional Laplacian representation is to describe
the complicated flow property rather than the complex fluid
constitutive relationship.

The renormalization-group technique may be a plausible
approach to derive Eq. �17� directly from the Navier-Stokes
equation in a future study. It is worth mentioning that the
naive numerical solution of the fractional Reynolds equation
will be computationally expensive, since the fractional La-
placian is a nonlocal operator17,18 and will result in the full
matrix of numerical discretization.27 The fast algorithms
based on the preconditioning techniques, such as the fast
multipole method, panel clustering, and the H-matrix
method, will be of vital importance to perform effective nu-
merical simulations.

Let T, L, V�, and P represent the characteristic time,
length, velocity, and pressure of the fluid flow. We can then
have the dimensionless expression of the fractional Reynolds
equation �17�
 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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t
�ū*

�t
+ ū* · �ū* = − Et � p̄* +

1

Re
�ū* −

�̂

Re1/3 �− ��1/3ū*,

�18�

here ū* and p̄* are dimensionless velocity and pressure, St
s a constant, Et denotes the Euler number, and Re represents
he Reynolds number. Equation �18� shows that the coeffi-
ient of the inertial chaos diffusion is three orders of magni-
ude greater than that of molecular diffusion. For instance,
he inertial diffusion constant in Eq. �18� has a denominator
nly around 100 in a Reynolds number 106 flow.

The equation of motion �17� is deterministic, but its so-
ution has many attributes of random processes thanks to
oth the Laplacian and fractional Laplacian viscous terms.
e also find Eq. �17� satisfies the same scale invariance of

he standard Navier-Stokes equation,1,4

x� = �x, t� = �2/3t, u� = �1/3u ,

�19�
�p/
�� = �2/3�p/
�, �� = �4/3�, �� = � .

The very nature of the fractional Laplacian representa-
ion in the present Reynolds equations �18� also underlies the
allistic motion of turbulence particles under the Lévy walk
icture7 and implies that the turbulence diffusion is not fully
rreversible, in between deterministic advection and fully
andom �irreversible� diffusion motions,28 and may have sto-
hastic and deterministic duality. In essence, this study con-
ectures a simple mathematical formulation of chaos in
hich the deterministic Newtonian dynamics generates the

andom thermoviscous behavior.

V. CONCLUDING REMARKS

By using the fractional Laplacian, this paper proposes
ew statistical-mechanical descriptions of the dynamics of
haos-induced turbulence diffusion. The standard chaos dy-
amics models are mainly characterized by temporal com-
lexity but spatial simplicity,4 while the present fractional
quations can be considered a kind of fractal continuum dy-
amics, complex both in time and space. The fractional cal-
ulus, fractal, and Lévy distribution are consistent math-
matical concepts to describe complicated dissipation,
ransport, and diffusion phenomena of turbulence. One of the
ajor new perspectives in this study is that the fractional

alculus may be an effective approach to model the fractal
henomena resulting from chaotic nonlinear interactions. Al-
hough the nonlinear partial differential description and the
ractional derivative representation are seemingly quite dif-
erent mathematical approaches and the underlying relation-
hip between them is still not explicit, their common feature
s fractal in statistical physics, which leads to the present
ractional calculus modeling of chaos-induced diffusions.

Turbulence intermittency has long been considered to
ossess multifractal structures.3 However, to the best of my
nowledge, an explicit partial differential multifractal equa-
ion does not exist and the multifractal mechanism is not
ell established. As discussed in Sec. II, the present dual
iffusivity model equations provide a clear picture of how

he displacement field distributions vary with wave number

wnloaded 30 Sep 2006 to 202.119.63.68. Redistribution subject to AIP
and fluid molecular viscosity. The bifractal model of 2 /3
fractional Laplacian inertial diffusion and molecular viscos-
ity generates multifractal in turbulence.

Warhaft29 pointed out, “Apart from noting the presence
of non-Gaussian tails, no deeper analysis of the shape of the
pdfs has been made. Because the connection of these models
to the Navier-Stokes equations is tenuous,¼.” In this study,
an attempt was also made to explicitly connect non-Gaussian
statistics of turbulence and the Reynolds equation, a variant
of the Navier-Stokes equation, where the fractional Laplac-
ian representation describes the kinetic energy transportation
and dissipation induced by the complex nonlinear interac-
tions. Section III actually presents a statistical and physics
closure of the Reynolds equation.

It is worth mentioning that the fractional Laplacian17,18

and Lévy stable distribution11 can be asymmetric to describe
the skewness of turbulence distributions and ballistic
motion,7 upon which this study does not touch. On the other
hand, the stretched Gaussian30,31 and Hausdorff derivatives31

can also properly describe anomalous diffusion. Thus, the
Lévy stable distribution and fractional derivatives may not
be the only approaches in modeling turbulence.

ACKNOWLEDGMENT

The author is grateful to Dr. H. B. Zhou for helpful
discussions during the preparation of this paper.

1A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics
of Turbulence, Volume 1 and II �MIT Press, Cambridge, MA, 1971�.

2G. K. Batchelor, The Theory of Homogeneous Turbulence �Cambridge
University Press, Cambridge, 1953�.

3B. Mandelbrot, “Intermittent turbulence in self-similar cascades: Diver-
gence of high moments and dimension of the carrier,” J. Fluid Mech. 62,
331–358 �1974�.

4F. Hu, Turbulence, Intermittency, Atmosphere Boundary Layer �in Chi-
nese� �Academic, Beijing, 1995�.

5A. J. Majda and P. R. Kramer, “Simplified models for turbulent diffusion:
Theory, numerical modelling, and physical phenomena,” Phys. Rep. 314,
237–574 �1999�.

6M. C. Jullien, J. Paret, and P. Tabeling, “Richardson pair dispersion in
two-dimensional turbulence,” Phys. Rev. Lett. 82, 2872–2875 �1999�.

7I. M. Sokolov, J. Klafter, and A. Blumen, “Ballistic versus diffusive pair
dispersion in the Richardson regime,” Phys. Rev. E 61, 2717–2722
�2000�.

8D. del-Castillo-Negrete, B. A. Carreras, and V. E. Lynch, “Nondiffusive
transport in plasma turbulence: A fractional diffusion approach,” Phys.
Rev. Lett. 94, 065003 �2003�.

9A. Tsinober, “Anomalous diffusion in geophysical and laboratory turbu-
lence,” Nonlinear Processes Geophys. 1, 80–94 �1994�.

10A. Saichev and G. M. Zaslavsky, “Fractional kinetic equations: Solutions
and applications,” Chaos 7, 753–764 �1997�.

11W. Feller, An Introduction to Probability Theory and Its Applications, 2nd
ed. �Wiley, New York, 1971�, Vol. 2.

12M. F. Shlesinger, B. J. West, and J. Klafter, “Lévy dynamics of enhanced
diffusion: Application to turbulence,” Phys. Rev. Lett. 58, 1100–1103
�1987�.

13B. Dubrulle and J.-Ph. Laval, “Truncated Levy laws and 2D turbulence,”
Eur. Phys. J. B 4, 143–146 �1998�.

14H. Takayasu, “Stable distribution and Levy process in fractal turbulence,”
Prog. Theor. Phys. 72, 471–479 �1984�.

15S. Jespersen, R. Metzler, and H. C. Fogedby, “Lévy flights in external
force fields: Langevin and fractional Fokker-Planck equations, and their
solutions,” Phys. Rev. E 59, 2736 �1999�.

16R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, and P. Paradisi, “Discrete
random walk models for space-time fractional diffusion,” Chem. Phys.
284, 521–541 �2002�.

17
W. Chen and S. Holm, “Fractional Laplacian time-space models for linear

 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



023126-6 Wen Chen Chaos 16, 023126 �2006�

Do
and nonlinear lossy media exhibiting arbitrary frequency power law de-
pendency,” J. Acoust. Soc. Am. 115, 1424–1430 �2004�.

18S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and
Derivatives: Theory and Applications �Gordon and Breach, London,
1993�.

19M. P. Herrchen, “Stochastic modeling of dispersive diffusion by non-
Gaussian noise,” Ph.D. thesis, ETH, Switzerland, 2000.

20G. M. Zaslavsky, “Chaos, fractional kinetics, and anomalous transport,”
Phys. Rep. 371, 461–580 �2002�.

21A. L. Porta, G. A. Voth, A. M. Crawford, J. Alexander, and E. Boden-
schatz, “Fluid particle accelerations in fully developed turbulence,” Nature
�London� 409, 1017–1019 �2001�.

22K. R. Sreenivasan and R. A. Antonia, “The phenomenology of small-scale
turbulence,” Annu. Rev. Fluid Mech. 29, 435–472 �1997�.

23R. Kraichnan, “Small-scale structure of a scalar field convected by turbu-
lence,” Phys. Fluids 11, 945–953 �1968�.

24
S. Jaffard, “The multifractal nature of Levy processes,” Probab. Theory

wnloaded 30 Sep 2006 to 202.119.63.68. Redistribution subject to AIP
Relat. Fields 114, 207–227 �1999�.
25J. C. Sprott, Chaos and Time-Series Analysis �Oxford University Press,

Oxford, 2003�.
26H. Tennekes and J. L. Lumley, A First Course in Turbulence �MIT Press,

Cambridge, 1994�.
27I. Podlubny, Fractional Differential Equations �Academic Press, New

York, 1999�.
28X. Li, “Fractional calculus, fractal geometry, and stochastic processes,“

Ph.D. thesis, University of Western Ontario, 2003.
29Z. Warhaft, “Passive scalars in turbulent flows,” Annu. Rev. Fluid Mech.

32, 203–240 �2000�.
30R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffu-

sion: A fractional dynamics approach,” Phys. Rep. 339, 1–77 �2000�.
31W. Chen, “Time-space fabric underlying anomalous diffusion,” Chaos,

Solitons Fractals 28, 923–929 �2006�.
32P. Biler, G. Karch, and W. A. Woyczynski, “Asymptotics for multifractal
conservation laws,” Stud. Math. 135, 231–252 �1999�.

 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp


