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Abstract

This study unveils the time–space transforms underlying anomalous diffusion process. Based on this finding, we pres-
ent the two hypotheses concerning the effect of fractal time–space fabric on physical behaviors and accordingly derive
fractional quantum relationships between energy and frequency, momentum and wavenumber which further give rise to
fractional Schrödinger equation. As an alternative modeling approach to the standard fractional derivatives, we intro-
duce the concept of the Hausdorff derivative underlying the Hausdorff dimensions of metric spacetime. And in terms of
the proposed hypotheses, the Hausdorff derivative is used to derive a linear anomalous transport–diffusion equation
underlying anomalous diffusion process. Its Green�s function solution turn out to be a stretched Gaussian distribution
and is compared with that from the Richardson�s turbulence diffusion equation.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Anomalous diffusion is one of the most important concepts in modern physics [1–4] and is present in extremely di-
verse engineering fields such as charges transport in amorphous semiconductor [5], vibration and acoustic dissipation in
soft matter [6], magnetic plasma [7], polymer dynamics [8], turbulence [9] and quantum processes [10] among many
other problems [4]. However, it is noted that the anomaly is mostly introduced in a descriptive level of statistical rep-
resentation or phenomenological modeling. The purpose of this communication is to investigate time–space origin of
anomalous diffusion. And some new results as summarized in the abstract are introduced in this study.
2. Fractal time–space transforms

The definition of anomalous diffusion is based only on the time evolution of the mean square displacement of dif-
fusing particle (random walkers) movements [1–3,11,12]
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hDx2i / Dtg; ð1Þ
where Dx represents distance, Dt denotes time interval, g is a positive real number, and the brackets represent the mean
value of random variables (e.g., a collection of particles). For anomalous diffusion (g 5 1), particles move coherently
for long times with infrequent changes of direction, faster in superdiffusion (g � 1) and more slowly in subdiffusion
(g � 1) than linearly with time in normal diffusion (g = 1), i.e., hDx2i / Dt. The celebrated anomalous diffusion equation
of fractional derivatives is typically used in the corresponding phenomenological continuum modeling, which in isotro-
pic linear media is stated as [1,3,4,13]
oas
ota

þ cð	r2Þbs ¼ 0; 0 � a; b 6 1; ð2Þ
where s is the physical quantity of interest (e.g., temperature in anomalous heat conduction), c the corresponding phys-
ical coefficient, (	$2)b represents the symmetric fractional Laplacian [14], and a and b can be real numbers. The fun-
damental solution of Eq. (2) is the time-dependent Lévy probability density distribution (fat tailed distribution a = 1,
b < 1), in which 2b is the stability index of Lévy distribution [1–3]. Eq. (2) also underlies the fractional Brownian motion
(long time range correlation, a < 1, b = 1), in which a is the memory strength index of process [4,13], and the smaller a,
the stronger memory. These two anomalous statistics are often considered the statistical mechanism leading to anom-
alous diffusion (1) and accordingly g = a/b can be derived [1–5,15]. When a = 1, b < 1, Eq. (1) leads to the diverging
moment of higher than 2b order
hðDxÞni ¼ 1; 2b < n. ð3Þ
For b < 1, the mean square displacement diverges [1–4,15,16], which implies the potential energy cannot trap the
particle. Following this view, the mean kinetic energy for a finite mass m also diverges [16]. To solve this paradox,
we introduce the following scaling transforms to have the new observation metric spacetime:
Dx̂ ¼ Dxb;

Dt̂ ¼ Dta;

�
0 � a; b 6 1. ð4Þ
The above metric transforms (4) coincide with the classical definition of the Hausdorff time–space dimension [17]. The
anomalous diffusion scaling (g = a/b 5 1) of the mean square displacement (1) is recast as a normal diffusion under the
new metric spacetime
hDx̂2i / D̂t; ð5Þ
where the second moment is finite and the corresponding mean kinetic energy exists. It is worth pointing out that the
corresponding definition of velocity needs to be changed (see Eq. (15) further below), and thus the quantity of kinetic
energy varies accordingly. Eqs. (4) and (5) explicitly displays the fractal metric spacetime origin of anomalous diffusion
process. Unlike the classical Lorentz transforms in the special relativity, the spacetime transforms (4) are nonlinear in
nature and is not concerned with the frame of moving inertial reference. It is possible to combine the transforms (4) with
the Galilean and the Lorentz transforms in which the concept of velocity in the fractal metric spacetime must be rede-
fined by the fractional derivative or the Hausdorff derivative to be defined later on (also see Eq. (15) further below). The
time scaling transform in (4) was also proposed by Hoffmann et al. [18] and Li [3], referred to as ‘‘internal clock’’, to
solve counterintuitive paradox on the entropy production of anomalous diffusion process.

In terms of the transforms (4), Lévy statistics and fractional Brownian motion are considered a consequence of the
fractal metric spacetime, while the classical Gaussian distribution and Brownian motion correspond to the limiting
a = 1 and b = 2 spacetime fabric, respectively. On the other hand, the restoration of the normal diffusion formalism
in (5) implies the invariance of physical law under scale transforms and equivalence between anomalous environmental
effect and scale time–space geometry, which is a reminiscent of the two pillar principles of general covariance and equiv-
alence in the general relativity. Generalizing these observations, this study conjectures the following two hypotheses:

(1) The hypothesis of fractal invariance: the laws of physics are invariant regardless of the fractal metric spacetime.
(2) The hypothesis of fractal equivalence: the influence of anomalous environmental fluctuations on physical behav-

iors equals that of the fractal time–space transforms.

The first hypothesis means that the general form of physical equations would be invariant under the fractal trans-
formations (4). The second one suggests that the anomaly in physical behaviors (e.g., anomalous diffusion) is caused by
environmental effect (field noise) and can fully be explained and represented by the scale spacetime geometry (4). The
hypothesis of fractal invariance is very similar to the so-called scale relativity principle pioneered by Nottale [19]. Unlike
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the latter, this study, however, does not intend to incorporate the Einstein�s relativistic effects arising from the reference
frame of motion transforms such as acceleration and velocity (inertial). To my best understanding, this study also devel-
ops different time–space transforms, calculus, statistics, and physics formalisms and pursues distinct problems com-
pared with Nottale�s. But nevertheless Nottale�s work has inspired the author to some extent. The following sections
will substantiate the above two heuristic fractal hypotheses and the transforms (4) through the introduction of new
mathematical formalisms and typical applications.
3. Fractal spacetime origin of fractional quantum mechanics

Time and space are very fundamental concepts in nature and give rise to diverse mathematical theories and physical
quantities. Therefore, the time–space transforms (4) will have an impact on general sciences and engineering. Serving as
an illustrating example, this section applies the foregoing fractal hypotheses and transforms to quantum mechanics.
According to the hypothesis of fractal invariance, the quantum relationships between energy and frequency, momentum
and wavenumber in the fractal time–space (4) remain the classical linear formalism
E ¼ ĥav̂; ð6Þ
p ¼ ĥbk̂; ð7Þ
where E represents energy, p denotes momentum, ĥa and ĥb are the scaled Planck constant thanks to the scale spacetime,
k̂ wavenumber and v̂ frequency. In terms of the transforms (4), it is straightforward to connect the wavenumber and
frequency measures between the two metric spacetime
v̂ ¼ va and k̂ ¼ kb. ð8Þ
Thus, we have
E ¼ ĥava; 0 � a 6 1; ð9Þ
p ¼ ĥbk

b; 0 � b 6 1. ð10Þ
As discussed before, a and b are the statistical indices of fractional Brownian motion and Lévy process, respectively.
Therefore, the fractional quantum (9) and (10) imply that Lévy statistics and fractional Brownian motion are essentially
related to momentum and energy, respectively. The kinetic energy remains Ek = jpj2/2m, where m is the particle mass,
whereas Ek = Dbjpj2b proposed in Refs. [20,21] contradicts with Ek = jpj2/2m and is superficial, where Db is the scaled
constant with the physical dimension erg1	2b · m2b · sec	2b [20].

Considering the quantum plane wave Wðx; tÞ ¼ Aei�k�r	ivt the fractional quantum relationship (9) and (10) results in
ð	DÞbW ¼ jkj2bW ¼ p2

ĥ
2

b

W.
Thus,
Ek ¼
p2

2m
¼ ð	DÞb

ĥ
2

b

2m
.

On the other hand,
oaW
ota

¼ ð	ivÞaW ¼ e	ipa=2 E

ĥa

W ! eipa=2ĥa
oaW
ota

¼ EW.
In terms of the fractal invariance hypothesis, the classical Hamiltonian for a particle with potential energy V ð�rÞ reads
E ¼ Ek þ Ep ¼
p2

2m
þ V ðxbÞ.
Replacing all dynamic variables with the equivalent operator, the fractional quantum mechanical Hamiltonian leads to
the fractional Schrödinger equation
eipa=2ĥa
oaW
ota

¼
ĥ
2

b

2m
ð	DÞbW þ V ðxbÞW; 0 � a; b 6 1. ð11Þ
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An alternative derivation of the fractional Schrödinger equation is as follows. The time–space Fourier transform of the
above fractional Schrödinger equation (11) results in
ĥavaŴ ¼
ĥ
2

bk
2b

2m
þ V

0
@

1
AŴ.
In terms of the physical definition of the Schrödinger equation, the above formula is in fact a quantum Hamiltonian
E = Ek + V, where Ek = p/2m. Then it is straightforward to recognize the fractional quantum relationships (9) and
(10). In a reverse process, we can also derive the fractional Schrödinger equation (11).

In terms of the hypothesis of the fractal equivalence, the fractional Schrödinger equation (11) accounts for the affect
of scale metric spacetime on quantum processes. In the literature [20–24], the above fractional Schrödinger equation
(11) were derived either based on the quantum integral over the Lévy paths in contrast to the conventional Feynman
Gaussian path integral [20,21] or the fractional time derivative representation of the fractional Brownian motion
[21,22]. Unlike this study, none of these derivations, however, is a consequence of a basic principle of physics. The frac-
tional quantum mechanics has been found useful in modeling complex quantum systems such as polymers [21] and is of
potential use in quantum phenomena in which anomalous diffusion [10,25] and Lévy statistics (e.g., laser cooling [26])
presents prominently. Goldfain [27,28] and Martienssen [29] also studied fractional quantum mechanics in fractal
space–time by the so-called E–infinity theory [30,31].
4. Hausdorff derivative, anomalous diffusion and stretched Gaussian

In recent decade the fractional derivative has widely been used in the analysis and modeling of anomalous diffusion.
As an alternative modeling formalism, this study introduces the concept of the Hausdorff derivative of a function g(t)
with respect to a fractal measure ta
ogðtÞ
ota

¼ lim
t0!t

gðtÞ 	 gðt0Þ
ta 	 t0a

¼ ogð̂tÞ
ôt

. ð12Þ
The Hausdorff derivative (12) differs from the standard fractional derivative in that it does not involve the integral
convolution and is local in nature. Note that the symbol of the Hausdorff derivative differs from that of the fractional
derivative in that index a appears only once. In the same manner, we can also develop the Hausdorff integral formalism.
The elementary physical concepts such as velocity in a fractal spacetime (xb, ta) can be redefined by
v̂ ¼ dx̂
d̂t

¼ dxb

dta
; t̂; x̂8Sa;b; ð13Þ
where Sa,b represents time–space fabric having scaling indices a and b. The traditional definition of velocity makes no
sense in the non-differentiable fractal spacetime. For instance, Feynman [32] observed that the trajectories of quantum
mechanical particles are often continuous but non-differentiable characterized by fractal time–space dimensions [33].
Like the fractional derivative, the Hausdorff derivative exists under a fractal metric spacetime. For instance,
v̂ ¼ dt1=2=dt1=3jt¼0 exists while v̂ ¼ dt1=2=dtjt¼0 does not.

Diffusion processes are governed by the two equations: the continuity equation and the constitutive equation. In
terms of the hypotheses of the fractal invariance and equivalence, the former in a fractal Sa,b is given by
ou
ota

¼ 	rb � J ; ð14Þ
where $b Æ is the divergence operator on a fractal space, u represents the concentration density of particles, and J de-
notes particle flux. Likewise, the constitutive Fickian equation on a spatial fractal is stated as
J ¼ 	Drbu; ð15Þ
where D denotes scale-independent constant diffusivity, and $b is gradient operator on a space having fractal b. Substi-
tuting (15) into (14) produces diffusion equation
ou
ota

¼ rb � ðDrbuÞ. ð16Þ
Eq. (16) is actually a time- and space-dependent transport–diffusion equation (see Eq. (A.6) further below in Appendix
A) and can be restated under the fractal time–space fabric ð̂t; x̂Þ as a normal diffusion equation,
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ou
ôt

¼ Dr̂2
u; ð17Þ
where r̂2
is the Laplace operator under coordinate x̂. It is easy to see that Eqs. (16) and (17) agree with anomalous

diffusion (1) and normal diffusion (5), respectively. Anomalous diffusion equation (16) can be considered a master equa-
tion in nature for multidisciplinary applications, where the variable u can represent diverse physical quantities, for
example, temperature and pore pressure whose corresponding normal diffusion processes (17) involve Fourier�s heat
conduction law and Darcy�s law, respectively.

The Cauchy problem of the one-dimensional anomalous diffusion equation (17) is expressed as
oP
ôt

þ D
o2P

ox̂2
¼ 0; ð18Þ

Pðx̂; 0Þ ¼ dðx̂Þ; 	1 � x̂ � 1; ð19Þ
where t̂ ¼ ta and x̂ ¼ xb, j at represents the diffusion coefficient, dðx̂Þ is the Dirac delta function. The fundamental solu-
tion (Green�s function) of the Cauchy problem (18) and (19) can be found in a textbook
Pðx̂; t̂Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
4pDt̂

p e	x̂2=4Dt̂;
namely, the Gauss distribution. Applying the variable transforms yields the stretched Gaussian distribution
Pðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
4pDta

p e	x2b=4Dta . ð20Þ
The Green�s function (20) is the time-dependent probability density function (PDF) under the metric spacetime (x, t). In
terms of the fractal invariance hypothesis, hx̂2i ¼ 2Dt̂ is a normal diffusion process under the metric spacetime ðx̂; t̂Þ, and
then we have hx2bi = 2Dta and the mean square displacement r2b = hx2bi = 2Dta. Accordingly the PDF (20) is rewritten
as
Pðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2b

p e	x2b=2r2b . ð21Þ
In Appendix A comparison is made between the present stretched Gaussian and those reported in the literature. The
spatial Fourier transformed PDF (21) is given by
Pðk; tÞ ¼ e	Dk2b ta ; ð22Þ
which characterizes the relaxation for a fixed wavenumber k and is very similar to the Kohlrausch–Williams–Watts
stretched Gaussian [34] and deviates from the classical exponential Debye pattern [35].
5. Concluding remarks

It is well known that anomalous diffusion is often associated with a variety of frequency power law scaling phenom-
ena [2–6] mostly involving soft matter such as glass, colloids, emulsions, biomaterials, oil, and various porous media,
where the large amount of the elementary molecules is grouped together and behaves like a macromolecule with
entangled (non-lattice) and porous mesostructures. The very existence of many-particle long-range interactions and
history-dependent motions causes fractal mesoscopic metric spacetime of macromolecules which inflicts a profound
impact on various physical behaviors.

In a statistical description or a phenomenological modeling, the fractal has long been considered responsible for
anomalous physical behaviors and is claimed to have links with fractional derivatives, Lévy statistics, fractional Brown-
ian motion, and empirical power law scaling [17]. This study made a step forward to present the fractal spacetime trans-
forms and the hypotheses of fractal invariance and equivalence to display explicitly how the fractal metric spacetime
influences physical behaviors. Accordingly, the fractional quantum relationships were derived and the fractional Schrö-
dinger equation was found to be a consequence of the fractal spacetime structure. We also introduced the new concept
of Hausdorff derivative based on the fractal spacetime transforms and then developed a novel modeling equation for
anomalous diffusion, whose Green�s solution is new are stretched Gaussian.

Although the hypotheses of fractal invariance and equivalence are presented in somewhat heuristic way in this study
and need further be solidified in the future research, the present theoretical framework is physically sound and math-
ematically consistent from anomalous diffusion to statistics and macromechanics to mesoscopic quantum mechanics.
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Both the traditional fractional derivative and the new Hausdorff derivative are mathematical modeling formalisms
underlying the scale spacetime transforms (4). For instance, the inverse of the fractional time transform in (4) is also
the kernel function in the definition of the fractional time derivative [13]. However, the fractional derivatives in space
and time are non-local, whereas the Hausdorff derivative are local. Both derivatives can give the generalized interpre-
tation of diverse physical concepts on fractal spacetime. On the other hand, the Tsallis distribution has also in recent
years been a popular approach in the description of anomalous diffusion. Like the present stretched Gaussians (18) and
(19), this distribution was also a solution of the linear varying-coefficient Fokker–Planck equation of transport–diffu-
sion type [36], in which the standard local integer-order derivatives are used. The corresponding Tsallis non-extensive
thermodynamics is claimed capable to describe the long-range interacting systems and memory processes. This shows
that the fractional derivative may not be the only approach in modeling anomalous diffusion process. The links and
differences between the fractional and the Hausdorff derivatives for fractal spacetime modeling are currently a subject
under active study.
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Appendix A

In literature, the stretched Gaussians of diverse expressions are often constructed artificially to fit anomalous data
with little links to partial differential equations (PDE). This study shows that the stretched Gaussian underlies the
anomalous PDE model. The stretched Gaussian has been used to the fitting of turbulence experiment data in the form

of C exp 	 jxj2
½1þðajxj=rÞt � r

2
� �

, where C, a and t are the fitting parameters [37]. A different form of the stretched Gaussian can

be derived from the Richardson�s turbulent diffusion equation, whose expression under spherical symmetry is given by
[9]
oPR

ot
¼ 1

rd	1

o

or
ðk0rdþ1	2bÞ o

or
PR; ðA:1Þ
where k0 is a constant coefficient, r represents the radial distance, and b is defined as in the text body. The Green�s func-
tion PDF of Eq. (A.1) is of stretched Gaussian type
PRðr; tÞ ¼
bCðd=2Þ

Cð1=bÞð2pk0btÞ3=2b
e	r2b=4k0b2 t

. ðA:2Þ
In the Richardson case, a = 1, b = 2/3. The diffusion equation (16) of spherical symmetry under a = 1 is given by
oP s

ot
¼ 1

r̂d	1

o

or̂
ðDr̂d	1Þ o

or̂
P s ¼

1

rbd	1

o

or
ðDrbd	2bþ1Þ o

or
P s. ðA:3Þ
The present stretched Gaussian PDF corresponding to (A.3) is
P sðr; tÞ ¼
1

ð4pDtÞ3=2
e	r2b=4Dt. ðA:4Þ
The difference between Richardson�s (A.3) and the present PDFs (A.4) is evident. Without loss of generality, let us con-
sider the one-dimensional symmetric problem and analyze the difference between these two models. The Richardson
equation is expressed as
oPR

ot
¼ o

or
ðk0r2	2bÞ oPR

or
. ðA:5Þ
In contrast, the present diffusion equation (16) is stated as
oP
ot

¼ 	Dr1	2b op
or

þ o

or
Dr2	2b oP

or

	 

. ðA:6Þ
Obviously, Eq. (A.6) is of a transport–diffusion model with time- and space-dependent coefficients, while the Richard-
son equation (A.5) is of a pure diffusion model with a space-dependent diffusivity reflecting the power law scaling.
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