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Abstract

In this note, we derive the general and the fundamental solutions of varied orders of vibrational thin plate, Berger plate, and Winkler plate.

These solutions are of important use in the multiple reciprocity BEM, dual reciprocity BEM, boundary particle method, boundary knot

method, and a variety of radial basis function techniques.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, the multiple reciprocity boundary

element method (MR-BEM) [1] has attracted increasing

attention due to its striking advantage being a truly

boundary-only method for a variety of inhomogeneous

problems. To the authors’ best knowledge, the method may

be the only BEM technique which does not require in

general any inner nodes to calculate inhomogeneous

problems. The MR-BEM approximates the particular

solution by a sum of high-order homogeneous solutions,

which are evaluated by using the high-order fundamental

solutions. Thus, the high-order fundamental solution plays a

central role in this technique. In the literature, the high-order

fundamental solutions of the Laplace operator are often

chosen to solve various problems. For problems having

some particular properties such as periodicity and direc-

tional preference, the use of the high-order solutions of

other differential operators, however, may be more efficient

and stable.

On the other hand, Chen [2] recently developed a truly

boundary-only meshfree boundary particle method (BPM),

which also evaluates the particular solution via the multiple
U
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reciprocity method. The BPM differs from the MR-BEM in

that the method uses the high-order general solution instead

of the fundamental solutions in the collocation formulation.

In addition, a recursive multiple reciprocity scheme is also

developed to reduce computing cost dramatically. On the

other hand, in recent decade the radial basis functions (RBF)

has been found to be a powerful approach to construct truly

meshfree numerical techniques and are widely used in the

dual reciprocity boundary element method (DR-BEM) [3],

the method of fundamental solution (MFS) [4], and the

boundary knot method (BKM) [5]. The high-order general

and the fundamental solutions of partial differential

equations (PDEs) are in fact the RBF and can be used in a

variety of RBF-based methods, such as the Kansa method,

DR-BEM, MFS, and BKM. This highlights the importance

of these operator-dependent kernel solutions.

Besides the well-known high-order fundamental solution

of the Laplace operator, Itagaki [6] and Chen [7],

respectively, find the explicit high-order fundamental

solutions of Helmholtz, modified Helmholtz, and steady

convection–diffusion operators. This note is to derive the

high-order general and fundamental solutions of vibrational

thin plate, Berger plate, and Winkler plate based on Chen

[8]. In particular, we also first give the zero-order general

solution of the Berger and the Winkler plates. In the

following Section 2, we give a brief definition of the general

and the fundamental solutions for the sake of completeness.

Then the Sections 3–5 present the high-order general
Engineering Analysis with Boundary Elements xx (xxxx) 1–4
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and fundamental solutions for vibrational thin plate, Berger

plate, and Winkler plate, respectively. Finally, in Section 6,

we conclude this communication with some remarks.
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2. General solution and fundamental solution

Without loss of any generality, the general solution u#

and the fundamental solution u* of a differential operator

L{} have to satisfy, respectively

Lfu#ðrÞgZ 0; (1)

Lfu�ðrÞgCDi Z 0; (2)

where rZkxKxjk, and Di represents the Dirac delta

function which goes to infinity at the origin point xi and is

equal to zero elsewhere. In contrast, it is seen from Eq. (1)

that the general solution at origin has a limited value rather

than zero and infinity. The general solution of a differential

operator differs essentially from its corresponding funda-

mental solution in that the former is non-singular every-

where, while the latter is singular at origin. The general

solutions are actually infinitely continuous. It is noted that

since the differential operators concerned in this study do

not have a preferred direction under isotropic media, their

general fundamental solutions only involve the radial

distance. Otherwise, some other generalized distance

variables will be included in the solution expression, e.g.

as in those of the convection–diffusion equation [7].

The solution satisfying Eqs. (1) or (2) is called the zero-

order general solution [2] or fundamental solution [1], while

the mth order general and fundamental solutions need

respectively satisfy

Lmfu#ðrÞggZ 0; (3)

Lmfu�ðrÞgCDi Z 0; (4)

where Lm{} denotes the rth order, operator of L{}, say

L1{}ZL{L{}}, L2{}ZL{L1{}}.
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3. Thin plate vibration

The operator of thin plate vibration is given by

LTfugZV4uKl4u (5)

Its zero-order general and fundamental solutions are known

in the literature as

u#T0ðrÞZ J0ðlrÞC I0ðlrÞ; (6)

u�T0ðrÞZ Y0ðlrÞCK0ðlrÞ; (7)

where J0(r) and Y0(r) are the zero-order Bessel functions of

the first and the second kinds, respectively; and I0 and K0

the zero-order modified Bessel function of the first and
BE 1719—10/5/2005—20:50—RAJA—146452—XML MODEL 5 – pp. 1–4
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the second kinds, respectively. Here (6) and (7) omit the

constant coefficients. Chen et al. [9] applied the general

solution (6) to obtain very accurate solutions of harmonic

vibration of thin plates. In most BEM literature, only Y0(r)

in formula (7) is chosen as the fundamental solution.

Ref. [10] discusses the essential concept of the complete

fundamental solution. For instance, the 2D Laplacian has

the essential fundamental solution Kln(r)/2p and the

complete fundamental solution K(ln(r)CC)/2p, where C

is a constant. The standard BEM only uses the former. In

this study, we do not touch this issue. The fundamental

solution given in this study can be considered a complete

fundamental solution.

The operator (5) can be decomposed as

V4uKl4uZ ðV2 ClÞðV2 KlÞu: (8)

Namely, the operator (5) can be considered a product of the

Helmholtz and the modified Helmholtz operators. This is

also clearly recognized from its general and fundamental

solutions stated in Eqs. (6) and (7). By combining the mth

order general and fundamental solutions of the Helmholtz

and the modified Helmholtz operators of arbitrary dimen-

sions, we intuitively get the corresponding solutions of thin

plate vibration as respectively expressed below

u#TmðrÞZAmðrlÞ
Kn=2C1CmðJn=2K1CmðlrÞC In=2K1CmðlrÞÞ;

(9)

u#TmðrÞZAmðrlÞ
Kn=2C1CmðYn=2K1CmðlrÞCKn=2K1CmðlrÞÞ;

(10)

where AmZAmK1/(2ml2), A0Z1/((nK2)Sn(1)); n is the

topological dimension of the problem, and Sn(1) the surface

size of a n-dimensional unit sphere. By using the

mathematical deduction approach, we verify that Eqs. (9)

and (10) are indeed the mth order general and fundamental

solutions of the thin plate vibration. Namely, the zero-order

general solution in (9) is known to be correct. We prove that

LT fu
#
mg is only consisted of lower than the mth order general

solutions of operator LT. Therefore, the m-order general

solution (9) is validated. The same strategy is applied to the

fundamental solution. On the other hand, we verified that

those higher-order fundamental and general solutions are

also established for more than 3-dimensions via computer

software ‘Maple’.

It is observed from Eq. (10) that since the Bessel

functions Y and K have singularity at origin, the high-order

fundamental solution of the thin plate vibration operator has

the singularity-order of (r2Kn) except the 2D case, where the

only singularity occurs in the zero-order fundamental

solution. For instance, the singularity for the 3D case is

always rK1 irrespective of the order of the fundamental

solution.
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4. Winkler plate

The Winkler equation for a plate resting on an elastic

foundation is

DV4uCk2uZ q; (11)

where k is foundation stiffness, u the deflection subject to an

arbitrary lateral load q, and D the bending rigidity of the

plate. From a mathematical point of view, we define a

general Winkler operator for any dimensions

LWfugZV4uCk2u: (12)

The fundamental solutions of the 2D Winkler plate are

given in Katsikadelis and Armenakas [11]

u�W0 Z keið
ffiffiffiffiffi
kr

p
Þ; (13)

where kei represents the modified Kelvin functions of the

second kind. Comparing the Winkler operator of a single

radial variable with the ordinary differential operator of the

Kelvin functions, we find that both are actually equivalent.

Therefore, all four-Kelvin functions are the component

functions of either the fundamental solution or the general

solution of the Winkler operator. With the help of the

computer algebraic package ‘Maple’, we found and proved

that the zero-order general solutions of the Winkler operator

of two up to 5-dimensions are

u#W0ðrÞZ ðr
ffiffiffi
k

p
ÞKn=2C1ðbern=2K1ðr

ffiffiffi
k

p
ÞCbein=2K1ðr

ffiffiffi
k

p
ÞÞ;

(14)

where n is the dimensionality, ber and bei represent the

Kelvin and the modified Kelvin functions of the first kind. It

is stressed that we could not verify the above solutions for

more than 6-dimensions. There are two possible expla-

nations: (1) the solutions (14) are not applicable for the

Winkler operator of more than 5-dimensions, (2) the

solutions of the Winkler operator of more than 5-dimensions

do not exist. By now this is still an open issue.

Furthermore, we find that the mth order general solution

and fundamental solutions of the 2D and 3D Winkler

operators can be represented as

u#WmZAmðkrÞ
Kn=2C1Cmðbern=2ðr

ffiffiffi
k

p
ÞCbein=2ðr

ffiffiffiffi
kÞ

p
Þ; nZ2;3

(15a)

when the order m is an odd integer, and

u#Wm ZAmðkrÞ
Kn=2C1Cmðbern=2K1ðr

ffiffiffi
k

p
ÞCbein=2K1ðr

ffiffiffiffi
kÞ

p
Þ;

nZ 2; 3 (15bÞ

when m is an even integer, where Am is defined as in

Eq. (10). The above formulas (15a,b) do not take effect for

the Winkler operators of more than 3-dimensions.

Similarly, by replacing ber and bei by the Kelvin and the

modified Kelvin functions of the second kind ker and kei,

respectively, we have the mth order fundamental solutions

u�WmZAmðkrÞ
Kn=2C1Cmðkern=2ðr

ffiffiffi
k

p
ÞCkein=2ðr

ffiffiffi
k

p
ÞÞ; nZ2;3

(16a)
EABE 1719—10/5/2005—20:50—RAJA—146452—XML MODEL 5 – pp. 1–4
when m is an odd integer, and

u�Wm ZAmðkrÞ
Kn=2C1Cmðkern=2K1ðr

ffiffiffi
k

p
ÞCkein=2K1ðr

ffiffiffi
k

p
ÞÞ;

nZ 2; 3 (16bÞ

when m is an even integer. It is noted that in the case of

mZ0, Katsikadelis and Armenakas [11] choose the kei part

of the fundamental solution (16b) as their zero-order

fundamental solution.
ED P
ROOF

5. Berger plate

Under the Berger hypothesis, which assumes the plate

has not in-plane movement at the boundary, the Berger plate

equation is derived as a linearized model of the well-known

von Karman equations for non-linear deflection of plates

under large loading. The Berger equation is given by

V4uKm2V2uZ f ; (17)

where f is the outer force inflicting on the plate. The

fundamental solution of the 2D Berger operator is expressed

as [12]

u*
B0ðrÞZK

1

2pm2
ðlnðrÞCK0ðmrÞÞ; (18)

where K0 denotes the modified Bessel function of the second

kind of the zero-order. Clearly, the Berger operator can be

split as

V4uKm2V2uZV2ðV2 Km2Þu: (19)

(19) shows that the Berger operator is the product of the

Laplace and the modified Helmholtz operator. This fact is

also reflected in its fundamental solution (18) which equals

a sum of the fundamental solutions of the 2D Laplace and

the modified Helmholtz operators. Thus, the higher-order

fundamental solution of the Berger equation is a sum of the

higher-order fundamental solutions of the Laplace and the

Helmholtz operators. The higher-order fundamental sol-

utions of the Laplace operator [1] are known as

u*
Lm Z

1

2p
r2mðCmln rKBmÞ; 2D problems

1

4p

1

ð2mÞ!
r2mK1; 3D problems

8><
>: (20)

where C0Z1, B0Z0;

CmC1 Z
Cm

4ðmC1Þ2
; BmC1 Z

1

4ðmC1Þ2
Cm

mC1
CBm

� �
:

Following the strategy in Section 2, it is straightforward to

write out the mth order fundamental solution of the Berger

operator of arbitrary dimensions as

u�BmðrÞZ u�LmðrÞCAmðmrÞ
Kn=2C1CmKn=2K1CmðmrÞ: (20a)
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However, the general solution of the Laplace operator is a

constant. Therefore, the corresponding general solution of

the Berger operator is

u#BmðrÞZAmð1C ðmrÞKn=2C1CmIn=2K1CmðmrÞÞ: (20b)
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6. Some remarks

The composite operator is considered an operator, which is

the product of a few other PDE operators of different types,

e.g. the thin plate vibration operator being the product of the

Laplace and the Helmholtz operators. In Section 5, we see the

Berger operator is also a composite operator of the Laplace

and the modified Helmholtz operators, and their fundamental

and general solutions of varied orders are a sum of the

solutions of the corresponding component operators.

In Ref. [13], there are ample examples of the composite

operator. To find analytical particular solution of the Laplace

and the Helmholtz-type operators, Cheng [14] adopted the

same approach used in the study to derive the fundamental

solution of composite operators of the Laplace and the

Helmholtz operators, some of which appear closely like the

Berger plate operator. The goal of Cheng [14] is to facilitate

the DR-BEM solution of inhomogeneous problems via the

RBF technique. As such, the results of this study can be used

in a variety of the RBF techniques for PDEs.

The reason that we use the special function, i.e. the

Bessel functions of varied types, in the above-given general

and fundamental solutions is to unify the expression. It

should be pointed out that we could greatly simplify these

mathematical expressions via the sine, cosine, and expo-

nential functions.
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