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Frequency-dependent attenuation typically obeys an empirical power law with an exponent ranging
from O to 2. The standard time-domain partial differential equation models can describe merely two
extreme cases of frequency-independent and frequency-squared dependent attenuations. The
otherwise nonzero and nonsquare frequency dependency occurring in many cases of practical
interest is thus often called the anomalous attenuation. In this study, a linear integro-differential
equation wave model was developed for the anomalous attenuation by using the space-fractional
Laplacian operation, and the strategy is then extended to the nonlinear Burgers equation. A new
definition of the fractional Laplacian is also introduced which naturally includes the boundary
conditions and has inherent regularization to ease the hypersingularity in the conventional fractional
Laplacian. Under the Szabo’s smallness approximation, where attenuation is assumed to be much
smaller than the wave number, the linear model is found consistent with arbitrary frequency
power-law dependency. @004 Acoustical Society of Americ4aDOI: 10.1121/1.1646399
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I. INTRODUCTION nonlinear problems and relatively easier to implement and

Frequency-dependent attenuation has been observed irl.eac’s costly(Wlsmer and Ludwig, 1995 In addition, the )
wide range of important engineering areas such as acoustits"e-domain models also outperform the frequency-domain
(Blackstock, 1985; Szabo, 1994: Woijcét al, 1999, vis- models as they allow numerical simulation of various initial
cous dampers in seismic isolation of buildingdakris and ~ @nd boundary value problentslanyga, 2001a _
Constantinou, 1991 structural vibration(Enelund, 1996; However, it has long been noted that common time-
Rusovici, 1999; Adhikari, 2000 seismic wave propagation domain partial differential equation$PDE) can model
(Caputo, 1967; Caputo and Mainardi, 197anomalous dif- Merely two extreme cases of frequency-independgrtd)
fusions occurring in porous medidlanyga, 1999 just to ~ and frequency-squared dependeyt@) absorption behav-

mention a few. This frequency dependency is described byl0rs. In many cases of practical interest such as acoustics in
E_E o-a(@? biomedical materials and fractal rock layers; <2 mostly
= Oe ,

appears and the standard time-domain PDE modeling meth-
whereE denotes the amplitude of an acoustic field variableodology does not applyBlackstock, 1985; Nachmaet al.,
such as velocity or pressure, aadrepresents angular fre- 1990; Szabo, 1994 In contrast to they=0,2 attenuations
quency. Coefficient(w) is often characterized with an em- well described by the standard PDEs, the attenuations obey-
pirical power law ing 0<y<2 power law are thus often called the anomalous
_ diffusion (Hanyga, 2001; nonexponential relaxation, in-
a(0)=aolol’, ye[02], @ elastic dampindAdhikari, 2000, hysteretic dampingGaul,
for a wide range of frequencies of practical interest, in which1999, singular hereditary or singular memory media
@y andy are media-specific attenuation parameters obtainefHanyga, 1999 originating from different engineering appli-
through a fitting of measured data. cations.

The most straightforward strategy in computer simula-  The recent decade has witnessed increasing attention to
tion of the power-law lossy behavior is to do both math-accurate time-domain mathematical modeling of such
ematical and numerical modeling in the frequency domairgnomalous (6:y<2) attenuation phenomena, due to a dra-
via the Laplace transforr{Ginter, 2000. The drawbacks of matic increase in computer simulation of acoustic wave
this approach are that the frequency-domain methods are ofyopagation through human tissues and irregular porous ran-
ten ineffective for nonlinear problems and the numerical in-yom media. Among these existing models are the adaptive
verse Laplace transform is very tedious and expensive. Thﬁroportional damping modéWojcik et al, 1995, 1999, the
time-domain simulation, in contrast, is feasible for generakjme-domain model via finite frequency decompositiéte,
1998; Chen and Holm, 2002ahe Z-transform mode&Wis-
dElectronic mail: chen_wen@iapcm.ac.cn mer and Ludwig, 1996 the multiple relaxation model
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(Nachmaret al, 1990; Mastet al, 2001; Yuanet al, 1999,  volution integral, but the former is guaranteed to be the posi-
the fractional time derivative mode(€aputo 1967; Bagley tive definition like the standard Laplace operator, while the
and Torvik, 1983; Ochmann and Makarov, 1998nd Sza- latter (Diethelm, 2000 is not.

bo’s model via the singular convolution kerrn&zabo, 1993, The conventions of Fourier transform used in Pierce
1994). As mentioned by Blackstock1985, the space or (1989 and Szabo(1994) are also employed in this study.
space-time modeling of thermoviscous behavior is often reNamely

placed by a pure-time operation in the above models under

the condition that the thermoviscous term is relatively small. M

Ochmann and Makarof1993 further elaborate that this re- F_< ) =(ik)"®(k,w), (©)]
placement is impossible in the general case where the inter-

action between two oppositely traveling sound waves cannot

be neglected. The preference of the time-only expression is ) o

mostly due to its ease of analysis. For instance, the time- 1 ogen =(miw)"®(k ), @

space representatioftp/dtdz? in the one-dimension ther-
moviscous wave equation, wheteand z are, respectively,
time and space variablg¢see Eq.(19) further below, is ap-
proximated by a triple time derivative®p/at® (Blackstock
1967; Pierce, 1989; Szabo, 1994However, numerical o e
implementations of the time-only models are still uncom- cp(k,w)zf d(z,t)e ke ebdz dt (5)
mon, and most research is now restricted to the related math- T

ematical analysis partly due to great numerical difficulties

involved. In addition, when &y, fractional time derivative wherek is the wave number. The inverse of the space Fourier
involves the initial condition of the second-order derivativetransform is designated &_*, and the inverse of the time
which is unavailable in most practical problems. It is well Fourier transfornf .

known that anomalously attenuative and dispersive media A common interpretation of the fractional Laplacian is
often establish complicated microstructures in space; the sp#0 employ the inverse of its Fourier transforte.g., see
tial fractional derivative models may therefore instead beSamkoet al, 1987; Jespersen, 1999.e.,

more suitable as a modeling approach, where the initial con-

where®(k,w) is the time and space two-dimensional Fou-
rier transforms of a sufficiently good functiaf(z,t)

dition of second-order derivative is never requikéthnyga, FA(=V)Pel=kd, 0<s<2, (6)
20018.

The purpose of this study is to employ the spatial frac- s s . ik
tional Laplacian, also sometimes called the fractional (—V9)i“e=F_H{k ‘I’}:ﬁf Pke"™dk. (7

Laplace operator and the Riesz derivative, instead of the Sza-

bo's time convolutional integral and the time fractional de-rpe fractional Laplacian is also often called the Riesz frac-
rivative to develop linear and nonlinear mathematical modelgjonal derivative in terms of the Riesz potenti@orenflo
of anomalous thermoviscous behaviors characterized by nony, 4 Mainardi 1998 The Riesz potentidl of orders of d

zero and nonquadratic frequency deper_1d_e_ncy. It is kKnOWRimensions read&ahle, 1997; Samket al, 1987
(Samkoet al, 1987 that the standard definition of the frac-
tional Laplacian leads to a hypersingular convolution integral I[(d—8)/2] (&)
as in the Riemann—Liouville fractional derivative. We 13p(X) = ki (&),
present the new definition of the fractional Laplacian which w2257 (s/2) Ja|x— &9
naturally includes the boundary conditions and has inherent 0<s<2 ®)
regularization operation to ease the hypersingularity of the ’
convolution kernel function. Therefore, it is more useful for
engineering modeling.

In what follows, the new definition of the fractional La-

wherel” denotes the Euler's gamma functidf,is integral
domain. The traditional definition of the fractional Laplacian
placian is introduced first in Sec. Il, followed by a presenta-”lvollvel‘c’gghe apgr_oxm?te f:rlte_?w(;efrence Iet?( dp_res:{@_amklo_
tion and analysis of the linear fractional Laplacian thermo-S* &> ? and 1s not well suited for muttidimensionat ir-
viscous models of wave equation in Sec. Ill. The r_egular do_maln. By anz_alogy w_|th_the fractional time deriva-
corresponding nonlinear models are then developed in sellve, we give an analytical definition below

IV. Conclusions are presented in Sec. V. In the Appendix, a &2 o125

finite-element numerical model is briefly discussed. (=VH)F0(x)==VIIg  e(x)]. €)

It is known that the Laplacian operator has the expression

d—1deg

Il. FRACTIONAL LAPLACIAN dZQD
2" ¢ dr’

. - . . Vie(x)=—+
It is worth pointing out that the fractional Laplacian and dr

the fractional derivative are two related but different math-
ematical concepts. Both are defined through a singular corwherer =|x— &|. Equation(9) can then be reduced to

(10
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(_VZ)i/2¢(X) It is noted that the definitioi12) has a weak singularity of
orderd—2+s compared with the hypersingularity of order
I'[(d—2+s)/2] 5 o(€) d+sin (11). The Green’s second identity is useful to connect
- 72920275 [(2—5)/2] fﬂ||x_§”d—2+sd9(§) (12) and(11), and can be stated as

2 _ 2
o (d—%+s)slj[(d—2+s)/2] o(€) Q). vaV edé= ngDV v dQ(&)
729022751 (2-5)/2] Ja|x—g|+s
_ ( (7v_ ﬁgo)d 13
(12) L ¢V o |dSE), (

It is noted that(11) encounters the detrimental hypersingu-
larity, which means the singularity orddrts is larger than
the topological dimensiod. An alternative way is thus pre-

where S represents the surface of the domain, and the
unit outward normal. Let

sented below to define the fractional Laplacian v=1/]x—¢&|4"2"s, (14)
(—V3)*2e() =15 TV?e(x)] and
- F[(d_2+s)/2] @(X)|XES:D(X)1 (15)
B 77-(275)/2227SI‘|:(2_S)/z:l de(X) =N(x), (16)
an XeS
XJ Vie(8) dQ(&). (12) With the Green’s second identity, the definiti¢i?) is then
ofx—gle-2+e reduced to
|
(d=2+s)sI'[(d—2+5)/2] o(§) d 1
_\v2\sl2 — e —
(=V9)>e(x) 72 IS [ (2—5)/2] Q|x—§||d+5dQ(§)+hfs e(¢) ﬁn(|x_g||d+s2>
1 de(§)
- d
—glrs2 an |19
3 1 N(¢)
=(-V3$? h||D(&— - ds(é), 1
(~¥200+h [ [D(® an(||x_§”d+s_2) ”X_gndﬂ_zl 6 a7
|
where from Samkoet al. (1987, Zaslavsky(1994, Gorenflo and

Mainardi (1998, Hanyga(2001), and references therein. In
I'[(d—2+5)/2] (18) the Appendix, we briefly discuss the finite-element numerical

h= — — .
727922275 (2-9)/2] model of the fractional Laplacian.

It is seen from(17) that the fractional Laplacian definition

(—V?)9%2 is considered the fractional Laplacian derivative lll. LINEAR FRACTIONAL LAPLACIAN
(—V?)¥2 augmented with the boundary integral, which is aTHERMOVISCOUS MODEL

parallel to the fractional time derivatives in the Caputo sense
relative to that in the Riemann—Liouville sense.

The above two definitions<V?)$? and (— V?)%? in-
volve only the symmetric fractional Laplacian for isotropic
media. To simplify the illustration of the basic idea of this
study without loss of generality, we only consider isotropic
media in this paper. For the traditional definition of the an-
isotropic fractional Laplacian see Fell€f971) and Hanyga
(200)). By analogy with the definition&l1) and(12), it will 10p ud
be straightforward to have the corresponding new expression VP=—7 "5+ (- VZp), (19

. . ) ) cp dt°  cj
of the anisotropic fractional Laplacian.

Albeit a long history, the research on the space fractionaWhere c, is the small signal sound speed, apd=|47/3
Laplacian still appears fairly poor in the literatui@orenflo  + g+ x(y,—1)/c,|/po the collective thermoviscous coeffi-
and Mainardi, 1998 In recent years, some interest has arisercient, » and »g the shear and bulk viscosity coefficients,
from anomalous diffusion problems. Readers are advised trespectivelyp, the ambient densitys thermal conductivity,
find more detailed description of the fractional Laplaciany; ratio of specific heats, and, special heat at constant

Szabo (1994 started his time-domain model building
and causality analysis of the attenuation power law with the
thermoviscous wave equatigBlackstock, 1967; Lighthill,
1980; Pierce, 1989 also known as the augmented wave
equation(Johnson and Dudgeon, 1993vhich governs the
propagation of sound through a viscous fluid and can be
stated as
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pressure. Equatiofl9) describes both dispersidwaveform

alternation with respect to frequenand attenuation behav-
iors. Szabo(1994) pointed out that the low-frequency ap-
proximation of(19) leads to a square dependence of attenu-

ation on frequency with constants
y=2, (20)
in terms of the power law2). Szabo(1994 noted that the

CYO:/.L/ZCS,

a/B%aO|w||)i'm/,Bo=a0|w||)i’n:1COSO.1, (29

where w);,, is the frequency limit corresponding to 0.1. As
discussed in Szabd994), the limit frequency range in terms

of (29) is adequate enough to cover the frequency spectrum
of practical interest in medical ultrasound applications. In
terms of (29), (28) is then approximated by the binomial
expansion as

exponenty and the differential order of the lossy term in the 8?— a®— w2/c§+ [ Zaﬂ—iZan,By/C(l)_y

generalized wave equation are related. Namely, the time de-

rivative order of the lossy term is higher thanby 1. By
analogy with this relationship, we generalize9) via the
space fractional Laplacian and intuitively get

z_iﬁzp 2a0£

== —+—— = (=¥,
cs ot cg Yot

(21)
where (— V?)¥2is the fractional Laplace. When=2, (21) is
equivalent to the model equatiqi9). Wheny=0, (21) is
reduced to the standard damped wave equation

1 200

V2p= —_—
P c3 g2 Co dt

(22

+2apywaB’ i Y=0. (30)

Then, separating the real and imaginary parts of the above

Eq. (30) produces
a=ayo(Bcy)Y L, (319

(31b)

With the further help of the smallness approximati®9)
and By= w/cy, from (318 we derive

B%=w?lci+(1—2y)a?.

(32)

It is noted that31a matches the power lay2). By now we
have shown that the fractional Laplacian mo@2B) does
have a power-law attenuation under the Szabo smallness ap-

a=~aglw|,

which describes the frequency-independent attenuatioproximation condition29) corresponding to the time convo-

(Szabo, 1994

lutional integral mode(Szabo, 199%4and the time fractional

In order to verify that our intuitive fractional Laplacian models (Baglegy and Torvik, 1983 Szabo(1994 demon-
wave equatior21) reflects the frequency power-law attenu- strated his wave equation is causal indirectly by verifying its
ation (2), the corresponding dispersion equation is derivetharabolic counterpart is causal. In the latter section I, we
below and analyzed. To facilitate the analysis without loss ofyill show that the fractional Laplacian wave equatit)

generality, let us consider the 1D case of model equdfan

Pp 1% 2ap 0| 2\
= + e

S e 23
97> 2 at? et vat\ 522

The Fourier transforms of the time and space derivatives arE

given by
2
F{a—g]:(ik)zpz—kzp, (24)
oz
P yl2
F_{(——z) p]z(—(ik)z)y’szkyP, (25)
Jz
ol 2
Fil— =(—iw)P=—w"P. (26)
at

Applying the time and space Fourier transforad)—(26) to
(23), we have the dispersion equation

k?— w?/ci—i2aqwkl/cy Y=0. (27)

Sincek=B+ia and B=wlc, it is straightforward to have

B%—a?—w?lci+i2aB—i2aqwBY(1+ial B)YIci Y=0.
(28)

can be reduced to the well-known parabolic anomalous dif-
fusion equation. The causality of the latter is guaranteed
(Hanyga, 2001c We are therefore convinced that equation
(21) is also causal. It is noteworthy that the fractional La-
lacian is a positive definit operatofGorenflo and
rancesco, 1998and the Duhamel’s principle applies to the
fractional Laplacian equations.

IV. NONLINEAR LOSSY MEDIA

Most nonlinear acoustic equations are only useful for
describing lossy media with a quadratic dependence or inde-
pendence on frequeng$zabo, 1998 and thus have limited
practical utility. In this section, we are concerned with the
extension of the previous linear fractional Laplacian model-
ing methodology to nonlinear media obeying the dissipative
power law of arbitrary exponents. It is noted that the thermo-
viscous representation in the standard nonlinear acoustic
PDE models, which characterizes the effects of absorption
and dispersion, is mostly the same as in the corresponding
linear models. Thus, Blackstod#985 presented a straight-
forward strategy constructing the nonlinear anomalous at-
tenuation model by simply replacing its attenuation term
with that in the corresponding linear model, while keeping
all other linear and nonlinear terms unchanged. The method-
ology is justified by a perturbation analysiBlackstock,
1985. Following this strategy, Szab@993 extended his

To move the analysis further, the Szabo conservative smallinear convolution integral modeling of arbitrary power law

ness approximatiofEgs. (17) and (18) of Szabo(1994)] is
crucial, i.e.,

J. Acoust. Soc. Am., Vol. 115, No. 4, April 2004

exponentySzabo, 199%to the Burgers, KZK, and Wester-
velt equations. By analogy with Blackstocdkd985 and
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Szabo (1993, we can generalize these nonlinear acoustid_aplacian Burgers equation is presented below by simply
models by replacing their thermoviscous term with the frac-adding the nonlinear convection term of Burgers equation

tional Laplacian lossy terms given in Eq&1) and (23). (33) to Eq.(35), i.e.,

It is stressed that the smallness approximation condition /2
(29),.cru0|al in thg dispersion a_naIyS|s of the prece_dmg linear 7% Bp— + 2a0c$+y -—| p=o0. (39)
fractional Laplacian models, is also the foundation of the dt Jz Fria

nonllr.lear acoustics modelmg—!am'llton and Blackstgck, Note that the nonlinear term i(88) can be considered the
1998; Szabo, 1993Thus, all derivations here are consistent. . . .
source term in the sense of an inhomogeneous equation

The Burgers equation may be the best-known simpl

. } . . . Szabo, 1998
nonlinear acoustic model which describes the combined ef* The nonlinear equation modé88) belongs to the so-
fects of nonlinearity and dissipation. The one-dimensional q 9

. . : called fractal Burgers equations or the fractional advection—
Burgers equation for plane progressive waves is stated as . . : : . . .
dispersion equation. A detailed analysis of such equations is

ap ap  &p given in Bileret al. (2001J). In higher dimensional casef7)
— TBp e — =0, (33 s restated as
J
whereB denotes the nonlinear coefficief8ugimoto, 199}, a—? +Bp-Vp+2ascy Y (—V?)Y?p=0, (39

ande is a constant proportional to the coefficients of viscos-

ity and heat conduction{Blackstock, 1985 It is known  whereVp represents the pressure gradient vector, and the dot

(Blackstock, 1985; Szabo, 199&at the Burgers equation stands for a scalar product. Ochmann and Mak&f®83

(31 describes lossy acoustic propagation of square frealso developed the time fractional derivative Burgers equa-

quency dependence. To extend the Burgers equation to atien to describe the power-law absorptions with arbitrary

commodating power-law media of arbitrary exponent By using the same strategy, Chen and Hd®0020 also

Blackstock(1985 suggests and verifies to some extent thatdeveloped the fractional Laplacian KZK, Westervelt, general

only the third term of(33) needs to be modified, which in- second-order approximation model, incompressible Naiver—

volves the absorption, while keeping all others the same. Stokes, and Boussinesq shallow-water wave equation to in-
In terms of an approach detailed by Szai®94, the  corporate arbitrary power-law frequency-dependent dissipa-

hyperbolic wave equatiof23) can be approximated to the tions.

parabolic equation by removing the left-hand side term,

namely V. CONCLUDING REMARKS
12 . . . .
16%p 2ay 9 a2\ _ Attenuation plays an essential part in many acoustics
C_SFJF ct-y ot _E p=0. (34) applications, for instance, the ultrasound second harmonic

imaging and high-intensity focused ultrasound beam for
And then, integratind34) with respect to time and multi-  therapeutic surgery. Compared with the Szabo’s time convo-

plying by c3, we have lutional integral model of the power-law attenuation, the
5\ yi2 present fractional Laplacian time-space model has a uniform
‘"7_p+2a R -0 (35) and simpler expression. On the other hand, it is also not a

at 0~0 972 p=F simple task for the fractional time derivative models to ob-

tain the initial conditions of the second-order derivative
when y>1, since most physical systems only provide the
zero- and first-order initial conditions. More importantly,
most anomalous thermoviscous attenuations occur in spa-
tially inhomogeneous environmentddenry and Wearne,
1999, notably biomaterials and geological random media,
whose microgeometry largely have fractal dimension struc-
dp L+yyp—0. (36) tures in space. The power-law formu also shows thay

The model(35) is a generalized diffusion equation and cor-
responds to the Burgers equati88) without the nonlinear
convection term. The analytical solution of E®5) can be
found in Hanyga20019. Applying the spatial Fourier trans-
form (25) to (35), we have

E+2aoco is independent of frequency (time scale. It is therefore
reasonable to think that may in fact underlie the spatial
Thus, the transformation solution is fractal. For exampley varies with different human body tis-
sues, which have different spatial microstructures. We thus
P(k,t)zce—2a0c3+ytky, (37) conclude that a spatial representation of the dissipation via

the fractional Laplacian is physically more valid than the

whereC depends on the initial condition. When=2, (37)  fractional time derivative representations.
exhibits the normal frequency-squared diffusion. It is clear
that Eq.(37) is a parabolic model originating from E3)
while holding the capability describing arbitrary powgy ACKNOWLEDGMENTS
law attenuation. The work reported here is sponsored by Simula Re-

By analogy with the generalizing methodology pre- search Laboratory with the project “Mathematical and nu-
sented by Blackstockl 985 and Szab@1993, the fractional = merical modeling of medical ultrasound wave propagation.”
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APPENDIX: FEM DISCRETIZATION OF THE LINEAR It is also interesting to mention that the matrix power
FRACTIONAL LAPLACIAN LOSSY WAVE function of the fractional ordde.g.,(A2)] can be considered
EQUATION a clear algebraic correspondence to the fractional calculus in
analysis and the fractal in geometry. All three of these meth-
odologies may consist of a complete set of mathematic ap-
paratus in modeling, analyzing, simulating, and visualizing
—V?p=Kp, (A1) complex phenomena, where the traditional mathematic meth-

. ods of integer order do not work well.
wherep represents the pressure value vector at the discrete

nodes. Since the Laplacian is the positive definite operator, it
is well known that its FEM discretization matriX is also
positive definite. The corresponding FEM formulation of the

Let the FEM approximate discretization of a Laplacian
operator be expressed as

Adhikari, S.(2000. “Damping Models for Structural Vibration,” Ph.D. the-
sis, Cambridge University, Cambridge.

fractional Laplacian of//2 order is then obtained by Baglegy, R. L., and Torvik, P. 11983. “A theoretical basis for the appli-
2vy12 yi2 cation of fractional calculus to viscoelasticity,” J. Rhedl, 201-210.
(= V) p=K"p. (A2) Biler, P., Karch, G., and Woyczynski, W. A2001). “Asymptotics and high

. . . dimensional approximations for nonlinear pseudodifferential equations in-
It is worth noting here that despite the fact that the FEM \oling Levy generators,” Demonstratio MatB4(2), 403—413.
discretization matrixK is sparseKY’? will be a full matrix ~ Blackstock, D. T.(1967. “Transient solution for sound radiated into a vis-
underlying the non-local property of the fractional Laplacian,Blcotstﬂuffl'leA(iglésat- SGOC Aml‘_”' 33812—1319- fon for o .

. . . . . ackstock, D. 1. . eneralize urgers equation for plane waves,
which models the global interactions in space. The FEM dis-" ;7\ ' < oo AM77(6). 2050—2053,

cretization of the fractional Laplacian wave equation modelcaputo, M.(1967. “Linear models of dissipation whos® is almost fre-

(21) is thus stated as quency independent. II,” Geophys. J. R. Astron. Sb@.529-539.
Caputo, M., and Mainardi, F1971). “A new dissipation model based on
Pyt 2aocc1,+yKy/2pt+ c’Kp=g(t), (A3) memory mechanism,” Pure Appl. Geophyl, 134—-147.

Chen, W., Holm, S., Bounaim, A., Gdé@b A., and Tveito, A.(20023.
where the subscridtrepresents the temporal derivative, and “Frequency decomposition time-domain model of broadband frequency-
g(t) is due to the source term. It is obvious titAB) readily ~  dependent absorption,” The Sth Workshop of the Finite Element Method

. . in Biomedical Engineering, Biomechanics and Related Fields, Ulm, Ger-
takes into account frequency-dependent viscous effects for a0y oo, 40-48.
multitude of frequency componentsroadband signalwith  Chen, W., and Holm, S2002b. “Fractional Laplacian time-space models
empirical coefficientsyy andy of the power-law attenuation.  and Levy stable distribution for linear and nonlinear frequency-dependent

For a little complicated fitting of measurement fitting, lossy media,” Research Report of Simula Research Laboratory, No. 2002-
the emplrlcal formUIdz) of frequency dependent attenuation Diethelm, K.(2000. Fractional Differential Equations, Theory and Numeri-

can be technially replaced ke, 1998 cal Treatmentpreprind.
Enelund, M. (1996. “Fractional Calculus and Linear Viscoelasticity in
a(w)=a+ ao|w|y. ye[0,2], (A4) Structural Dynamics,” Ph.D thesis, Chalmers University of Technology,
Sweden.
wherea; is an empirical parameter. Thus, equatiéd) can Feller, W. (1971. An Introduction to Probability Theory and its Applica-
be accordingly restated as tions 2nd ed.(Wiley, New York), Vol. 2.
Gaul, L. (1999. “The influence of damping on waves and vibrations,”
Pyt 2(ayCol + aoc%+le/2) p;+ CSsz g(t). (A5) Mech. Syst. Signal Process3(1), 1—30.
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Rayleigh proportionfal dar_npipg model. . fractional diffusion processes,” Fract. Calc. Appl. And).167—191.
The temporal discretization qA3) can easily be done Hamilton, M. F., and Blackstock, D. T., Editof$998. Nonlinear Acoustics

via the standard finite difference time integrators. The major (Academic, New York

. . . . nyga, A.(1999. “Simple memory models of attenuation in complex
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