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Frequency-dependent attenuation typically obeys an empirical power law with an exponent ranging
from 0 to 2. The standard time-domain partial differential equation models can describe merely two
extreme cases of frequency-independent and frequency-squared dependent attenuations. The
otherwise nonzero and nonsquare frequency dependency occurring in many cases of practical
interest is thus often called the anomalous attenuation. In this study, a linear integro-differential
equation wave model was developed for the anomalous attenuation by using the space-fractional
Laplacian operation, and the strategy is then extended to the nonlinear Burgers equation. A new
definition of the fractional Laplacian is also introduced which naturally includes the boundary
conditions and has inherent regularization to ease the hypersingularity in the conventional fractional
Laplacian. Under the Szabo’s smallness approximation, where attenuation is assumed to be much
smaller than the wave number, the linear model is found consistent with arbitrary frequency
power-law dependency. ©2004 Acoustical Society of America.@DOI: 10.1121/1.1646399#
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I. INTRODUCTION

Frequency-dependent attenuation has been observed
wide range of important engineering areas such as acou
~Blackstock, 1985; Szabo, 1994; Wojciket al., 1995!, vis-
cous dampers in seismic isolation of buildings~Makris and
Constantinou, 1991!, structural vibration~Enelund, 1996;
Rusovici, 1999; Adhikari, 2000!, seismic wave propagatio
~Caputo, 1967; Caputo and Mainardi, 1971!, anomalous dif-
fusions occurring in porous media~Hanyga, 1999!, just to
mention a few. This frequency dependency is described

E5E0e2a~v!z, ~1!

whereE denotes the amplitude of an acoustic field varia
such as velocity or pressure, andv represents angular fre
quency. Coefficienta~v! is often characterized with an em
pirical power law

a~v!5a0uvuy, yP@0,2#, ~2!

for a wide range of frequencies of practical interest, in wh
a0 andy are media-specific attenuation parameters obtai
through a fitting of measured data.

The most straightforward strategy in computer simu
tion of the power-law lossy behavior is to do both ma
ematical and numerical modeling in the frequency dom
via the Laplace transform~Ginter, 2000!. The drawbacks of
this approach are that the frequency-domain methods are
ten ineffective for nonlinear problems and the numerical
verse Laplace transform is very tedious and expensive.
time-domain simulation, in contrast, is feasible for gene

a!Electronic mail: chen_wen@iapcm.ac.cn
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nonlinear problems and relatively easier to implement a
less costly~Wismer and Ludwig, 1995!. In addition, the
time-domain models also outperform the frequency-dom
models as they allow numerical simulation of various init
and boundary value problems~Hanyga, 2001a!.

However, it has long been noted that common tim
domain partial differential equations~PDE! can model
merely two extreme cases of frequency-independent (y50)
and frequency-squared dependent (y52) absorption behav-
iors. In many cases of practical interest such as acoustic
biomedical materials and fractal rock layers, 0,y,2 mostly
appears and the standard time-domain PDE modeling m
odology does not apply~Blackstock, 1985; Nachmanet al.,
1990; Szabo, 1994!. In contrast to they50,2 attenuations
well described by the standard PDEs, the attenuations o
ing 0,y,2 power law are thus often called the anomalo
diffusion ~Hanyga, 2001c!, nonexponential relaxation, in
elastic damping~Adhikari, 2000!, hysteretic damping~Gaul,
1999!, singular hereditary or singular memory med
~Hanyga, 1999!, originating from different engineering appli
cations.

The recent decade has witnessed increasing attentio
accurate time-domain mathematical modeling of su
anomalous (0,y,2) attenuation phenomena, due to a d
matic increase in computer simulation of acoustic wa
propagation through human tissues and irregular porous
dom media. Among these existing models are the adap
proportional damping model~Wojcik et al., 1995, 1999!, the
time-domain model via finite frequency decomposition~He,
1998; Chen and Holm, 2002a!, the Z-transform model~Wis-
mer and Ludwig, 1995!, the multiple relaxation mode
115(4)/1424/7/$20.00 © 2004 Acoustical Society of America
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~Nachmanet al., 1990; Mastet al., 2001; Yuanet al., 1999!,
the fractional time derivative models~Caputo 1967; Bagley
and Torvik, 1983; Ochmann and Makarov, 1993!, and Sza-
bo’s model via the singular convolution kernel~Szabo, 1993,
1994!. As mentioned by Blackstock~1985!, the space or
space-time modeling of thermoviscous behavior is often
placed by a pure-time operation in the above models un
the condition that the thermoviscous term is relatively sm
Ochmann and Makarov~1993! further elaborate that this re
placement is impossible in the general case where the in
action between two oppositely traveling sound waves can
be neglected. The preference of the time-only expressio
mostly due to its ease of analysis. For instance, the ti
space representation]3p/]t]z2 in the one-dimension ther
moviscous wave equation, wheret and z are, respectively,
time and space variables@see Eq.~19! further below#, is ap-
proximated by a triple time derivative]3p/]t3 ~Blackstock
1967; Pierce, 1989; Szabo, 1994!. However, numerical
implementations of the time-only models are still unco
mon, and most research is now restricted to the related m
ematical analysis partly due to great numerical difficult
involved. In addition, when 1,y, fractional time derivative
involves the initial condition of the second-order derivati
which is unavailable in most practical problems. It is w
known that anomalously attenuative and dispersive me
often establish complicated microstructures in space; the
tial fractional derivative models may therefore instead
more suitable as a modeling approach, where the initial c
dition of second-order derivative is never required~Hanyga,
2001b!.

The purpose of this study is to employ the spatial fra
tional Laplacian, also sometimes called the fractio
Laplace operator and the Riesz derivative, instead of the S
bo’s time convolutional integral and the time fractional d
rivative to develop linear and nonlinear mathematical mod
of anomalous thermoviscous behaviors characterized by
zero and nonquadratic frequency dependency. It is kno
~Samkoet al., 1987! that the standard definition of the frac
tional Laplacian leads to a hypersingular convolution integ
as in the Riemann–Liouville fractional derivative. W
present the new definition of the fractional Laplacian wh
naturally includes the boundary conditions and has inhe
regularization operation to ease the hypersingularity of
convolution kernel function. Therefore, it is more useful f
engineering modeling.

In what follows, the new definition of the fractional La
placian is introduced first in Sec. II, followed by a presen
tion and analysis of the linear fractional Laplacian therm
viscous models of wave equation in Sec. III. T
corresponding nonlinear models are then developed in
IV. Conclusions are presented in Sec. V. In the Appendix
finite-element numerical model is briefly discussed.

II. FRACTIONAL LAPLACIAN

It is worth pointing out that the fractional Laplacian an
the fractional derivative are two related but different ma
ematical concepts. Both are defined through a singular c
J. Acoust. Soc. Am., Vol. 115, No. 4, April 2004 W. Ch
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volution integral, but the former is guaranteed to be the po
tive definition like the standard Laplace operator, while t
latter ~Diethelm, 2000! is not.

The conventions of Fourier transform used in Pier
~1989! and Szabo~1994! are also employed in this study
Namely

F2S ]nf

]zn D 5~ ik !nF~k,v!, ~3!

F1S ]nf

]tn D 5~2 iv!nF~k,v!, ~4!

whereF(k,v) is the time and space two-dimensional Fo
rier transforms of a sufficiently good functionf(z,t)

F~k,v!5E
2`

` E
2`

`

f~z,t !e2 i ~kz2vt !dz dt, ~5!

wherek is the wave number. The inverse of the space Fou
transform is designated asF2

21, and the inverse of the time
Fourier transformF1

21.
A common interpretation of the fractional Laplacian

to employ the inverse of its Fourier transform~e.g., see
Samkoet al., 1987; Jespersen, 1999!, i.e.,

F2$~2¹2!
*
s/2w%5ksF, 0,s,2, ~6!

~2¹2!
*
s/2w5F2

21$ksF%5
1

2p E Fkseikxdk. ~7!

The fractional Laplacian is also often called the Riesz fr
tional derivative in terms of the Riesz potential~Gorenflo
and Mainardi, 1998!. The Riesz potentialI d

s of orders of d
dimensions reads~Zahle, 1997; Samkoet al., 1987!

I d
sw~x!5

G@~d2s!/2#

ps/22sG~s/2!
E

V

w~j!

ix2jid2s
dV~j!,

0,s,2, ~8!

whereG denotes the Euler’s gamma function,V is integral
domain. The traditional definition of the fractional Laplacia
involves the approximate finite difference expression~Samko
et al., 1987! and is not well suited for multidimensional ir
regular domain. By analogy with the fractional time deriv
tive, we give an analytical definition below

~2¹2!
*
s/2w~x!52¹2@ I d

22sw~x!#. ~9!

It is known that the Laplacian operator has the expressio

¹2w~x!5
d2w

dr2
1

d21

r

dw

dr
, ~10!

wherer 5ix2ji . Equation~9! can then be reduced to
1425en and S. Holm: Fractional Laplacian modeling of lossy media
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~2¹2!
*
s/2w~x!

52
G@~d221s!/2#

p22s/2222sG@~22s!/2#
¹2E

V

w~j!

ix2jid221s
dV~j!

52
~d221s!sG@~d221s!/2#

p~22s!/2222sG@~22s!/2#
E

V

w~j!

ix2jid1s
dV~j!.

~11!

It is noted that~11! encounters the detrimental hypersing
larity, which means the singularity orderd1s is larger than
the topological dimensiond. An alternative way is thus pre
sented below to define the fractional Laplacian

~2¹2!s/2w~x!52I d
22s@¹2w~x!#

52
G@~d221s!/2#

p~22s!/2222sG@~22s!/2#

3E
V

¹2w~j!

ix2jid221s
dV~j!. ~12!
n
ve

a
ns

ic
is
ic
n

si

n

e
d
an

1426 J. Acoust. Soc. Am., Vol. 115, No. 4, April 2004
It is noted that the definition~12! has a weak singularity o
order d221s compared with the hypersingularity of orde
d1s in ~11!. The Green’s second identity is useful to conne
~12! and ~11!, and can be stated as

E
V

v¹2w dj5E
V

w¹2v dV~j!

2E
S
S w

]v
]n

2v
]w

]n DdS~j!, ~13!

whereS represents the surface of the domain, andn is the
unit outward normal. Let

v51/ix2jid221s, ~14!

and

w~x!uxPS5D~x!, ~15!

]w~x!

]n U
xPS

5N~x!, ~16!

With the Green’s second identity, the definition~12! is then
reduced to
~2¹2!s/2w~x!52
~d221s!sG@~d221s!/2#

p~22s!/2222sG@~22s!/2#
E

V

w~j!

ix2jid1s
dV~j!1hE

S
Fw~j!

]

]n S 1

ix2jid1s22D
2

1

ix2jid1s22

]w~j!

]n GdS~j!

5~2¹2!
*
s/2w~x!1 h E

S
FD~j!

]

]n S 1

ix2jid1s22D 2
N~j!

ix2jid1s22GdS~j!, ~17!
n
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g
the
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where

h5
G@~d221s!/2#

p~22s!/2222s@~22s!/2#
. ~18!

It is seen from~17! that the fractional Laplacian definitio
(2¹2)s/2 is considered the fractional Laplacian derivati
(2¹2)

*
s/2 augmented with the boundary integral, which is

parallel to the fractional time derivatives in the Caputo se
relative to that in the Riemann–Liouville sense.

The above two definitions (2¹2)
*
s/2 and (2¹2)s/2 in-

volve only the symmetric fractional Laplacian for isotrop
media. To simplify the illustration of the basic idea of th
study without loss of generality, we only consider isotrop
media in this paper. For the traditional definition of the a
isotropic fractional Laplacian see Feller~1971! and Hanyga
~2001!. By analogy with the definitions~11! and~12!, it will
be straightforward to have the corresponding new expres
of the anisotropic fractional Laplacian.

Albeit a long history, the research on the space fractio
Laplacian still appears fairly poor in the literature~Gorenflo
and Mainardi, 1998!. In recent years, some interest has aris
from anomalous diffusion problems. Readers are advise
find more detailed description of the fractional Laplaci
e

-

on

al

n
to

from Samkoet al. ~1987!, Zaslavsky~1994!, Gorenflo and
Mainardi ~1998!, Hanyga~2001!, and references therein. I
the Appendix, we briefly discuss the finite-element numeri
model of the fractional Laplacian.

III. LINEAR FRACTIONAL LAPLACIAN
THERMOVISCOUS MODEL

Szabo~1994! started his time-domain model buildin
and causality analysis of the attenuation power law with
thermoviscous wave equation~Blackstock, 1967; Lighthill,
1980; Pierce, 1989!, also known as the augmented wa
equation~Johnson and Dudgeon, 1993!, which governs the
propagation of sound through a viscous fluid and can
stated as

¹2p5
1

c0
2

]2p

]t2
1

m

c0
2

]

]t
~2¹2p!, ~19!

where c0 is the small signal sound speed, andm5 b4h/3
1hB1k(gh21)/cpc/r0 the collective thermoviscous coeffi
cient, h and hB the shear and bulk viscosity coefficient
respectively,r0 the ambient density,k thermal conductivity,
gh ratio of specific heats, andcp special heat at constan
W. Chen and S. Holm: Fractional Laplacian modeling of lossy media
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pressure. Equation~19! describes both dispersion~waveform
alternation with respect to frequency! and attenuation behav
iors. Szabo~1994! pointed out that the low-frequency ap
proximation of~19! leads to a square dependence of atte
ation on frequency with constants

a05m/2c0
3, y52, ~20!

in terms of the power law~2!. Szabo~1994! noted that the
exponenty and the differential order of the lossy term in th
generalized wave equation are related. Namely, the time
rivative order of the lossy term is higher thany by 1. By
analogy with this relationship, we generalize~19! via the
space fractional Laplacian and intuitively get

¹2p5
1

c0
2

]2p

]t2
1

2a0

c0
12y

]

]t
~2¹2!y/2p, ~21!

where (2¹2)y/2 is the fractional Laplace. Wheny52, ~21! is
equivalent to the model equation~19!. When y50, ~21! is
reduced to the standard damped wave equation

¹2p5
1

c0
2

]2p

]t2
1

2a0

c0

]p

]t
, ~22!

which describes the frequency-independent attenua
~Szabo, 1994!.

In order to verify that our intuitive fractional Laplacia
wave equation~21! reflects the frequency power-law atten
ation ~2!, the corresponding dispersion equation is deriv
below and analyzed. To facilitate the analysis without loss
generality, let us consider the 1D case of model equation~21!

]2p

]z2
5

1

c0
2

]2p

]t2
1

2a0

c0
12y

]

]t S 2
]2

]z2D y/2

p. ~23!

The Fourier transforms of the time and space derivatives
given by

F2H ]2p

]z2J 5~ ik !2P52k2P, ~24!

F2H S 2
]2

]z2D y/2

pJ 5~2~ ik !2!y/2P5kyP, ~25!

F1H ]2p

]t2 J 5~2 iv!2P52v2P. ~26!

Applying the time and space Fourier transforms~24!–~26! to
~23!, we have the dispersion equation

k22v2/c0
22 i2a0vky/c0

12y50. ~27!

Sincek5b1 ia andb5v/c, it is straightforward to have

b22a22v2/c0
21 i2ab2 i2a0vby~11 ia/b!y/c0

12y50.
~28!

To move the analysis further, the Szabo conservative sm
ness approximation@Eqs. ~17! and ~18! of Szabo~1994!# is
crucial, i.e.,
J. Acoust. Soc. Am., Vol. 115, No. 4, April 2004 W. Ch
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a/b'a0uvu lim
y /b05a0uvu lim

y21c0<0.1, ~29!

wherev lim is the frequency limit corresponding to 0.1. A
discussed in Szabo~1994!, the limit frequency range in term
of ~29! is adequate enough to cover the frequency spect
of practical interest in medical ultrasound applications.
terms of ~29!, ~28! is then approximated by the binomia
expansion as

b22a22v2/c0
21 i2ab2 i2a0vby/c0

12y

12a0yvaby21/c0
12y50. ~30!

Then, separating the real and imaginary parts of the ab
Eq. ~30! produces

a5a0v~bc0!y21, ~31a!

b25v2/c0
21~122y!a2. ~31b!

With the further help of the smallness approximation~29!
andb05v/c0 , from ~31a! we derive

a'a0uvuy, ~32!

It is noted that~31a! matches the power law~2!. By now we
have shown that the fractional Laplacian model~23! does
have a power-law attenuation under the Szabo smallness
proximation condition~29! corresponding to the time convo
lutional integral model~Szabo, 1994! and the time fractional
models~Baglegy and Torvik, 1983!. Szabo~1994! demon-
strated his wave equation is causal indirectly by verifying
parabolic counterpart is causal. In the latter section III,
will show that the fractional Laplacian wave equation~21!
can be reduced to the well-known parabolic anomalous
fusion equation. The causality of the latter is guarante
~Hanyga, 2001c!. We are therefore convinced that equati
~21! is also causal. It is noteworthy that the fractional L
placian is a positive definit operator~Gorenflo and
Francesco, 1998!, and the Duhamel’s principle applies to th
fractional Laplacian equations.

IV. NONLINEAR LOSSY MEDIA

Most nonlinear acoustic equations are only useful
describing lossy media with a quadratic dependence or in
pendence on frequency~Szabo, 1993!, and thus have limited
practical utility. In this section, we are concerned with t
extension of the previous linear fractional Laplacian mod
ing methodology to nonlinear media obeying the dissipat
power law of arbitrary exponents. It is noted that the therm
viscous representation in the standard nonlinear acou
PDE models, which characterizes the effects of absorp
and dispersion, is mostly the same as in the correspon
linear models. Thus, Blackstock~1985! presented a straight
forward strategy constructing the nonlinear anomalous
tenuation model by simply replacing its attenuation te
with that in the corresponding linear model, while keepi
all other linear and nonlinear terms unchanged. The meth
ology is justified by a perturbation analysis~Blackstock,
1985!. Following this strategy, Szabo~1993! extended his
linear convolution integral modeling of arbitrary power la
exponents~Szabo, 1994! to the Burgers, KZK, and Wester
velt equations. By analogy with Blackstock~1985! and
1427en and S. Holm: Fractional Laplacian modeling of lossy media
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Szabo ~1993!, we can generalize these nonlinear acous
models by replacing their thermoviscous term with the fr
tional Laplacian lossy terms given in Eqs.~21! and ~23!.

It is stressed that the smallness approximation condi
~29!, crucial in the dispersion analysis of the preceding lin
fractional Laplacian models, is also the foundation of t
nonlinear acoustics modeling~Hamilton and Blackstock,
1998; Szabo, 1993!. Thus, all derivations here are consiste

The Burgers equation may be the best-known sim
nonlinear acoustic model which describes the combined
fects of nonlinearity and dissipation. The one-dimensio
Burgers equation for plane progressive waves is stated a

]p

]t
1Bp

]p

]z
2«

]2p

]z2
50, ~33!

whereB denotes the nonlinear coefficient~Sugimoto, 1991!,
and« is a constant proportional to the coefficients of visco
ity and heat conduction~Blackstock, 1985!. It is known
~Blackstock, 1985; Szabo, 1993! that the Burgers equatio
~31! describes lossy acoustic propagation of square
quency dependence. To extend the Burgers equation to
commodating power-law media of arbitrary exponenty,
Blackstock~1985! suggests and verifies to some extent t
only the third term of~33! needs to be modified, which in
volves the absorption, while keeping all others the same

In terms of an approach detailed by Szabo~1994!, the
hyperbolic wave equation~23! can be approximated to th
parabolic equation by removing the left-hand side ter
namely

1

c0
2

]2p

]t2
1

2a0

c0
12y

]

]t S 2
]2

]z2D y/2

p50. ~34!

And then, integrating~34! with respect to timet and multi-
plying by c0

2, we have

]p

]t
12a0c0

11yS 2
]2

]z2D y/2

p50. ~35!

The model~35! is a generalized diffusion equation and co
responds to the Burgers equation~33! without the nonlinear
convection term. The analytical solution of Eq.~35! can be
found in Hanyga~2001c!. Applying the spatial Fourier trans
form ~25! to ~35!, we have

dP

dt
12a0c0

11ykyP50. ~36!

Thus, the transformation solution is

P~k,t !5Ce22a0c0
11ytky

, ~37!

whereC depends on the initial condition. Wheny52, ~37!
exhibits the normal frequency-squared diffusion. It is cle
that Eq.~37! is a parabolic model originating from Eq.~23!
while holding the capability describing arbitrary power~y!
law attenuation.

By analogy with the generalizing methodology pr
sented by Blackstock~1985! and Szabo~1993!, the fractional
1428 J. Acoust. Soc. Am., Vol. 115, No. 4, April 2004
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Laplacian Burgers equation is presented below by sim
adding the nonlinear convection term of Burgers equat
~33! to Eq. ~35!, i.e.,

]p

]t
1Bp

]p

]z
12a0c0

11yS 2
]2

]z2D y/2

p50. ~38!

Note that the nonlinear term in~38! can be considered th
source term in the sense of an inhomogeneous equa
~Szabo, 1993!.

The nonlinear equation model~38! belongs to the so-
called fractal Burgers equations or the fractional advectio
dispersion equation. A detailed analysis of such equation
given in Bileret al. ~2001!. In higher dimensional cases,~37!
is restated as

]p

]t
1Bp•¹p12a0c0

11y~2¹2!y/2p50, ~39!

where¹p represents the pressure gradient vector, and the
stands for a scalar product. Ochmann and Makarov~1993!
also developed the time fractional derivative Burgers eq
tion to describe the power-law absorptions with arbitraryy.
By using the same strategy, Chen and Holm~2002b! also
developed the fractional Laplacian KZK, Westervelt, gene
second-order approximation model, incompressible Naiv
Stokes, and Boussinesq shallow-water wave equation to
corporate arbitrary power-law frequency-dependent diss
tions.

V. CONCLUDING REMARKS

Attenuation plays an essential part in many acous
applications, for instance, the ultrasound second harmo
imaging and high-intensity focused ultrasound beam
therapeutic surgery. Compared with the Szabo’s time con
lutional integral model of the power-law attenuation, t
present fractional Laplacian time-space model has a unif
and simpler expression. On the other hand, it is also no
simple task for the fractional time derivative models to o
tain the initial conditions of the second-order derivati
when y.1, since most physical systems only provide t
zero- and first-order initial conditions. More importantl
most anomalous thermoviscous attenuations occur in
tially inhomogeneous environments~Henry and Wearne,
1999!, notably biomaterials and geological random med
whose microgeometry largely have fractal dimension str
tures in space. The power-law formula~2! also shows thaty
is independent of frequencyv ~time scale!. It is therefore
reasonable to think thaty may in fact underlie the spatia
fractal. For example,y varies with different human body tis
sues, which have different spatial microstructures. We t
conclude that a spatial representation of the dissipation
the fractional Laplacian is physically more valid than t
fractional time derivative representations.
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APPENDIX: FEM DISCRETIZATION OF THE LINEAR
FRACTIONAL LAPLACIAN LOSSY WAVE
EQUATION

Let the FEM approximate discretization of a Laplaci
operator be expressed as

2¹2p⇒Kp, ~A1!

wherep represents the pressure value vector at the disc
nodes. Since the Laplacian is the positive definite operato
is well known that its FEM discretization matrixK is also
positive definite. The corresponding FEM formulation of t
fractional Laplacian ofy/2 order is then obtained by

~2¹2!y/2p⇒Ky/2p. ~A2!

It is worth noting here that despite the fact that the FE
discretization matrixK is sparse,Ky/2 will be a full matrix
underlying the non-local property of the fractional Laplacia
which models the global interactions in space. The FEM d
cretization of the fractional Laplacian wave equation mo
~21! is thus stated as

ptt12a0c0
11yKy/2pt1c2Kp5g~ t !, ~A3!

where the subscriptt represents the temporal derivative, a
g(t) is due to the source term. It is obvious that~A3! readily
takes into account frequency-dependent viscous effects f
multitude of frequency components~broadband signal! with
empirical coefficientsa0 andy of the power-law attenuation

For a little complicated fitting of measurement fittin
the empirical formula~2! of frequency dependent attenuatio
can be technially replaced by~He, 1998!

a~v!5a11a0uvuy, yP@0,2#, ~A4!

wherea1 is an empirical parameter. Thus, equation~A3! can
be accordingly restated as

pu12~a1c0I 1a0c0
y11Ky/2!pt1c0

2Kp5g~ t !. ~A5!

When y52, the semi-discrete model~A5! brings out the
square frequency dependence and is reduced to the clas
Rayleigh proportional damping model.

The temporal discretization of~A3! can easily be done
via the standard finite difference time integrators. The ma
issue here is about computer resource requirements in
evaluation ofKy/2. The orthodox analytical approach for th
task is costly singular value decomposition, i.e.,

Ky/25FTS ( l i
2D y/2

F, ~A6!

whereF is the orthogonal matrix, the superscriptT repre-
sents the matrix transpose, and( denotes a diagonal matri
with eigenvaluesl. The popular numerical methods fo
evaluatingKy/2 are the Schur decomposition, Pade´ approxi-
mation, and iterative method, which usually require O(n3)
operations~Lu, 1998!. In order to overcome such enormou
cost, a parallel numerical model is under study. The res
will be reported in a separate subsequent paper. As a m
of fact, the numerical solution of fractional Laplacian equ
tions has not been researched well, and very few rela
reports are known to the authors.
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It is also interesting to mention that the matrix pow
function of the fractional order@e.g.,~A2!# can be considered
a clear algebraic correspondence to the fractional calculu
analysis and the fractal in geometry. All three of these me
odologies may consist of a complete set of mathematic
paratus in modeling, analyzing, simulating, and visualizi
complex phenomena, where the traditional mathematic m
ods of integer order do not work well.
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