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Szabo’s models of acoustic attenuation@Szabo, J. Acoust. Soc. Am.96~1!, 491–500~1994!# comply
well with the empirical frequency power law involving noninteger and odd-integer exponent
coefficients while guaranteeing causality, but nevertheless encounter the troublesome issues of
hypersingular improper integral and obscurity in implementing initial conditions. The purpose of
this paper is to ease or remove these drawbacks of the Szabo’s models via the Caputo fractional
derivative concept. The positive time-fractional derivative is also introduced to include the positivity
of the attenuation processes. ©2003 Acoustical Society of America.@DOI: 10.1121/1.1621392#
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I. INTRODUCTION

The effect of attenuation plays a prominent role in ma
acoustic and ultrasound applications, for instance, the u
sound second harmonic imaging and high-intensity focu
ultrasound beam for therapeutic surgery. Due to the fra
microstructures of media, such acoustic attenuation typic
exhibits a frequency dependency characterized by a po
law ~He, 1998!.

S~x1Dx!5S~x!e2a~v!Dx, ~1!

a~v!5a0uvuy, yP@0,2#, ~2!

whereSrepresents the amplitude of an acoustic field varia
such as velocity and pressure;v denotes the angular fre
quency;Dx is wave propagation distance; and the tiss
specific coefficientsa0 and y are empirically obtained by
fitting measured data. The power law~2! is applicable for a
broad range of frequency of practical interest. It has lo
been known that the time-space mathematical model of
attenuation formulas~1! and ~2! with a poweryÞ0,2 is not
easily constituted with the standard integer-order partial
ferential equation~PDE! methodology. Thus, the attenuation
involving yÞ0,2 are also called the anomalous attenuatio

Recent decades have witnessed great effort devote
developing a variety of anomalous attenuation models. Th
modeling approaches, however, have their respective ad
tages and disadvantages. For example, the frequency-do
model via the Laplace transform is simple but limited
linear cases, and also computationally expensive~Wismer
and Ludwig, 1995; Rossikhin and Shitikova, 1997; Gint
2000!. The adaptive Rayleigh model~Wojcik et al., 1995! is
as easy as the common PDE models to be implemented
may not be feasible to important broadband pulse propa
tion ~Chen and Holm, 2002!. The multiple relaxation mode
~Nachmanet al., 1990; Mastet al., 2001! works well for
relaxation-dominated attenuations but requires large amo
of computational effort~Yuan et al., 1999!, and demands
strenuous effort to estimate many obscure relaxation par
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eters, and may not be applicable to anomalous attenuat
involving singular memory processes~Hanyga, 1999!. The
fractional calculus models have better accuracy for gen
anomalous attenuations with fewer necessary parame
~Baglegy and Torvik, 1983; Makris and Constantinou, 199
Ochmann and Makarov, 1993; Enelund, 1996; Gaul, 199!,
but are mathematically more complicated and inflict no
trivial cost of the numerical solution. Recently, Szabo~1993,
1994a, b! presented the convolution integral wave mode
which comply well with arbitrary power-law frequency de
pendences while guaranteeing causality and involving o
the parametersa0 andy. However, it is not straightforward
to implement the initial conditions in the Szabo’s models.
addition, the severely hypersingular improper integral h
ders the numerical solution of the models.

The paper aims to remedy the above-mentioned dr
backs of the Szabo’s models. It is found that the Szab
models can be recast with the Riemann–Liouville fractio
derivative for noninteger powery. Then, the basic strategy o
this study is that the Riemann–Liouville fractional derivati
is replaced by the Caputo fractional derivative to derive
modified Szabo’s model, where the initial conditions can
easily prescribed and the hypersingular integral is regu
ized inherently. To simplify the expression and formalize f
potential applications in a standard setting, a positive tim
fractional derivative is also introduced to include the posit
ity in modeling of the frequency power-law attenuation wi
arbitrary exponenty.

II. SZABO’S CONVOLUTIONAL INTEGRAL MODEL

By a thorough examining of the dispersion equations
the frequency-independent damped wave equation
frequency-squared dependent thermoviscous wave equa
Szabo~1994a! presented a general dispersion equation
arbitrary powery of frequency-dependent attenuation

k25~v/c0!21 i2~v/c0!a0uvuy, ~3!

where the wave numberk5b1 ia corresponds to the Fou
rier transform of the space variable.b and a are, respec-
tively, related to the dispersion and the attenuation. For m
details on the induction of the dispersion equation~3! see
114(5)/2570/5/$19.00 © 2003 Acoustical Society of America
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Szabo~1994a!. Under the so-called conservative smallne
condition @Eq. ~22! of Szabo, 1994a#

a/b'a0uvu lim
y /b05a0uvu lim

y21c0<0.1, ~4!

the dispersion equation~3! approximates the power law~2!
quite well and leads to the Szabo’s time convolutional in
gral model

Dp5
1

c0
2

]2p

]t2 1
2a0

c0
La,y,t* p, ~5!

where* denotes the convolution operation, and

La,y,t55
d~ t ! y50,

2

pt3 , y51,

2
G~y12!cos@~y11!p/2#

putuy12 ,

yÞ1, 0aya2,

2d3~ t !, y52,

~6!

in which G denotes the gamma function, andd represents the
Dirac delta function. Equation~5! uses the relationship

dn~ t !* p~ t !5
]np

]tn . ~7!

Note that the convolution operation in~5! implies infinite
limits on the time integral, and~5! is therefore not causal. To
add causality in terms of the time-causal relation~Szabo,
1994a!, La,y,t is replaced by

Sy~p!52H~ t !La,y,t , 0<y<2, ~8!

whereH(t) is the Heaviside operator. Assuming thatt50 is
the initial quiescence instant,Sy(p) is expressed as

Sy~p!55
]p/]t, y50,

2
2G~y12!cos@~y11!p/2#

p E
0

t p~t!

~ t2t!y12 dt,

0aya2,

2]3p/]t3, y52.
~9!

Note that y51 term in ~9! is included in the nonintege
expression.Sy(p) is called the Szabo operator. Equation~5!
is revised as

Dp5
1

c0
2

]2p

]t2 1
2a0

c0
Sy~p!. ~10!

It is observed that the Szabo operator encounters the hy
singular improper integral whenyÞ0, 2 and does not explic
itly show how to implement the initial conditions.

Szabo~1994a! and Szabo and Wu~2000! also briefly
mentioned that the Szabo’s model shared some simila
with the fractional derivative equation models of th
frequency-dependent attenuation such as the Bagley–To
attenuation model~Bagley and Torvik, 1983!. One essentia
difference between both types of anomalous attenua
J. Acoust. Soc. Am., Vol. 114, No. 5, November 2003
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models, however, is that the Szabo’s model guarantees
positive definition operation of nonintegery by using~Light-
hill, 1962!

FT2~ uvuy!5G~y11!cos@~y11!p/2#/~putuy11!5s~ t !,
~11!

where FT2 is the inverse Fourier transform operation. T
deal with the odd integery cases, Szabo~1994a! employed
the inverse Fourier transform of the sign function~Lighthill,
1962!

FT2~vy sgn~v!!5G~y11!~21!~y11!/2/~pty11!. ~12!

It is found that~12! can be actually covered within~11!. The
inverse Fourier transforms~11! and ~12! play an essentia
part in Szabo’s creating the causal lossy wave equa
model ~5!.

Compared with the Szabo’s models, the fractional d
rivative attenuation models in the sense of Rieman
Liouville or Caputo fails to recover dispersion equation~3!
due to

FT2@~2 iv!yP#5]yp/]ty, ~13!

wheny is a fraction or an odd integer.
On the other hand, the fractional derivative equati

models in the Caputo sense, however, have an obvious
vantage over the Szabo’s model in that they inherently re
larize the hypersingular improper integral and naturally
quire and implement the integer-order initial conditio
~Seredynska and Hanyga, 2000!. Section III presents a mode
equation combining the merits of the Szabo’s model and
Caputo fractional derivative models via a newly defin
positive time-fractional derivative.

III. MODIFIED SZABO’S WAVE EQUATION MODEL
WITH THE CAPUTO FRACTIONAL DERIVATIVE

In terms of the Riemann–Liouville fractional derivativ
D* , defined in the Appendix, the Szabo’s operator~9! is
rewritten as

Sy~p!55
]p/]t, y50,

4

p E
0

t p~t!

~ t2t!3 dt, y51,

2
2G~y12!G@2~y11!#cos@~y11!p/2#

p

3D
*
y11p, yÞ1, 0aya2,

2]3p/]t3, y52.

~14!

Note that the initial quiescent instant is set to zero in~14!. It
is found from~14! that the Szabo’s model implicitly uses th
Riemann–Liouville derivative in the cases of the noninteg
exponenty. As discussed in the Appendix, the Caputo fra
tional derivative is more appropriate for modeling of eng
neering initial value problems, while the Riemann–Liouvil
fractional derivative model is not well posed~Seredynska
and Hanyga, 2000!. Thus, the Szabo’s loss operator is mod
fied via the Caputo fractional derivative@see~A5! and~A11!
in the Appendix# as
2571W. Chen and S. Holm: Modified Szabo’s lossy media models
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Qy~p!55
]p/]t, y50,

2

p E
0

t D2p~t!

~ t2t!
dt, y51,

2
2G@2~y11!#G~y12!cos@~y11!p/2#

p

3Dy11p, yÞ1, 0aya2,

2]3p/]t3, y52.

~15!

Note that when 0,y,2, the Riemann–Liouville derivative
in ~14! is replaced by the Caputo derivative in~15!, and
when y51, the definitionQy(p) still has the singularity at
the origin. Substituting the loss operatorQy(p) instead of
Sy(p) into ~10! produces the linear wave equation model
the power-law frequency-dependent attenuation

Dp5
1

c0
2

]2p

]t2 1
2a0

c0
Qy~p!. ~16!

The model equation~16! eases the hypersingular improp
integral in the Szabo’s model~10! through a regularization
process of the Caputo derivative@see~A5! in the Appendix#
by invoking the integer-order initial conditions naturally. It
worth mentioning that~16! has the same dispersion equati
as the Szabo’s model equation~10! since Eq.~A11! in the
Appendix shows that the Caputo fractional derivative diffe
from the Riemann–Liouville fractional derivative only i
that the former augments a polynomial series with the ini
conditions as coefficients, which has no effect on the disp
sion equation. Thus, the modified Szabo’s model equa
~16! holds the causality of the original Szabo’s model~10!.

IV. A POSITIVE TIME FRACTIONAL DERIVATIVE

The positivity of the attenuation~damping! operation
@see power-law formula~2! and dispersion equation~3!# re-
quired by the decay of the global energy~Matignon et al.,
1998! can be well preserved via a positive fractional calcu
operator. The space fractional Laplacian~Hanyga, 2001;
Chen and Holm, 2002! is the positive definition operator an
thus very suitable to describe the anomalous attenuation
haviors, while the traditional fractional time derivative lac
this crucial positive property. In this section, a positive tim
fractional derivative in terms of~11! is introduced, whose
Fourier transform characterizes the positive operation as
lows:

FT1~D uhup!5uvuhP~v!, 0,h,2, ~17!

where FT1 is the Fourier transform operation;P(v) is the
Fourier transform of the pressure signalp(t); and

D
*
uhup5s~ t !* p~ t !5

1

q~h!
E

0

t p~t!

~ t2t!n11 dt, ~18!

D uhup55
21

hq~h!
E

0

t D1p~t!

~ t2t!h dt, 0ah<1,

1

h~h21!q~h!
E

0

t D2p~t!

~ t2t!h21 dt, 1aha2,

~19!
2572 J. Acoust. Soc. Am., Vol. 114, No. 5, November 2003
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wheres(t) is defined in~11!, and

q~h!5
p

2G~h11!cos@~h11!p/2#
. ~20!

The definitions~18! and ~19! of the positive fractional de-
rivative are to combine the Fourier transform relationsh
~11!, respectively, with the Riemann–Liouville fractional d
rivative ~A7! and with the Caputo fractional derivative~A8!
in the Appendix to hold the Fourier transform relationsh
~17!. Equation~19! can be expanded by the integration b
parts into~18! augmented a regularization series. Note th
for h51 the positive fractional derivative still confronts sin
gularity at the origin. The positive fractional derivative~19!
can also be further generalized by

D uhuu

55
21

~h22k!q~h!
E

0

t D2k11u~t!

~ t2t!h22k dt,

2kah<2k11,

1

~h22k!@h2~2k11!#q~h!
E

0

t D2k12u~t!

~ t2t!h2~2k11! dt,

2k11aha2k12,

~21!

where k is a non-negative integer. The following formula
also hold:

D uhu1qp5D uhuDqpÞDqD uhup5Dq1uhup, ~22!

where q is a positive integer number. Note thatD u1up
ÞD

*
u1upÞD1p. It is straightforward to have

FT1~D uhu1qp!5~2 iv!quvuhP~v!, 0,y,2. ~23!

In terms of the new fractional derivative definition, the lo
operatorQy(p) defined in~15! is rewritten as

Qy~p!5H D1p, y50,

D uyu11p, 0aya2,

2D3p, y52,

~24!

wherey50 corresponds to the damped wave equation, a
known as the electromagnetic equation~Szabo, 1994a! or the
Telegrapher’s equation; andy52 leads to the thermoviscou
equation~Blackstock, 1967; Pierce, 1989!, also called the
augmented wave equation~Johnson and Dudgeon, 1993!. In
most cases of practical interest 0,y,2 occurs. It is noted
that the fractional time derivative Burgers equation f
anomalous attenuations presented by Ochmann and Mak
~1993! requires a sign change of viscous coefficient betwe
0<y,1 and 1,y<2, whereas the definition~19! of the
positive time fractional derivative avoids the sign chan
acrossy51 in ~24!.
If defining

D uhup5H p, h50,

2D2p, h52,
~25!

then the modified Szabo equation~16! can be rewritten as
W. Chen and S. Holm: Modified Szabo’s lossy media models
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Dp5
1

c0
2

]2p

]t2 1
2a0

c0
D uyu11p. ~26!

Note that the definition~19! implies that unlike the even
order derivative, the positive fractional time derivative of t
odd order is not equivalent to the corresponding stand
derivative.

V. CONCLUSIONS

The modified Szabo’s model equation~16! includes the
Caputo fractional derivative, the existence, uniqueness,
well-posedness~i.e., continuous dependence on data! of
whose type of equations have been well proved~Seredynska
and Hanyga, 2000!. The corresponding numerical solutio
can also be carried out with the well-developed standard
merical methods for the Caputo fractional derivative eq
tions ~Diethelm, 1997; Podlubny, 1999; Diethelm and Fo
2002!. It is worth stressing that the modified Szabo’s mod
is closely related to the singular Volterra equation of t
second kind, the numerical solutions of which are discus
in Presset al. ~1992! and many other publications.

In this study, only the linear model of wave equatio
was involved. It is straightforward to extend the prese
strategy to a variety of the corresponding parabolic equat
and nonlinear equation models developed by Szabo~1993,
1994a!. It is also noted that the mathematical models
anomalous dissipation behaviors are mostly phenomeno
cal ~Adhikari, 2000!. In other words, these models are
describe attenuation phenomena but do not necessarily
flect various physical and chemical mechanisms behind
scenes. Broadly speaking, there are two types of attenua
~damping! model methodology, space and time operatio
The present time-domain model underlies the memory eff
also often called heredity, relaxation, or hysteresis in so
publications, which depends on the past history of moti
On the other hand, the space-fractional Laplacian mod
reflect the fractal microstructures of media and can desc
the frequency power-law attenuation quite well~Chen and
Holm, 2002!. Wheny>1, the modified Szabo’s time-domai
models require the second-order initial condition, which
not readily available in many practical cases, and it is th
reasonable to use the space-domain attenuation mode
stead. Wheny,1, the present modified Szabo’s model is t
model of choice since its numerical solution is relative
easier than the fractional Laplacian space-domain mode
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APPENDIX: FRACTIONAL TIME DERIVATIVES

The Riemann–Liouville fractional integral is an esse
tial concept to understand the fractional derivative and
given by ~Samkoet al., 1987!
J. Acoust. Soc. Am., Vol. 114, No. 5, November 2003
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Jq$c~ t !%5
1

G~q!
E

a

t c~t!

~ t2t!12q dt, 0,q, ~A1!

whereq anda are real valued. The corresponding Rieman
Liouville fractional derivative is interpreted as

D
*
l $c~ t !%5

d

dt
@J12l$c~ t !%#, 0,l,1, ~A2!

which can be further elaborated into

D
*
l $c~ t !%5

1

G~12l!

d

dt Ea

t c~t!

~ t2t!l dt

5
1

G~2l!
E

a

t c~t!

~ t2t!11l dt5J2l$c~ t !%. ~A3!

The Riemann–Liouville fractional derivative, however, h
some notable disadvantages in engineering applications
as the hypersingular improper integral, where the order
singularity is higher than the dimension, and nonzero of
fractional derivative of constants, e.g.,Dl1Þ0, which would
entail that dissipation does not vanish for a system in eq
librium ~Samkoet al., 1987; Seredynska and Hanyga, 200!
and invalidates the causality. The Caputo fractional deri
tive has instead been developed to overcome these d
backs~Caputo, 1967; Caputo and Mainardi, 1971! as defined
below:

Dl$c~x!%5J12lF d

dx
c~x!G . ~A4!

Integration by parts of~A4! yields

Dl$c~ t !%5
1

G~12l!
E

a

t 1

~ t2t!l

dc~t!

dt
dt

5D
*
l $c~ t !%2

c~a!

G~12l!

1

~ t2a!l . ~A5!

It is observed that the right-hand second term in~A5! regu-
larizes the fractional derivative to avoid the potential dive
gence from singular integration att5a. In addition, the
Caputo fractional differentiation of a constant results in ze
For instance, Seredynska and Hanyga~2000! pointed out that
the solution of the following time fractional derivativ
model:

D2u1gD11hu1F~u!50, 0,h<2, ~A6!

is not C2 smooth if the Caputo fractional derivative is re
placed by the Riemann–Liouville fractional derivative. Th
Caputo fractional derivative also implicitly includes the in
tial function value att5a as shown in~A5!, which is con-
venient in handling initial value problem. Therefore, the fra
tional derivative defined in the Caputo sense is essentia
the modeling of various anomalous attenuation behav
~Makris and Constantinou, 1991; Seredynska and Hany
2000!. The numerical solution of the Caputo derivative equ
tion like ~A6! is well developed, as described in the mon
graph by Podlubny~1999!.

The fractional derivatives in the Riemann–Liouville an
Caputo senses can, respectively, in general be expresse
2573W. Chen and S. Holm: Modified Szabo’s lossy media models
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n.
D
*
m$c~x!%5Dm@Jm2mc~x!#, ~A7!

Dm$c~x!%5Jm2m@Dmc~x!#. m21am<m, ~A8!

wherem is an integer, andDmc5dmc/dtm. The Riemann–
Liouville fractional derivative~A7! can be recast as~Sere-
dynska and Hanyga, 2000!

D
*
mc5u2m21* c, ~A9!

where

um~ t !5utuu/G~m11!. ~A10!

By integration by parts, the Caputo fractional derivative~A8!
can be reduced to

Dmc5u2m21* c2 (
k50

m21

Dkc~0!uk2m

5D
*
mc2 (

k50

m21

Dkc~0!uk2m , ~A11!

where the first term of the right-hand side is in fact t
Riemann–Liouville fractional derivative.
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