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Szabo’s models of acoustic attenuatj@zabo, J. Acoust. Soc. Ara6(1), 491-500(1994) ] comply

well with the empirical frequency power law involving noninteger and odd-integer exponent
coefficients while guaranteeing causality, but nevertheless encounter the troublesome issues of
hypersingular improper integral and obscurity in implementing initial conditions. The purpose of
this paper is to ease or remove these drawbacks of the Szabo’s models via the Caputo fractional
derivative concept. The positive time-fractional derivative is also introduced to include the positivity
of the attenuation processes. 03 Acoustical Society of AmericdDOI: 10.1121/1.1621392

PACS numbers: 43.20.Bi, 43.20.Hq, 43.35[BfO] Pages: 2570-2574

I. INTRODUCTION eters, and may not be applicable to anomalous attenuations
) ) . involving singular memory processéklanyga, 1999 The
The effect of attenuation plays a prominent role in manygactional calculus models have better accuracy for general
acoustic and ultrasound applications, for instance, the ultras,omalous attenuations with fewer necessary parameters
sound second harmonic imaging and high-intensity focuse aglegy and Torvik, 1983; Makris and Constantinou, 1991

ultrasound beam for therapeutic surgery. Due to the fractah.nmann and Makarov. 1993 Enelund. 1996 Gaul 1999
microstructures of media, such acoustic attenuation typically  4re mathematically7 more,complica'éed and inflict non-

exhibits a frequency dependency characterized by a powgfiyia| cost of the numerical solution. Recently, Szah893,

law (He, 1998. 1994a, b presented the convolution integral wave models,
S(x+ Ax)=S(x)e~ @Ax (1)  which comply well with arbitrary power-law frequency de-
pendences while guaranteeing causality and involving only
a(w)=aglwl’, ye[0,2], (2)  the parameters, andy. However, it is not straightforward

whereSrepresents the amplitude of an acoustic field variabld® implement the initial conditions in the Szabo’s models. In
such as velocity and pressure; denotes the angular fre- addition, the sgverely hypersmgular improper integral hin-
quency; Ax is wave propagation distance; and the tissueders the numerical solution of the models. _
specific coefficientsx, andy are empirically obtained by The paper aims to remedy the above-mentioned draw-
fitting measured data. The power la@) is applicable for a backs of the Szabo'’s models. It_ is found _that_ the Sz_abo’s
broad range of frequency of practical interest. It has longN©dels can be recast with the Riemann—Liouville fractional
been known that the time-space mathematical model of thé€rivative for noninteger powsr Then, the basic strategy of
attenuation formulagl) and (2) with a powery+0,2 is not .thIS study is that the R|emann—L|_ouvnIe frgcnqnal denvgtlve
easily constituted with the standard integer-order partial difiS réplaced by the Caputo fractional derivative to derive a
ferential equatioPDE) methodology. Thus, the attenuations moc_i|f|ed Sza_bo’s model, where th.e initial .condltlo_ns can be
involving y#0,2 are also called the anomalous attenuations€aSily prescribed and the hypersingular integral is regular-
Recent decades have witnessed great effort devoted t§€d inherently. To simplify the expression and formalize for
developing a variety of anomalous attenuation models. Thedgotential applications in a standard setting, a positive time-
modeling approaches, however, have their respective advaﬁ_at_:tlonal de_rlvatlve is also introduced to include the_ p03|t_|v-
tages and disadvantages. For example, the frequency-domd¥ in modeling of the frequency power-law attenuation with
model via the Laplace transform is simple but limited to @/Pitrary exponeny.
linear cases, and also computationally expenghésmer
and Ludwig, 1995; Rossikhin and Shitikova, 1997; Ginter,!l SZABO’S CONVOLUTIONAL INTEGRAL MODEL
2000. The adaptive Rayleigh mod@Nojcik et al, 1993 is By a thorough examining of the dispersion equations of
as easy as the common PDE models to be implemented bi{e frequency-independent damped wave equation and
may not be feasible to important broadband pulse propaggrequency-squared dependent thermoviscous wave equation,
tion (Chen and Holm, 2002 The multiple relaxation model szaho(1994a presented a general dispersion equation for

(NaChmanet al., 1990; Mastet al., 200]) works well for arbitrary powery of frequency_dependent attenuation
relaxation-dominated attenuations but requires large amounts -
k?=(w/co)*+i2(w/cy)ag|w|?, 3)

of computational effort(Yuan et al, 1999, and demands
strenuous effort to estimate many obscure relaxation paramvhere the wave numbée=3+ia corresponds to the Fou-
rier transform of the space variablg. and « are, respec-
AE|ectronic mail: wenc@simula.no tively, related to the dispersion and the attenuation. For more
PElectronic mail: sverre.holm@simula.no details on the induction of the dispersion equati@h see
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Szabo(1994a. Under the so-called conservative smallnessmodels, however, is that the Szabo’s model guarantees the

condition[Eq. (22) of Szabo, 1994
al B~ aglwlin/ Bo= agl ol *co=0.1, 4

the dispersion equatiof8) approximates the power la{2)

quite well and leads to the Szabo’s time convolutional inte

gral model
A 1 % 2a0L :
=" T — *
P=2 52 T gy bav™P (5)
wheré" denotes the convolution operation, and
(5t y=0,
: =1
e Y=h
Layi={ _T(y+2)cog(y+1)m/2] ©)
7T|t|y+2 ’
y#1, 0<y<2,
L - %), y=2,

in whichI" denotes the gamma function, addepresents the
Dirac delta function. Equatiotb) uses the relationship

n

&ty p(t)= = ™

p Erak

Note that the convolution operation i) implies infinite
limits on the time integral, an¢b) is therefore not causal. To
add causality in terms of the time-causal relati@zabo,

19943, L, is replaced by
S,(P)=2H(t)L gy, tS)

whereH(t) is the Heaviside operator. Assuming that0 is
the initial quiescence instarg (p) is expressed as

o=sy=<2,

aplat, y=0,

2I'(y+2)cod (y+1)@/2] (v p(7)
=1 m oit— 297

o<y<2,

—aplat3, y=2.

9

Note thaty=1 term in (9) is included in the noninteger
expressionS(p) is called the Szabo operator. Equati@
is revised as

_ 1 0"2p 2a/0

AD—C—gWJFC—OSy(IO)- (10

positive definition operation of noninteggiby using(Light-
hill, 1962

FT (|o|Y)=T(y+1)cod (y+1)m/2)/(=|t]'"H=s(t),
(12)

where FT is the inverse Fourier transform operation. To
deal with the odd integey cases, Szab@ 9944 employed
the inverse Fourier transform of the sign functidmghthill,
1962

FT (0Ysgnw))=T(y+1)(—1)YTV2/(7ty" 1), (12

It is found that(12) can be actually covered withiiil). The
inverse Fourier transforméll) and (12) play an essential
part in Szabo's creating the causal lossy wave equation
model (5).

Compared with the Szabo’s models, the fractional de-
rivative attenuation models in the sense of Riemann-—
Liouville or Caputo fails to recover dispersion equati@)
due to

FT [(—iw)/P]=dplat),

wheny is a fraction or an odd integer.

On the other hand, the fractional derivative equation
models in the Caputo sense, however, have an obvious ad-
vantage over the Szabo’s model in that they inherently regu-
larize the hypersingular improper integral and naturally re-
quire and implement the integer-order initial conditions
(Seredynska and Hanyga, 2008ection Il presents a model
equation combining the merits of the Szabo’s model and the
Caputo fractional derivative models via a newly defined
positive time-fractional derivative.

(13

Ill. MODIFIED SZABO’S WAVE EQUATION MODEL
WITH THE CAPUTO FRACTIONAL DERIVATIVE

In terms of the Riemann—Liouville fractional derivative
D=*, defined in the Appendix, the Szabo’s operat®y is
rewritten as

( oplat, y=0,
4 (t T
™ o%dr' y=1
S(p)={ 20(y+2I'[-(y+1)jcod(y+1)m/2] (14
a
xDY"1p, y#1, O<y<2,
L —°plat®, y=2.

Note that the initial quiescent instant is set to zer¢lif). It

It is observed that the Szabo operator encounters the hypes found from(14) that the Szabo’s model implicitly uses the

singular improper integral wheyv 0, 2 and does not explic-
itly show how to implement the initial conditions.
Szabo(19943 and Szabo and W2000 also briefly

Riemann—Liouville derivative in the cases of the noninteger
exponenty. As discussed in the Appendix, the Caputo frac-
tional derivative is more appropriate for modeling of engi-

mentioned that the Szabo’s model shared some similaritpeering initial value problems, while the Riemann—Liouville
with the fractional derivative equation models of the fractional derivative model is not well posd&eredynska
frequency-dependent attenuation such as the Bagley—Torvind Hanyga, 2000 Thus, the Szabo’s loss operator is modi-

attenuation mode(Bagley and Torvik, 1983 One essential

fied via the Caputo fractional derivatiyeee(A5) and (A11)

difference between both types of anomalous attenuatioin the Appendi¥ as
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[ oplot, y=0, wheres(t) is defined in(11), and

2 ftsz(T)d _1 T
o (t-p) O YT A0 = SF o Dcos (g D ai2]’

Qp)={ 2L[=(y+DII'(y+2)cog(y+1)@/2] (15  The definitions(18) and (19) of the positive fractional de-

™ rivative are to combine the Fourier transform relationship
XDY*1lp, y#1, 0<y<2, (11), respectively, with the Riemann—Liouville fractional de-
3 .3 B rivative (A7) and with the Caputo fractional derivativa8)
\ 7 plot, y=2. in the Appendix to hold the Fourier transform relationship
Note that when ecy< 2, the Riemann—Liouville derivative (17). Equation(19) can be expanded by the integration by
in (14) is replaced by the Caputo derivative {f5), and parts into(18) augmented a regularization series. Note that
wheny=1, the definitionQ,(p) still has the singularity at for =1 the positive fractional derivative still confronts sin-
the origin. Substituting the loss operatQx(p) instead of  gularity at the origin. The positive fractional derivati{&9)
Sy(p) into (10) produces the linear wave equation model ofcan also be further generalized by
the power-law frequency-dependent attenuation

(20

ks

D!y
1p 2a
Ap= ?Eﬁﬁ C—OQy(p). (16) (-1 t D2k 1y(7)

o o (n—2K0q(7) Jo(t=n7 27
The model equatioril6) eases the hypersingular improper
integral in the Szabo’s modélL0) through a regularization _ 2k<p=2k+1,
process of the Caputo derivatiysee(A5) in the Appendi} 1 t D?*2y(7)
by invoking the integer-order initial conditions naturally. It is (p—2K)[7—(2k+1)]a(n) Jo(t—7)7 D dr,
worth mentioning that16) has the same dispersion equation
as the Szabo’s model equati¢h0) since Eq.(All) in the \ 2k+1<n=<2k+2,
Appendix shows that the Caputo fractional derivative differs (21

from the Riemann-Liouville fractional derivative only in
that the former augments a polynomial series with the initial
conditions as coefficients, which has no effect on the dispef—i
sion equation. Thus, the modified Szabo’s model equation  pl7l+ap=pl7pap=~paplrip=pa*irlp, (22)
(16) holds the causality of the original Szabo’s modED).

|vvherek is a non-negative integer. The following formulas
Iso hold:

where q is a positive integer number. Note th&!!lp
* D'j‘p# Dlp. It is straightforward to have

IV. A POSITIVE TIME FRACTIONAL DERIVATIVE .
FTT (D" %) =(~iw)9w|"P(w), 0<y<2. (23
The positivity of the attenuatioidamping operation

[see power-law formulé2) and dispersion equatiof)] re- In terms of the new fractional derivative definition, the loss
quired by the decay of the global enerylatignonetal,  OPeratorQy(p) defined in(15) is rewritten as
1998 can be well preserved via a positive fractional calculus D! _

: . p, y=0,
operator. The space fractional Laplaciddanyga, 2001; yl+1
Chen and Holm, 2003s the positive definition operator and Qy(p)={ D" p, 0<y=<2, (24)
thus very suitable to describe the anomalous attenuation be- —-D3p, y=2,

haviors, while the traditional fractional time derivative lacks B )
this crucial positive property. In this section, a positive timeWherey =0 corresponds to the damped wave equation, also

fractional derivative in terms ofl1) is introduced, whose KNOWn as the electromagnetic equati@zabo, 1994eor the

Fourier transform characterizes the positive operation as foll€/€9rapher’s equation; and-=2 leads to the thermoviscous
equation (Blackstock, 1967; Pierce, 1989also called the

lows:
vl augmented wave equatigdohnson and Dudgeon, 199&
FT*(D'"p)=|w|"P(w), 0<7n<2, (170 most cases of practical interesk§<2 occurs. It is noted
where FT is the Fourier transform operatioR(w) is the  that the fractional time derivative Burgers equation for
Fourier transform of the pressure sigmgt); and anomalous attenuations presented by Ochmann and Makarov
1 - (1993 requires a sign change of viscous coefficient between
top(r O0=y<1 and IkKy=<2, whereas the definitio19) of the
D\7lp=s(t)*p(t)= f dr, 18 y=2 ¢ y=2 cas . |
« P=s(U*p(Y) a(n) Jo(t—n)"*t T (18) positive time fractional derivative avoids the sign change
(Dp(7) acrossy=1 in (24).
- p7 If definin
dr, 0<p<1, 9
| 0 Jot= ) 7 .
. ; ft 0P dr, 1<p<2 DI"lp= ,DZZ , 2 29
— T! y - ) = H
7(n=D)a(n) Jo(t=7)7* 7 7

(19 then the modified Szabo equati¢hf) can be rewritten as
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B 1 &Z_p 2aq Y(T)

1 t
2wt C—ODIVI+1p. (26) IO} = 7 Ja(t_ﬂl,qdf, 0<q, (A1)

Ap

Note that the definition(19) implies that unlike the even- whereq anda are real valued. The corresponding Riemann—
order derivative, the positive fractional time derivative of the jouville fractional derivative is interpreted as
odd order is not equivalent to the corresponding standard

derivative. DX ()} = %[Jl—x{w(t)}], 0<A<1, (A2)

which can be further elaborated into

o d (¢ (o)
*{l//(t)}_ F(l_)\)a‘[a(t_,r))\ T

V. CONCLUSIONS

The modified Szabo’s model equatiét6) includes the p
Caputo fractional derivative, the existence, uniqueness, and
well-posedness(i.e., continuous dependence on dat# 1 ¢
whose type of equations have been well proy@dredynska = f
and Hanyga, 2000 The corresponding numerical solution I'(=M) Jalt

can also be carried out with the well-developed standard nurpe Riemann—Liouville fractional derivative, however, has

merical methods for Fhe Caputo fractipngl derivative equagame notable disadvantages in engineering applications such
tions (Diethelm, 1997; Podlubny, 1999; Diethelm and Ford, 55 the hypersingular improper integral, where the order of

2002. It is worth stressing that the modified Szabo’s mOdelsinguIarity is higher than the dimension, and nonzero of the

is closely related to the singular Volterra equation of thegaciional derivative of constants, e.1+ 0, which would

second kind, the numerical solutions of which are discussegaj that dissipation does not vanish for a system in equi-

in Presset al. (1992 and many other publications. ~ librium (Samkoet al, 1987; Seredynska and Hanyga, 2000
In this study, only the linear model of wave equation g jnvalidates the causality. The Caputo fractional deriva-

was involved. It is straightforward to extend the presentj e phas instead been developed to overcome these draw-
strategy to a variety of the corresponding parabolic eq“at'onﬁacks(Caputo, 1967: Caputo and Mainardi, 1923 defined
and nonlinear equation models developed by SZd893,  pojow:

19944a. It is also noted that the mathematical models for
anomalous dissipation behaviors are mostly phenomenologi-
cal (Adhikari, 200Q. In other words, these models are to
describe attenuation phenomena but do not necessarily re- . .
flect various physical and chemical mechanisms behind th&1tegration by parts ofA4) yields
scenes. Broadly speaking, there are two types of attenuation 1 t 1 dy(7)
(damping model methodology, space and time operations. DMu(t)} = (1= f — dr

. . . (=) Ja(t—7" d7
The present time-domain model underlies the memory effect,
also often called heredity, relaxation, or hysteresis in some W(a) 1
publications, which depends on the past history of motion. =D} {y(t)} - T(1=N) (=2 (A5)
On the other hand, the space-fractional Laplacian models
reflect the fractal microstructures of media and can describ# is observed that the right-hand second tern{AS) regu-
the frequency power-law attenuation quite w@llhen and larizes the fractional derivative to avoid the potential diver-
Holm, 2002. Wheny=1, the modified Szabo's time-domain gence from singular integration @t=a. In addition, the
models require the second-order initial condition, which isCaputo fractional differentiation of a constant results in zero.
not readily available in many practical cases, and it is thudor instance, Seredynska and Hany2@00 pointed out that
reasonable to use the space-domain attenuation model ithe solution of the following time fractional derivative
stead. Whely< 1, the present modified Szabo’s model is themodel:
model of choice since its numerical solution is relatively 2 1+ -~
easier than the fractional Laplacian space-domain model. Dou+yD™ Ut F(W)=0, 0<p=<2, (A6)

S dr=a ) (49

. (A4)

d
d—xlﬁ(x)

DMy (x)}=3""

is not C2 smooth if the Caputo fractional derivative is re-
placed by the Riemann—Liouville fractional derivative. The
ACKNOWLEDGMENTS Caputo fractional derivative also implicitly includes the ini-

The work reported here is sponsored by Simula Re_'ual function value at=a as shown in(A5), which is con-

search Laboratory with the project “Mathematical and au-venientin handling initial value problem. Therefore, the frac-

. . . . tional derivative defined in the Caputo sense is essential in
merical modeling of medical ultrasound wave propagation. . : : .
the modeling of various anomalous attenuation behaviors

(Makris and Constantinou, 1991; Seredynska and Hanyga,

2000. The numerical solution of the Caputo derivative equa-

tion like (A6) is well developed, as described in the mono-
The Riemann—Liouville fractional integral is an essen-graph by Podlubny1999.

tial concept to understand the fractional derivative and is  The fractional derivatives in the Riemann—Liouville and

given by (Samkoet al,, 1987 Caputo senses can, respectively, in general be expressed as

APPENDIX: FRACTIONAL TIME DERIVATIVES
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