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SUMMARY

The accuracy of global methods such as the di�erential quadrature (DQ) approach is usually sensitive
to the grid point distribution. This paper is to numerically study the e�ect of grid point distribution
on the accuracy of DQ solution for beams and plates. It was found that the stretching of grid towards
the boundary can improve the accuracy of DQ solution, especially for coarse meshes. The optimal grid
point distribution (corresponding to optimal stretching parameter) depends on the order of derivatives
in the boundary condition and the number of grid points used. The optimal grid distribution may not be
from the roots of orthogonal polynomials. This di�ers somewhat from the conventional analysis. This
paper also proposes a simple and e�ective formulation for stretching the grid towards the boundary.
The error distribution of derivative approximation is also studied, and used to analyze the e�ect of grid
point distribution on accuracy of numerical solutions. Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The di�erential quadrature (DQ) method was originally introduced by Bellaman and his asso-
ciates [1] as a simple and highly e�cient numerical technique. One essential issue pertaining
to the method is how to determine its weighting coe�cients e�ciently and accurately. The
earlier approach, which requires solving algebraic equations with an ill-conditioned Vander-
monde matrix, is neither e�cient nor accurate when the number of grid points is large [1; 2].
Based on the Lagrange interpolation, Quan and Chang [3] provided explicit formulations to
compute the weighting coe�cients of the DQ discretization of the �rst and second order
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derivatives. More generally, Shu [4], Shu and Richards [5] presented the generalized di�er-
ential quadrature (GDQ) method, in which the determination of weighting coe�cients of the
DQ discretization is generalized under the analysis of a high-order polynomial approximation
and the analysis of a linear vector space. A simple formulation was given for computing
the weighting coe�cients of the �rst-order derivative with arbitrary mesh point distribution,
and the weighting coe�cients of the second and higher order derivatives are computed by a
recurrence formulation. The mathematical fundamentals and recent developments of the DQ
method as well as its major applications in engineering are discussed in detail in the book of
Shu [6].
As shown in the book of Shu [6], DQ is a global method, which is equivalent to the

highest-order �nite-di�erence scheme. As compared to the low-order �nite-di�erence schemes
and �nite element methods, the DQ method can obtain very accurate numerical results by using
a considerably small number of grid points. Consequently, it requires much less computational
e�ort and virtual storage. In general, the DQ method uses a non-uniform mesh for numerical
discretization. It was shown [3; 7] that for many problems, the use of non-uniform meshes
resulting from the roots of orthogonal polynomials is very e�cient. However, in the application
of the DQ method to the free vibrational analysis of plates with free corner conditions, Shu
and Du [8] found that the mesh points given from orthogonal polynomials could not yield
accurate and reliable solutions. A further stretching of mesh points to the boundary is necessary
to guarantee the accuracy and convergence in the computation of these cases. The work
recognized the limitation of the traditional choice of grid points and a new way to determine
the grid points was provided [8]. It is well known that the grid point distribution plays an
essential role in determining the accuracy, convergence speed and stability of the DQ method.
However, a major shortcoming of the method is just the lack of adequate studies to evaluate
convergence with regard to grid spacing and grid structure [9]. Quan and Chang [10] compared
numerically the performances of the often-used non-uniform meshes and concluded that the
grid points originated from the Chebyshev polynomials of the �rst kind is optimum in all cases
examined there. Bert and Malik [7] indicated an important fact that the preferred type of grid
points changes with problems of interest and recommended the use of Chebyshev–Gauss–
Lobatto grid for structural mechanics computation. Moradi and Taheri [11] also investigated
the e�ect of various spacing schemes on the accuracy of DQ results for buckling application
of composites. They provided insight into the in
uence of a number of sampling points
in conjunction to various spacing schemes. All the above work has not provided sensible
explanations why certain type of grid points is superior to the others in the computation of
their problems. Only one explicit conclusion reached their work is that the selection of non-
uniform mesh from the roots of orthogonal polynomials or functions can greatly enhance the
accuracy of the quadrature solution in comparison to uniform mesh. Chen [9] also identi�ed
the limitation of conventional non-uniform meshes for analysing of the second- and fourth-
order di�erential systems. However, as pointed out by Bert and Malik [7], the issue of the
proper choice of the grid points remains largely an unclear matter. All above trigger the
present work.
The objective of this paper is to systematically study the relationship between the spacing

of grid points and errors of DQ results for bending and vibration analysis of beams and
plates with various boundary conditions. The stretching function given by Shu [6] will be
adopted in the present study. It was found that the stretching of conventional grid points is
very useful to improve the accuracy of DQ results, especially when using the small number of
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grid points. In terms of accuracy, it was found that for each case, there exists an optimal grid
point distribution, which corresponds to the optimal stretching parameter. Since in the DQ
method, the coordinates of grid points are used to construct the approximated polynomial,
the optimal mesh point distribution corresponds to the optimal polynomial approximation.
Our systematic numerical experiments showed that for most cases of vibration and bending
problems, the optimal grid points are not from the roots of orthogonal polynomials. In other
words, the orthogonal polynomials may not be the best approximation to a boundary value
problem. This di�ers somewhat from the conventional analysis. The e�ect of grid stretching
on the accuracy of numerical results was systematically studied by the error distribution of
derivative approximation using the newly developed formulations of Chen [9]. It is believed
that this paper presents some signi�cant guidelines to properly choose the grid points in the
DQ computation of structural mechanics problems.

2. DQ METHOD AND ERROR ANALYSIS

The essence of the di�erential quadrature method is that the partial derivative of a function
with respect to a variable is approximated by a weighted sum of function values at all discrete
points in that direction. Its weighting coe�cients are not related to any special problem and
only depend on the grid spacing. Thus, any partial di�erential equation can be easily reduced
to a set of algebraic equations using these coe�cients. Considering a function f(x) with N
grid points, we have

@mf(x)
@xm

∣∣∣∣
xi

=
N∑
j=1
c(m)ij f(xj); i=1; 2; : : : ; N (1)

where xj are the co-ordinates of grid points in the variable domain. f(xj) and c
(m)
ij are the

function values at grid points and the related weighting coe�cients, respectively. Based on
the analysis of a linear vector space, Shu and Richards [5] developed the GDQ method to
generalize all the ways to compute the weighting coe�cients in DQ approximation. For the
�rst-order derivative, the weighting coe�cients are computed as

c(1)ij =
1

xj − xi
N∏
k=1
k 6=i; j

xi − xk
xj − xk ; i=1; 2; : : : ; N ; j=1; 2; : : : ; N; i 6= j (2a)

and

c(1)ii =−
N∑
j 6=i
c(1)ij ; i=1; 2; : : : ; N (2b)

For the second- and higher-order derivatives, the weighting coe�cients can be generated by
the following recurrent formulation [5]:

c(m+1)ij =m

(
c(1)ij c

(m)
ii − c(m)ij

xi − xj

)
; i 6= j (3a)

and

c(m+1)ii =−
N∑
j 6=i
c(m+1)ij (3b)
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where the superscript (m) and (m + 1) denote the order of derivatives. The details of the
method and its applications can be found in Reference [6].
The DQ method can be derived by Lagrangian interpolated polynomial. Let function f(x)

be smooth enough, the Lagrangian interpolated polynomial can be written as

f(x)=
N∑
j=1
pj(x)f(xj) + R(x); j=1; 2; : : : ; N (4)

where pj(x) are Lagrangian interpolated polynomials, R(x) is the truncation error given by

R(x)=
f(N )(�)W (x)

N !
(5)

Here W (x)=
∏N
i=1(x − xi). Di�erentiating Equation (4) with respect to x, we can obtain

f(1)(xi)=
N∑
j=1
p(1)j (xi)f(xj) + R

(1)(xi)=
N∑
j=1
c(1)ij f(xj) + R

(1)(xi) (6)

where c(1)ij are the DQ weighting coe�cients of the �rst order derivative, xi denote the coordi-
nates of grid points, R(1)(xi) is the truncation error of the �rst-order derivative approximation
by the DQ method at the grid point xi

R(1)(xi)=
f(N )(�)W (1)(xi)

N !
; i=1; 2; : : : ; N (7)

where � is an unknown function of variable x. Setting

|W (1)(xi)|=
∣∣∣∣∣
N∏
k 6=i
(xi − xk)

∣∣∣∣∣ =p(xi); e(1)(xi)=
p(xi)
N !

and K1 = max{|f(N )(�)|}

then we have

R(1)(xi)6K1
|W (1)(xi)|
N !

=K1
p(xi)
N !

=K1e(1)(xi); i=1; 2; : : : ; N (8)

For the second-order derivative, we can have

R(2)(xi)=
2�xf(N+1)(�)W (1)(xi)

N !
+
f(N )(�)W (2)(xi)

N !
; i=1; 2; : : : ; N (9)

Using the DQ approach, we have the following relationship [6]:

c(m−1)ii =
W (m)(xi)
mW (1)(xi)

(10)

where c(m−1)ii are the diagonal entries of the DQ weighting coe�cient matrix for the (m−1)th-
order derivative. W (m) denotes the mth order derivative of the function W (x). Equation (10)
can be rewritten as

W (m)(xi)=mc
(m−1)
ii W (1)(xi) (11)

Substituting Equation (11) into Equation (9), we have

|R(2)(xi)|62K2
(
1 +

∣∣∣c(1)ii ∣∣∣) p(xi)N !
=K2e(2)(xi) (12)
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where K2 =max{|f(N )(�)|; |�xf(N+1)(�)|)}; e(2)(xi) is the error coe�cients of the second-order
derivative. Similarly, we can obtain

|R(3)(xi)|6 3K3
(
2 +

∣∣∣c(1)ii ∣∣∣+ ∣∣∣c(2)ii ∣∣∣) p(xi)N !
=K3e(3)(xi) (13)

|R(4)(xi)|6 4K4
(
5 + 6

∣∣∣c(1)ii ∣∣∣+ 3 ∣∣∣c(2)ii ∣∣∣+ ∣∣∣c(3)ii ∣∣∣) p(xi)N !
=K4e(4)(xi) (14)

for truncation errors of the third- and fourth-order derivative, respectively, where K3 and K4
are the maximum values of composite derivatives of � and f(x) up to (N + 3) order, and
e(3)(xi) and e(4)(xi) are the corresponding error coe�cients. The above error estimates are
di�erent from those given by Bellman [1] in that they can analyze the truncation error at
every grid point.

3. GOVERNING EQUATIONS AND NUMERICAL DISCRETIZATION

The �rst application of di�erential quadrature method to solve problems in structural mechanics
was given by Bert et al. [12]. Since then, the method has been applied successfully to a
wide range of structural mechanics problems (see Reference [7] and references therein). The
two essential points in these applications are how to select grid points and how to apply
double boundary conditions at each edge of physical domain. The second issue has attracted
considerable attention in recent years [7–9; 12–17]. Shu and Du [8; 17] provided persuasive
evidences that the most simple, e�cient and 
exible approach is to directly implement double
boundary conditions at each boundary point. Shu and Du’s approach is generally successful
and has no limitation for its use. In this study, the approach of Shu and Du [8; 17] is
adopted to implement the two conditions at the boundary point. The numerical examples
are the bending and vibration of beams and plates with various boundary conditions. The
analysis of these problems has been done in many references [7–9; 11–17] for showing the
advantages of the DQ method over the other numerical techniques or for comparisons among
various approaches applying multiple boundary conditions. The major contribution of this
paper is to provide some innovations on how to choose grid points in the DQ method rather
than new numerical case studies. In order to simplify presentation, SS, C and F represent
simply-supported, clamped and free edges, respectively. The plates of various con�gurations
are denoted by the respective boundary conditions. For example, an SS–C–SS–F rectangular
plate would have simply supported edges at x=0 and x=1, clamped edge at y=0, and free
edge at y=1.

3.1. Transverse bending and vibration of beams

For the case of a Bernoulli–Euler beam with Length L, the governing equation of de
ection
and vibration is given by

d2

dx2

(
EI
d2w
dx2

)
=−q(x)−md

2w
dt2

(15)
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where E; I; q; and m are the elastic module, area moment of inertia about the neutral axis,
distributed lateral loading, and mass per unit length, respectively. In this study, EI and m are
assumed constants, q(x)= q0 sin(x�=L). Let X = x=L, the analog governing equations in terms
of the DQ discretization at interior points can be written as

N∑
j=1
c(4)ij wj=−L

4q0
EI

sin(�X ); i=3; : : : ; N − 2 (16)

for de
ection, and
N∑
j=1
c(4)ij wj=$

2wi; i=3; : : : ; N − 2 (17)

for vibration, where c(4)ij are the weighting coe�cients of the fourth-order derivative, wj is the
de
ection at point xj; $2 =mL4!2=EI is the normalized frequency, ! is the natural frequency
of free vibration. The boundary conditions are given as follows:

Clamped end:

w=0; w;X =0 at X =0; 1 (18a)

In terms of DQ discretization, Equation (18a) can be reduced to

w1 = 0;
N∑
j=1
c(1)1j wj=0; wN =0;

N∑
j=1
c(1)Nj wj=0 (18b)

Simply supported end:

w=0; w;XX =0 at X =0; 1 (19a)

The DQ analog equations of Equation (19a) can be written as

w1 = 0;
N∑
j=1
c(2)1j wj=0; wN =0;

N∑
j=1
c(2)Nj wj=0 (19b)

Free end:

w;XX =0; w;XXX =0 at X =0; 1 (20)

The DQ discretization equations of Equation (20) are

N∑
j=1
c(2)1j wj=0;

N∑
j=1
c(3)1j wj=0; at X =0 (21a)

N∑
j=1
c(2)Nj wj=0;

N∑
j=1
c(3)Nj wj=0; at X =1: (21b)

For a detailed implementation of the above boundary conditions, the work of Shu and Du [8]
can be referred to. It is to be noted that at each end, there are two boundary conditions. So,
in total, there are four boundary condition equations. For a well-posed problem, the number
of equations must be equal to the number of unknowns. Therefore, the discrete governing
equation (16) or (17) has to be applied at (N − 4) interior points. This can be done by
applying these equations at the points xi; i=3; 4; : : : ; N − 2.
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3.2. Transverse vibration of thin, isotropic rectangular plates

The non-dimensional equation governing free vibration of rectangular plates can be expressed
as

w;xxxx + 2�2w;xxyy + �4w;yyyy=$2w (22)

where �= a=b is the aspect ratio, $2 =�ha4!2=D; D denotes the plate sti�ness, h represents
the total plate thickness, and � stands for the density, w and ! are the model de
ection and
the natural frequency of free vibration. Equation (22) can be discretized by the DQ method
as
N∑
k=1
c(4)ik wkj+(2�

2)
N∑
k=1

M∑
m=1
c(2)ik �cjm

(2)wkm+(�4)
M∑
k=1

�cjk(4)wik =$2wij i=3; : : : ; N − 2; j=3; : : : ;M−2
(23)

where c(2)ik ; �c
(2)
jm ; c

(4)
ik and �c(4)jk represent the DQ weighting coe�cients of the second and fourth-

order derivatives along x- and y-direction, respectively. The following boundary conditions
will be considered in the present study.

Clamped edge:

w=0; w; x=0 at x=0; 1 (24a)

w=0; w;y=0 at y=0; 1 (24b)

Simply supported edge:

w=0; w; xx=0 at x=0; 1 (25a)

w=0; w;yy=0 at y=0; 1 (25b)

Free edge:

w;xx + ��2w;yy =0; w; xxx + (2− �)�2w;xyy=0 at x=0; 1 (26a)

�2w;yy + �w;xx =0; �2w;yyy + (2− �)w;xxy=0 at y=0; 1 (26b)

At the free corner, the boundary condition is

w;xy=0 (27)

In this study, the approach of Shu and Du [17] is applied to implement the above boundary
conditions.

3.3. Transverse vibration of thin, isotropic skew plates

The con�guration of a skew plate is shown in Figure 1. The non-dimensional di�erential
equation for small-amplitude 
exural vibration of a thin, isotropic, skew plate can be written
as

w;xxxx − 4� cos �w;xxxy + 2�2(1 + 2 cos2 �)w;xxyy − 4�3 cos �w;xyyy + �4w;yyyy=$2 sin4 �w (28)
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Figure 1. A skew plate.

where �= a=b is the aspect ratio, � is the skew angle, $2 =�ha4!2=D. In this study, the
clamped and simply supported conditions are considered, which are given as

Clamped edge:

w=0; w; x=0 at x=0; 1 (29a)

w=0; w;y=0 at y=0; 1 (29b)

Simply supported edge:

w=0; w; xx − 2 cos �w;xy=0 at x=0; 1 (30a)

w=0; w;yy − 2 cos �w;xy=0 at y=0; 1 (30b)

Similar to the rectangular plate, the governing equation (28) and boundary conditions (29)
and (30) can be discretized by the DQ method, and the approach of Shu and Du [17] is
applied to implement the boundary conditions.

4. TYPICAL GRIDS AND GRID STRETCHING

The �ve typical grids, which are commonly used in the literature, are considered in this study.
The co-ordinates of grid points are supposed to be within the normalized domain x ∈ [0; 1].
In the following, N represents the number of grid points in each direction.

Type I: Equally spaced grid points:

xi =
i − 1
N − 1 ; i=1; 2; : : : ; N (31)

Type II: Normalized grid points originated from the roots of Chebyshev polynomials of the
second kind:

xi=
ri − r1
rN − r1 ; i=1; 2; : : : ; N (32)

where ri= cos i�=(N + 1).
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Type III: Normalized grid points originated from the roots of Legendre polynomials:

xi=
ri − r1
rN − r1 ; i=1; 2; : : : ; N (33)

where

ri=
(
1− 1

8N 2
+

1
8N 3

)
cos

4i − 1
4N + 2

�

Type IV: Normalized grid points originated from the roots of Chebyshev polynomials of
the �rst kind:

xi=
ri − r1
rN − r1 ; i=1; 2; : : : ; N (34)

where

ri= cos
(2i − 1)�
2N

Type V: Chebyshev-Gauss-Lobatto points (Lobatto points in short):

xi=
1
2

(
1− cos

(
i − 1
N − 1�

))
; i=1; 2; : : : ; N (35)

Apart from the above �ve typical grids, in this study, we will further stretch the traditional
grid points towards the boundary by using the following formulation [6]:

xi=(1− �)(3�2i − 2�3i ) + ��i; i=1; 2; : : : ; N; �61 (36)

where � is the stretching parameter, �i are the co-ordinates of the basic grid points. Obviously,
the less the value of �, the stronger the grid points are stretched towards the boundary. It is
noted that the stretching equation (36) can only be applied for the domain of 06�61. After
stretching by Equation (36), x is still in the domain of 06 x6 1. It is noted that when � is
taken as a negative value, the obtained x2 from Equation (36) may become a small negative
value, which is outside of the domain [0, 1]. For this case, the co-ordinates of x2 and xN−1
are given from the following formulation:

x2 =�x3; xN−1 = 1− x2 (37)

where � is a small positive constant. In general, the choice of � follows the condition of
�x1 = x2 − x1¡�x2 = x3 − x2. In the present study, � is taken as 0.1, and the Lobatto points
given by Equation (35) are adopted as the basic grid points since their distribution has the
strongest tendency towards the boundary among the above-mentioned �ve grids. Clearly, when
�=1; the stretched grid points are actually the original Lobatto grid points.
Table I displays the coordinates of grid points for the above �ve grids as well as a variety

of the stretched Lobatto grids with N =9. The parameter SI in Table I is the abbreviation of
Stretching Index, which is de�ned as

SI=
N=2∑
i=1
�xi

/
N=2∑
i=1
xi (38)

where �x is the co-ordinate of the equally spaced points, x is the co-ordinate of other grid
points. SI shows what extent the total distribution of grid points tends toward the boundary.
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Table I. Co-ordinates of grid points for various grids (N =9).

Grids x1 x2 x3 x4 x5 x6 x7 x8 x9 SI

Equ 0.0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1.0 1.0
Che II 0.0 0.075 0.191 0.338 0.5 0.662 0.809 0.925 1.0 1.24
Leg 0.0 0.068 0.183 0.333 0.5 0.667 0.817 0.932 1.0 1.28
Che I 0.0 0.060 0.174 0.326 0.5 0.674 0.826 0.940 1.0 1.34
Lob 0.0 0.038 0.146 0.308 0.5 0.691 0.853 0.962 1.0 1.52
�=0:8 0.0 0.031 0.129 0.292 0.5 0.708 0.871 0.969 1.0 1.55
�=0:6 0.0 0.025 0.111 0.276 0.5 0.724 0.889 0.975 1.0 1.59
�=0:4 0.0 0.018 0.093 0.260 0.5 0.740 0.907 0.982 1.0 1.64
�=0:2 0.0 0.011 0.076 0.243 0.5 0.757 0.924 0.989 1.0 1.70
�=0:0 0.0 0.004 0.058 0.227 0.5 0.773 0.942 0.996 1.0 1.78
�=−0:2 0.0 0.004 0.040 0.211 0.5 0.789 0.960 0.996 1.0 1.84
�=−0:4 0.0 0.002 0.023 0.194 0.5 0.806 0.977 0.998 1.0 1.92
�=−0:6 0.0 0.0005 0.005 0.178 0.5 0.822 0.995 0.9995 1.0 2.11

The larger the value of SI, the closer the grid points towards the boundary. It can be seen
from Table I that Lobatto grid (Type V) has the most evident tendency towards the boundary
among the �ve typical grids. Following are Chebyshev grid of the �rst kind (Type IV),
Legendre grid (Type III), and Chebyshev grid of the second kind (Type II). For simplicity,
Chebyshev, Legendre and Lobatto are abbreviated as Che, Leg and Lob in all the tables.

5. NUMERICAL RESULTS AND DISCUSSIONS

The results presented in this section attempt to illustrate the e�ect of grid spacing on the
numerical accuracy. For this purpose, the relative error or di�erence is de�ned as

ek =
∣∣∣∣DQ− Reference

Reference

∣∣∣∣ (39)

where ek indicates the relative error or di�erence of the de
ection at the grid point xk ; in
bending problems or the kth frequency in vibration problems. The average error or di�erence
is de�ned by

�=
1
L

L∑
k=1
ek (40)

For the following discussion, optimal stretching parameter is de�ned as the one with which
the average relative error is minimized.

5.1. Bending of beams

A varying load

q= q0 sin(�x=L) (41)

is applied for this problem. At �rst, we study the e�ect of various grid point distributions
on the accuracy of DQ results. It was found that the stretched Lobatto grid points with
proper value of � usually produce more accurate DQ results for all cases in comparison to
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Figure 2. Average error of de
ection versus � for
various beams (N =9).

Figure 3. Average error of de
ection versus
� for C–F beam by using di�erent number

of grid points.

the conventional non-uniform grids, and the optimal grid spacing varies with the boundary
condition of the problem. In general, the grid points are required to be more stretched to
the boundary in order to obtain accurate solutions for problems with boundary conditions
of higher order derivatives. For example, when N =9; the optimal stretching parameter is
�=−0:2 for the C–F beam, and �=0:6 for the C–C beam. This feature can be observed
from Figure 2. The reason is possibly due to the fact that the former boundary conditions
involve the second and third order derivatives, while the latter only involves the �rst order
derivative. We will further discuss this issue in the analysis of error distribution for derivative
approximation.
On the other hand, it was found that as the number of grid points increases, the optimal

stretching parameter also increases. This can be seen clearly in Figure 3, which shows the
average error of de
ection versus � for C–F beam with di�erent numbers of grid points. It is
clearly observed from Figure 3 that the optimal stretching parameter � increases as the number
of grid points goes up. It is noted that Lobatto grid is a stretching grid towards the boundary.
The stretching of Lobatto grid will be enhanced as the number of grid points increases. The
results in Figure 3 show that, to obtain accurate DQ solutions, Lobatto grid is not stretched
enough for coarse meshes. So, for small value of N; we need to use small value of � to get
accurate DQ results. As N increases, the optimal value of � will be increased up to �=1.
This phenomenon can also be seen in Table II and Figure 4. Table II lists the minimized
average errors in conjunction with the optimal stretching parameter � for di�erent number of
mesh points, while Figure 4 illustrates the convergence behavior of di�erent grids for SS–
SS beam. It can be seen from Table II that for the coarse mesh, the stretching of grid is
necessary to obtain accurate DQ solutions. When the number of grid points is increased to
above 13, the optimal grid for C–C, C–SS and SS–SS beams is the Chebyshev grid of the
second kind, which has the least tendency towards the boundary among all non-uniform grids
listed in Table I. It seems that the grid with smaller stretching tendency is more suitable when
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Table II. Minimized average error of DQ results for bending of beams under varying load
of q= q0 sin (�x=L).

N 7 9 11 13 15

C–C 1.53E−3 3.18E−5 1.74E−6 2.42E−6 3.40E−6
(�=0:53) (�=0:54) (Che II) (Che II) (Che II)

C–SS 7.92E−4 4.30E−5 2.56E−6 1.63E−6 2.26E−6
(�=0:26) (�=0:38) (Che I) (Che II) (Che II)

SS–SS 2.77E−4 3.39E−5 3.46E−7 2.19E−7 2.06E−7
(�=0:22) (�=0:23) (�=0:47) (Che II) (Che II)

C–F 1.46E−3 1.33E−5 8.98E−8 5.89E−9 4.40E−8
(�=−0:54) (�=−0:24) (�=−0:17) (�=0:54) (Lob)

Figure 4. Average error of de
ection versus N
for SS–SS beam using di�erent grids.

Figure 5. Relative error of fundamental frequency
versus � for various beams (N =9).

N¿13. From Figure 4, we can see that the optimal convergence could be achieved with the
stretched grid of �=0:3 when N6 13. As N is further increased to above 13, the traditional
grids give better accuracy than the stretched Lobatto grids.

5.2. Vibration of beams

The vibration of beams with various combinations of SS, C and F boundary conditions was
also investigated. It was found that the accuracy of DQ solution depends on the grid. The
stretched Lobatto grid with proper choice of � provides much more accurate solutions than
the traditional non-uniform grids in all the cases examined. Like the bending problem, the
optimal stretching parameter also depends on the boundary condition. As the order of deriva-
tive in the boundary conditions increases, the optimal stretching parameter � declines and the

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 51:159–179



ERROR ESTIMATION OF DERIVATIVE APPROXIMATION 171

Figure 6. Average error of the �rst three frequen-
cies versus N for F–F beam using di�erent grids.

Figure 7. Relative error of fundamental frequency
versus N for SS–F beam using di�erent grids.

corresponding stretching towards the boundary is enhanced. This can be observed in Figure 5,
which displays the error of fundamental frequency versus � for various combinations of bound-
ary conditions with N =9. The reference data in this study are given by Blevin [19]. It is seen
that there exists a best grid for each case, and the DQ method can yield very accurate results
with the stretched grid points as small as N =9. It is interesting to see from Figure 5 that for
the SS–F and F–F beams, the �-error curve is very sharp in the vicinity of optimal stretching
parameter. The accuracy of DQ results can be greatly improved within a small range of �.
It may be concluded that the DQ solution is very sensitive to the grid for these cases. In
contrast, the remaining curves for C–C, C–SS, SS–SS and C–F beams are somehow smooth.
In order to obtain an accurate numerical solution, it was found that the SS–F and F–F

beams require the strongest stretching towards the boundary (lowest value of �) among all
test examples. The converging tendency of various grids in the DQ solutions of SS–F and
F–F beams are revealed in Figures 6 and 7, respectively. Clearly, the accuracy of DQ solution
depends on the grid. It is observed that the stretched Lobatto grid points have the most rapid
converging speed in both �gures. For small value of N; the DQ solutions with the stretched
Lobatto grids are much more accurate than those with the conventional non-uniform grids.
It can be seen from Figure 6 that the solutions using equally spaced points, Legendre points
and Chebyshev II points oscillate obviously. This means that the traditional non-uniform grids
are not reliable in the DQ solution of vibrational problems. As shown in Figures 6 and 7,
the grid of �=0:0 renders the best solutions, while the equally spaced grid yields the worst
ones. The original Lobatto grid performs the best among the �ve conventional grids for all
cases.

5.3. Vibration of isotropic rectangular plates

The results for vibration of square plates with all edges free, clamped or simply supported
are presented in Table III. The relative errors listed in the table are obtained in terms of the
Leissa’s solution [18]. Like the beams, the stretched Lobatto grid points can generate accurate
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Table III. Relative errors of numerical frequencies for square plates using di�erent grids.

Errors of fundamental frequency Average errors of the �rst �ve frequencies
N =M =9 N =M =13

Grids C–C–C–C SS–SS–SS–SS F–F–F–F C–C–C–C SS–SS–SS–SS F–F–F–F

Equ 1.02E−3 1.31E−4 2.76E−1 1.20E−1 6.65E−1 2.30E−1
Che II 5.90E−4 7.63E−5 2.20E−1 3.49E−4 3.09E−4 1.83E−1
Leg 5.24E−4 6.71E−5 2.10E−1 2.96E−4 2.47E−4 1.71E−1
Che I 4.41E−4 5.84E−5 1.97E−1 2.47E−4 1.89E−4 1.52E−1
Lob 1.82E−4 3.56E−5 1.56E−1 2.61E−4 8.02E−5 1.06E−1
�=0:8 5.24E−5 2.63E−5 1.17E−1 3.04E−4 4.33E−5 6.25E−2
�=0:6 7.76E−6 1.66E−5 8.17E−2 3.38E−4 1.44E−5 3.39E−2
�=0:4 5.90E−5 1.02E−5 5.07E−2 3.75E−4 5.28E−6 1.55E−2
�=0:2 2.40E−4 1.20E−5 2.59E−2 4.47E−4 4.03E−5 4.78E−3
�=0:0 1.96E−4 1.54E−5 8.98E−3 2.16E−3 5.25E−5 6.50E−4
�=−0:2 7.01E−3 2.89E−5 2.98E−4 4.21E−2 9.81E−5 3.84E−3
�=−0:4 2.91E−2 4.39E−5 6.55E−3 6.24E−2 1.55E−4 3.42E−2
�=−0:6 1.51E−2 1.50E−4 1.20E−2 1.18E−1 2.20E−4 2.73E−2

Table IV. Relative errors of the �rst �ve frequencies for SS–F–F–F rectangular
plates (N =M =11; �x = �y =−0:1).

�= a=b e1 (%) e2 (%) e3 (%) e4 (%) e5 (%) � (%)

0.4 0.09 0.52 0.10 0.66 0.69 0.41
2=3 0.07 0.52 0.66 0.59 0.07 0.39
1 0.06 0.82 0.44 0.49 0.53 0.47
1.5 0.05 0.86 0.35 0.70 0.51 0.49
2.5 0.80 0.04 0.74 0.27 0.38 0.46

DQ solutions for plates. In general, the accuracy of stretched Lobatto grid is about one- or
two-order higher than the traditional non-uniform grids. However, there is one exception, that
is, the plate with all edges clamped. For this case, the average relative error of the �rst �ve
frequencies is minimized by using Chebyshev I grid when N =13. This is because the clamped
condition only involves the �rst-order derivative in the boundary condition and the number
of grid points is large, which requires less stretching to the boundary. This is especially true
when N is large. On the other hand, it is noted that only stretched Lobatto grid points can
yield reliable solutions for F–F–F–F plates with free corners. For the case without any free
corner, it was found that the conventional Lobatto grid can also generate accurate results.
When the plate has at least one free corner, the conventional �ve grids cannot generate any

meaningful solution. This has been highlighted by Shu and Du [17]. In this work, more cases
with free corners are studied. The relative percentage di�erences of the �rst �ve frequencies
between the DQ solutions and the results of Leissa [18] are listed in Table IV for SS–F–F–F
plate. For this case, the stretched Lobatto grid with �x= �y=−0:1 is used and di�erent aspect
ratios of 0:4; 2=3; 1; 1:5; 2:5 are considered. The optimal choice of �x= �y=−0:1 is through
the trial and error process due to the di�culty of rigorous mathematical analysis. In the
later section, we will try to analyze this problem through the error distribution of derivative
approximation.

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 51:159–179



ERROR ESTIMATION OF DERIVATIVE APPROXIMATION 173

Figure 8. Average error of the �rst �ve frequen-
cies versus N for F–F–F–F square plates using

di�erent grids.

Figure 9. Relative error of fundamental
frequency versus � for a skew plate of

a= b; �=45◦ (N =15).

Figure 8 compares the accuracy of DQ solution with the stretched grids of �=0; 0:2; 0:4; 0:6
for completely free square plate. In each case, the type and number of grid points are taken
the same in both the x and y directions. The average relative di�erences of the �rst �ve
frequencies between the DQ solution and the reference data of Leissa and Narita [20] are
displayed. The di�erences are plotted against the number of grid points for each grid. The
traditional non-uniform grids resulted from the orthogonal polynomials do not work well
for this case, and, thus, are not included in the �gure. Figure 8 shows that the grid of
�=0 gives more accurate results than the other three grids. However, the curve shows high
oscillation. When N is large, the DQ solution of this case does not show any convergence
trend. In contrast, the solutions of other grids have obvious convergence trend. Among the four
grids, the grid of �=0:6 generates the least accurate DQ solution. Although the convergence
tendency is shown for this grid, the convergence is so slow that the solutions do not converge
to reasonable accuracy even up to N =19. The convergence rate can be greatly enhanced by
selecting a smaller value of �.

5.4. Vibration of isotropic skew plates

The stretched Lobatto grid is used to study the e�ect of grid spacing on the accuracy of DQ
solutions for vibration analysis of skew plates with all edges clamped or simply supported.
For simplicity, we only show the results for the case of a= b. The stretching parameter �
is taken the same in the x and y direction, respectively. It was found that for the simply
supported case, the accuracy of the fundamental frequency is lower than other low-order
frequencies, and is very sensitive to the grid when � is less than 75◦. In contrast, for the
clamped case, the accuracy of fundamental frequency remains the same order as other low-
order frequencies, and is less sensitive to the skew angle �. When the same number of grid
points is used, the clamped results are more accurate than the simply supported results. For
any given angle of � and plate con�guration, there is an optimal grid (optimal stretching
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Figure 10. Relative error of fundamental frequency versus N for a skew plate of a= b; �=45◦.

parameter �) in terms of the accuracy of numerical results. In general, the optimal stretching
parameter for the clamped case is larger than that for the simply supported case. This can
be seen clearly from Figure 9, which shows the error of fundamental frequency versus � for
simply supported and clamped conditions and N =15; �=45◦. The reference data used in
this study are given from the work of Liew and Lam [21]. We can see from Figure 9 that the
optimal stretching parameter is around 0.38 for the simply supported condition and 0.6 for the
clamped condition. This means that, to obtain accurate DQ results, the clamped con�guration
requires less stretching towards the boundary than the simply supported con�guration. This
conclusion is in line with that drawn from the studies of beams and rectangular plates. The
reason is probably due to the approximation of derivatives in the boundary conditions. As
we know, the clamped condition only involves the �rst-order derivative while the simply
supported condition involves the second-order derivatives. As will be shown in the following
section, the DQ approximation of the �rst-order derivative is much more accurate than the
second-order derivative. It can also be observed from Figure 9 that the accuracy of DQ results
for the clamped condition is much higher than that for the simply supported condition, and
the DQ results of SS–SS–SS–SS skew plates are very sensitive to the grid (� value). Like
the vibration of SS–F and F–F beams, the �-error curve of SS–SS–SS–SS skew plates is very
sharp in the vicinity of optimal stretching parameter. On the other hand, it was found that as
N (the number of grid points) increases, the accuracy of DQ results is improved with proper
choice of �. However, when N is above a certain value, the accuracy of DQ results cannot
be further improved. This phenomenon can be seen in Figure 10, which shows the relative
error of fundamental frequency versus N for simply supported and clamped conditions and
� = 45◦. For the results shown in Figure 10, the stretching parameter is taken as 0.6 for the
clamped condition, and 0.38 for the simply supported condition.

5.5. Analysis by error distribution of derivative approximation

In this part, the error distribution of derivative approximation for the grids given in Table I
is studied by using the formulation given in Section 2. The coe�cients of error distribution
for the respective derivatives only depend on the coordinate of grid points. The distribution
of grid points determines the distribution of truncation error for derivative approximation.
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Table V. Error coe�cients of DQ approximation for the �rst-order derivative (N =9):

Grids x1 x2 x3 x4 x5 �

Equ 6.6E−9 8.3E−10 2.4E−10 1.2E−10 9.5E−11 1.7E−9
Che II 3.3E−9 9.1E−10 4.8E−10 3.5E−10 3.1E−10 1.2E−9
Leg 2.9E−9 8.9E−10 5.2E−10 3.9E−10 3.6E−10 1.1E−9
Che I 2.5E−9 8.6E−10 5.6E−10 4.6E−10 4.3E−10 1.0E−9
Lob 1.3E−9 6.7E−10 6.7E−10 6.7E−10 6.7E−10 8.2E−10
�=0:8 9.7E−10 5.3E−10 6.6E−10 8.2E−10 9.0E−10 7.6E−10
�=0:6 6.5E−10 3.9E−10 6.2E−10 9.8E−10 1.2E−9 7.2E−10
�=0:4 3.9E−10 2.6E−10 5.6E−10 1.2E−9 1.5E−9 7.0E−10
�=0:2 1.9E−10 1.5E−10 4.7E−10 1.3E−9 2.0E−9 6.9E−10
�=0:0 5.6E−11 4.9E−11 3.6E−10 1.5E−9 2.5E−9 7.1E−10
�=−0:2 3.6E−11 3.1E−11 2.0E−10 1.6E−9 3.0E−9 7.4E−10
�=−0:4 1.1E−11 9.5E−12 7.5E−11 1.7E−9 3.5E−9 8.0E−10
�=−0:6 5.1E−12 4.5E−12 4.3E−12 1.7E−9 4.4E−9 8.7E−10

Therefore, the error estimate is useful to provide some insights into the analysis of the results
presented in the previous parts, in which the e�ect of grid distribution on the DQ solution
is investigated in detail. It is certain that the accuracy of DQ solutions is dependent on the
error distribution of derivatives involved in problems of interest. In the present study, the
approach of implementing the multiple boundary conditions proposed by Shu and Du [17] is
adopted. For this approach, the discretized governing equations at points immediately adjacent
to the boundary are replaced by the discretized derivative boundary condition equations. Thus,
the truncation errors of discretized governing equations at these points have no e�ect on the
accuracy of numerical solutions. In other words, there is no need to consider the truncation
errors of discretized governing equations at these points. Therefore, the major concerns are how
to accurately approximate the boundary conditions at the boundary points and the governing
equations at other interior points. Analysis of the magnitude and the distribution of estimated
errors may clarify what factor leads to signi�cant improvement of DQ resolutions in applying
the stretched Lobatto grids.
The absolute error coe�cients of the �rst-, second-, third- and fourth-order derivatives

for grids shown in Table I are listed in Tables V, VI, VII and VIII, respectively. Due to the
symmetry of grid points used, the error coe�cients are only shown in the range of [0, 0.5]. In
general, the error coe�cients at the same grid point are much larger for high-order derivatives
than for lower-order derivatives. It is also noted that the truncation error coe�cients unevenly
distribute and are closely related to the grid point distribution. For the traditional uniform and
non-uniform grids, larger error coe�cients locate at the boundary points. These grids also
have a feature that the error coe�cients of all derivatives are gradually decreased from the
boundary point to the centre point. When the grid is stretched towards the boundary, the error
coe�cients at the points near the boundary will be decreased while the error coe�cients at
the points near the centre of the domain will be increased. When the stretching of grid is
properly chosen, the error coe�cients will be uniformly distributed. For this case, accurate
numerical results can be expected. It was found from the tables that the error coe�cients of
the original Lobatto grid are distributed more uniformly than other four conventional grids.
This could be the reason that the Lobatto grid generally yields the most accurate DQ solution
in comparison to the other four conventional grids.
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Table VI. Error coe�cients of DQ approximation for the second-order derivative (N =9).

Grids x1 x2 x3 x4 x5 �

Equ 3.0E−7 2.3E−8 4.1E−9 1.1E−9 1.9E−10 7.3E−8
Che II 1.9E−7 1.4E−8 3.4E−9 1.4E−9 6.3E−10 4.7E−8
Leg 1.8E−7 1.1E−8 3.0E−9 1.3E−9 7.2E−10 4.4E−8
Che I 1.6E−7 7.5E−9 2.3E−9 1.3E−9 8.6E−10 3.9E−8
Lob 1.2E−7 9.8E−9 3.2E−9 1.9E−9 1.3E−9 3.0E−8
�=0:8 9.8E−8 1.3E−8 6.3E−9 4.1E−9 1.8E−9 2.7E−8
�=0:6 7.9E−8 1.5E−8 9.6E−9 6.9E−9 2.4E−9 2.5E−8
�=0:4 6.1E−8 1.8E−8 1.3E−8 1.0E−8 3.1E−9 2.3E−8
�=0:2 4.5E−8 1.9E−8 1.5E−8 1.4E−8 3.9E−9 2.1E−8
�=0:0 3.0E−8 2.1E−8 1.7E−8 1.9E−8 4.9E−9 2.0E−8
�=−0:2 2.0E−8 1.3E−8 1.6E−8 2.3E−8 6.0E−9 1.7E−8
�=−0:4 1.1E−8 7.2E−9 1.2E−8 2.8E−8 7.3E−9 1.4E−8
�=−0:6 2.2E−9 1.6E−9 3.5E−9 3.3E−8 8.7E−9 1.0E−8

Table VII. Error coe�cients of DQ approximation for the third-order derivative (N =9).

Grids x1 x2 x3 x4 x5 �

Equ 8.4E−6 7.2E−8 9.6E−8 6.3E−8 5.2E−8 1.9E−6
Che II 6.3E−6 6.9E−7 2.4E−7 1.4E−7 1.1E−7 1.7E−6
Leg 6.1E−6 8.0E−7 2.7E−7 1.5E−7 1.2E−7 1.6E−6
Che I 5.7E−6 9.7E−7 2.9E−7 1.6E−7 1.4E−7 1.6E−6
Lob 4.8E−6 1.6E−6 3.8E−7 2.2E−7 1.8E−7 1.6E−6
�=0:8 4.3E−6 1.7E−6 4.2E−7 2.5E−7 2.2E−7 1.5E−6
�=0:6 3.8E−6 1.8E−6 4.4E−7 2.9E−7 2.6E−7 1.4E−6
�=0:4 3.3E−6 1.9E−6 4.2E−7 3.2E−7 3.0E−7 1.4E−6
�=0:2 2.8E−6 2.0E−6 3.6E−7 3.5E−7 3.5E−7 1.3E−6
�=0:0 2.4E−6 2.0E−6 2.2E−7 3.6E−7 4.1E−7 1.2E−6
�=−0:2 2.0E−6 1.7E−6 1.5E−7 3.5E−7 4.6E−7 1.0E−6
�=−0:4 1.7E−6 1.5E−6 5.1E−7 3.3E−7 5.3E−7 9.5E−7
�=−0:6 1.3E−6 1.3E−6 1.0E−6 2.9E−7 6.0E−7 9.2E−7

For the stretched Lobatto grid, the stretching extent depends on the value of � in the stretch-
ing formulation (36). For example, the stretched grid with �=0:0 has more tendency towards
the boundary than that with �=0:8. As the stretching is enhanced, the error coe�cients will
be decreased at points near the boundary and, inversely, increased at points near the central
region. It can be seen clearly that when the stretching parameter � is less than 0.8 for the
�rst-order derivative (Table V), and less than 0.0 for the second-order derivative (Table VI),
the value of error coe�cients at the boundary point is even less than that at the central point.
Although in the stretched Lobatto grids, the error coe�cients for the third- and fourth-order
derivatives at boundary points always remain larger than those at the central point, the rel-
ative di�erences are reduced obviously when the grid is stretched. This information implies
that as the grid is stretched towards the boundary, the approximation of derivatives in the
boundary condition is improved. Therefore, the accuracy of DQ solution is improved when
the Lobatto grid is further stretched. The information also hints that the DQ approximation
at the boundary point is not accurate enough in the traditional non-uniform grids including
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Table VIII. Error coe�cients of DQ approximation for the fourth-order derivative (N =9).

Grids x1 x2 x3 x4 x5 �

Equ 1.7E−4 1.3E−5 3.7E−6 1.1E−6 2.1E−7 4.2E−5
Che II 1.4E−4 3.4E−5 5.0E−6 1.4E−6 4.4E−7 4.1E−5
Leg 1.4E−4 3.8E−5 5.0E−6 1.4E−6 4.8E−7 4.1E−5
Che I 1.3E−4 4.3E−5 4.9E−6 1.4E−6 5.4E−7 4.1E−5
Lob 1.2E−4 5.9E−5 3.9E−6 1.3E−6 7.2E−7 4.1E−5
�=0:8 1.1E−4 6.3E−5 2.1E−6 1.3E−6 8.6E−7 4.1E−5
�=0:6 1.1E−4 6.6E−5 4.2E−6 2.2E−6 1.0E−6 4.0E−5
�=0:4 9.9E−5 7.0E−5 8.1E−6 3.3E−6 1.2E−6 4.0E−5
�=0:2 9.1E−5 7.3E−5 1.3E−5 4.6E−6 1.4E−6 4.0E−5
�=0:0 8.3E−5 7.6E−5 1.9E−5 5.9E−6 1.6E−6 4.1E−5
�=−0:2 7.5E−5 7.1E−5 2.8E−5 7.3E−6 1.8E−6 4.1E−5
�=−0:4 7.0E−5 6.7E−5 4.1E−5 8.7E−6 2.1E−6 4.2E−5
�=−0:6 6.3E−5 6.3E−5 5.6E−5 1.0E−5 2.4E−6 4.3E−5

the original Lobatto grid. On the other hand, it has been found in the numerical experiments
that the stretching cannot be overly done. When stretching parameter � in Equation (36) is
too small, the errors resulting from the DQ discretization of governing equation at interior
points may become predominant to make the solution worse. An inappropriate stretching,
overly or too weakly, may not exhibit the deliberate balance of truncation errors between the
discretized boundary conditions at the boundary point and the discretized governing equations
at the interior points.
As discussed earlier on, the improvement of accuracy of DQ results may be due to the

improvement of derivative approximation in the boundary condition equations. We can see
clearly from Tables V–VIII that the accuracy of the �rst-order derivative approximation can
be greatly improved when the grid is slightly stretched. In contrast, the improvement of the
second-order derivative approximation requires stronger stretching (smaller value of �) of the
grid. The improvement for the approximation of the third and fourth-order derivatives is much
slower than that for the approximation of the �rst- and second-order derivatives. This means
that much stronger stretching (very small value of �) is needed to improve the approximation
of the third- and fourth-order derivatives. Since the clamped boundary condition equation only
involves the �rst-order derivative, a slight stretching of the grid can generate accurate DQ
results. As the simply supported and free boundary condition equations involve the second-
and third-order derivatives, a stronger stretching of the grid is needed to improve the accuracy
of DQ results. This analysis is in line with the founding of numerical examples as shown
previously.

6. CONCLUSIONS

This paper studied the e�ect of grid point distribution on the DQ solution of structural mechan-
ics problems. It was found that the non-uniform grids from the roots of orthogonal polynomials
such as the Legendre, Lobatto, and Chebyshev grids can generally provide accurate numerical
solutions. However, these grids are not always optimal with respect to the solution accuracy
vis-�a-vis the number of grid points. This is particularly true when the coarse mesh is used
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and the problems with high-order derivatives in the boundary condition are considered. For
most cases, the original Lobatto grid is the best choice among the four traditional non-uniform
grids. The stretched Lobatto grid with proper choice of stretching parameter can improve the
accuracy of numerical solution. The stretching is especially e�cient for coarse meshes. For
some cases such as problems with free corners, the stretching is necessary to obtain reliable
solutions. The choice of optimal stretching parameter depends on the order of derivative in
the boundary condition and the number of grid points used. The stretching of grid cannot
be excessively employed, since an inappropriate stretching may not balance the truncation
errors between the discretized boundary conditions at the boundary point and the discretized
governing equations at the interior points.
Mathematically, it is known that for a given boundary value problem, there exists an optimal

polynomial which is the best approximation to the solution of the problem. However, it is very
di�cult to �nd such a polynomial by analytical tools. The present work can be considered to
numerically �nd the optimal polynomial approximation for a given boundary value problem.
In terms of accuracy, it was found that for each case, there exists an optimal grid point
distribution, which corresponds to the optimal stretching parameter. Since in the DQ method,
the coordinates of grid points are used to construct the approximated polynomial, the optimal
grid point distribution corresponds to the optimal polynomial approximation. Our systematic
studies showed that for most cases of vibration and bending problems, the optimal grid points
are not from the roots of orthogonal polynomials. In other words, the orthogonal polynomials
may not be the best approximation to a boundary value problem. This observation has also
been highlighted in the work of Moradi and Taheri [11].
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