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Abstract The precise integration and differential quad-
rature methods are two new unconditionally stable nu-
merical schemes to approximate time derivative with more
than the second order accuracy. Recent studies showed
that compared with the Houbolt and Newmark methods,
they produced more accurate solutions with large time step
for the problems where response is primarily dominated
by low and intermediate frequency modes. This paper aims
to investigate these time schemes in the context of the dual
reciprocity BEM (DRBEM) formulation of various shock-
excited scalar elastic wave problems, where high modes
have important affect on traction response. The Houbolt
method was widely recommended in many literatures for
such DRBEM dynamic formulations. However, this study
found that the damped Newmark algorithm was the most
efficient and accurate for impact traction analysis in con-
junction with the DRBEM. The precise integration and
differential quadrature methods are shown inapplicable for
such shock-excited problems due to the absence of
numerical damping. On the other hand, we also found that
to achieve the same order of accuracy, the differential
quadrature method required much less computing effort
than the precise integration method due to the use of the
Bartels–Stewart algorithm solving the resulting Lyapunov
matrix analogization equation.

Keywords Plates, Impact, Time integration, Boundary
element method

1
Introduction
In recent years, the dual reciprocity BEM (DRBEM) has
become increasingly popular in the numerical solution of
various dynamic problems due to its intrinsic boundary-
only merit and flexibility of applying fundamental solu-
tions. The resulting DRBEM formulation of dynamic

problems can be expressed in the standard form of or-
dinary differential equations of initial value problems and
is therefore applicable to be solved by various mature time
integrators (Nardini and Brebbia 1983; Partridge et al.
1992). The essence which distinguishes the DRBEM from
other BEM techniques is to employ the radial basis func-
tion (Golberg et al. 1998; Chen and Tanaka 2000), which
erases to a great extent the inefficiency of the normal BEMs
handling inhomogeneous terms as in nonlinear and
dynamic problems. It has been widely revealed that the
DRBEM can approximate the spatial derivatives very
accurately. Therefore, the accuracy, computing efficiency
and stability of the DRBEM solutions of dynamic problems
depend greatly on the proper choice of time-marching
schemes (Loeffler and Mansur 1987; Partridge et al. 1992).
For problems in which the response is dominated by the
low and intermediate frequency components of the system,
it was found that all implicit schemes produce the accurate
solutions if time step is small enough. In particular, the
differential quadrature method (DQM) was shown very
efficient and accurate using coarse time step (Tanaka and
Chen 2000).

However, it is a quite different situation for problems in
which the contributions of high frequency modes to the
response are important. To depress the influences of high
modes, the numerical damping is in general required. The
Houbolt method was often recommended due to its high
artificial damping (Loeffler and Mansur 1987; Partridge
et al. 1992; Kontoni and Beskos 1993). In particular, Ag-
nantiaris et al. (1998) tested the DRBEM to 3D elastody-
namic problems subject to the Heaviside-type impact.
Only the displacement response results are displayed
there. They claim that the Newmark and Wilson methods
are not stable and accurate without giving supportive
details and only the Houbolt method and Park’s method
(Park 1975) are applied and advocated. Theoretically, we
could not find the advantages of the Houbolt method with
the high artificial damping since the displacement re-
sponses in all these impact cases are still rather smooth. In
other words, the high-frequency components do not have
important effect on these displacement responses. Also
through numerical experiments, Tanaka and Chen (2000)
found that the Newmark method with the proper choice of
its parameters outperformed well over the Houbolt
method in the calculation of the displacement responses of
the scalar bar subject to the Heaviside impact. On the
other hand, Hilber and Hughes (1978) pointed out that the
self-starting is one of essentially desirable properties of a
competitive numerical integrator for dynamics problems,
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while the Houbolt method necessarily requires a distinct
starting procedure and fails to satisfy this condition. The
time integrators of such type not only increase the pro-
gramming labor but also may cause some complexity of
computing (Subbaraj and Dokainish 1989). Kogl and Gaul
(1999) proposed an alternative Newmark scheme with
significant numerical damping. A numerical experiment
given there prefers to their damped Newmark method. It is
noted that Agnantiaris et al. (1998) do not show the results
of traction responses which in general have the solution of
higher-order discontinuity. Namely, the numerical damp-
ing should be much more beneficial in the calculation of
traction history than in that of the displacement history. In
this study, both traction and displacement responses of
elastic bar subject to various kinds of outer impact forces
will be analysed in details with the Newmark and Houbolt
methods.

The DQM can be considered as the ‘‘direct approach’’ of
the traditional collocation (pseudo-spectral) methods in
that the governing equations are analogized in terms of
practical physical variables instead of usually fictitious
expansion (spectral) coefficients (Bert and Malik 1996;
Chen 1996). The advantages of the DQM over the latter lie
in the ease of its implementation and more flexibility to
choose grid points. The DQM has been extensively em-
ployed to approximate spatial partial derivative. The
method can yield highly accurate solutions to the bound-
ary value problems with a minimal computing effort,
namely, so-called spectral accuracy (Bert and Malik 1996).
The shortcoming of this method is the lack of geometry
flexibility. It is noted that the time variable has the sim-
plicity of geometry. The DQM analogue of the temporal
derivative was demonstrated to perform very well in terms
of accuracy, efficiency and stability (Chen 1996; Tanaka
and Chen 2000, 2001). In particular, the DQM was found to
be the only one efficient time scheme for solving the
DRBEM formulation of transient diffusion problems with
Dirichlet boundary conditions (Tanaka and Chen 2001).

On the other hand, Zhong and Williams (1994) pre-
sented a so-called precise integration method (PIM). The
method is in fact equivalent to the exponential matrix
approach as referred to in Turjillo (1997) and other lit-
erature. The merit of the PIM is that it uses a recurrence
formula to reduce the computing effort and simplifies the
use of the exponential matrix method. It was claimed that
the method can produce highly precise solutions yet
keeping unconditional stability for various dynamic pro-
blems (Lin et al. 1996). However, this method has not yet
been tested to the elastodynamic impact problems.

The purpose of this paper is to evaluate performances of
the DQM, PIM, Houbolt, and Newmark methods for
elastodynamic impact–response problems in conjunction
with the DRBEM space discretization. The numerical ex-
amples considered are the shock-excited in-plane plate
vibration which is prone to severe numerical instability
(Loeffler and Mansur 1987). The resulting DQM and
DRBEM mixed formulation is found the known Lyapunov
matrix equation. The Bartels–Stewart algorithm is used
here to greatly reduce the computing effort in the solution
of this Lyapunov matrix equation. It is worth stressing that
all these four time integrators are unconditionally stable.

2
DRBEM discretization in space
The equation governing longitudinal vibration of damped
plates can be expressed as

r2uðx; tÞ ¼ 1

l2

o2uðx; tÞ
ot2

þ k
@uðx; tÞ

@t
; x 2 X ; ð1Þ

where k is the coefficient of velocity-dependent external
viscous damping. Note that the plain outer force is en-
forced through boundary as shown in Fig. 1. The initial
conditions are

uðx; 0Þ ¼ u0ðxÞ ; ð2aÞ
_uuðx; 0Þ ¼ v0ðxÞ ; ð2bÞ
and the displacement and traction boundary conditions
are given by

uðx; tÞ ¼ �uuðx; tÞ; x � Cu ; ð3Þ
Tðx; tÞ ¼ �TTðx; tÞ; x � CT ; ð4Þ
where variable domain X 2 R2 is bounded by a piece-wise
smooth boundary C ¼ Cu þ CT , and T ¼ ou=on, n is the
unit outward normal.

The governing equation (1) can be weighted by the
fundamental solution u� of Laplace operator. By using
Green’s second identity, we have

diui þ
Z
C

T�u	 u�Tð ÞdC ¼	
Z
X

1

l2

o2u

ot2
þ k

ou

ot

� �
u� dX ;

ð5Þ
where subscript i denotes the source point, T� ¼ ou�=on,
and di ¼

R
X dðf; xÞdX. The dual reciprocity method

transforms the domain integral by a set of coordinate
function f jðxÞ:

€uuðx; tÞ 

XNþL

j¼1

f jðxÞ€aajðtÞ ; ð6Þ

where the superimposed dot represents the time deriva-
tive, aj are unknown functions of time, and N and L are the
numbers of the boundary and selected internal nodes,
respectively. In this study, the linear element is employed
in the discretization and one internal point is placed in the

Fig. 1. BEM discretization of a square plate
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center of domain. The resulting DRBEM formulation for
this elastodynamic problem is given by

diui þ
Z
C

T�u 	 u�Tð ÞdC

¼
XNþL

j¼1

�
diw

j
i þ

Z
C

T�wj 	 u�gj
� �

dC

	
€aaj

l2
þ k _aaj

� �
;

ð7Þ
where gj ¼ owj=on. Note that wj is related to the specified
coordinate functions f jðxÞ by

r2wj ¼ f j : ð8Þ
In the DRBEM, the radial basis function is often applied
as functions f jðxÞ. The efficiency and accuracy of the
method depend greatly on choosing proper radial basis
function. A detailed discussion of this topic is beyond the
present study. For more related details see Agnantiaris
et al. (1996), Golberg et al. (1998), Chen and Tanaka
(2000), and the references therein. In the following
numerical experiments, we use the linear radial basis
function 1 + r in the dual reciprocity method (Nardini
and Brebbia 1983; Partridge et al. 1992; Agnantiaris et al.
1996). The DRBEM formulation (7) is rewritten in matrix
form as

M€uu þ l2kM _uu þ Hu 	 GT ¼ 0 ; ð9Þ
where M is the mass matrix comprised of the coordinate
function column vectors, and H and G denote the whole
matrices of boundary element with fundamental solution
kernels T� and u�, respectively. Note that all coefficient
matrices are dependent only on the geometric data. Since
the displacement boundary conditions are involved in the
tested problems, Eq. (9) is a differential algebraic system.
By using a participation approach (Partridge et al. 1992),
we can finally have

€uu þ l2k _uu þ ku ¼ f ; ð10Þ
where k represents stiffness matrix. The remaining solu-
tion procedure is the same as the treatment of the standard
initial value problems. The desired traction can be easily
calculated after the solutions of the above differential
system are accomplished.

3
Time schemes
The details on the Houbolt and Newmark methods can be
found in Bathe and Wilson (1976). Parameters a ¼ 0:45,
d ¼ 0:72 are taken in the damped Newmark method to
increase the numerical damping. Due to the recent origins
of the DQM and PIM, in the following we give a brief
introduction to these two methods approximating time
derivative.

3.1
DQM time approximation
The DQM analogue of the first derivative of function f ðtÞ
is expressed as

df ðtÞ
dt

tij ¼
XN

j¼1

Aijf tj

� �
ð11Þ

where tj’s are the discrete points in the temporal variable
domain. f ðtjÞ is the function values at these points, Aij are
the DQM weighting coefficients. By using simple algebraic
transformation

z ¼ u 	 u0 	 v0t þ v0t0 ; ð12Þ
where t0 is the initial instance of each DQM time element,
and u0 and v0 are corresponding initial displacement and
velocity, Eq. (10) is restated as

€zz þ l2k _zz þ kz ¼ �ff : ð13Þ
Note that the z and _zz at t0 of each DQM time element are
always zero due to the variable transformation of Eq. (12).
The DQM analogue of the first-order time derivative can
be rewritten as

�AA zf g ¼ _zzf g ; ð14aÞ
�AA _zzf g ¼ €zzf g ; ð14bÞ
where �AA is yielded by removing the first column of the
original DQM weighting coefficient matrix A in Eq. (11).
Substituting Eq. (14a) into Eq. (14b), we have

AA zf g ¼ �BB zf g ¼ €zzf g ; ð15Þ
where �BB is the modified DQM coefficient matrix building
into the two initial conditions. The above strategy exactly
applying two initial conditions was originally presented by
Chen (1996). In terms of approximate formulas (14a) and
(15), Eq. (13) can be analogized as

Z �BBT þ l2k�AAT
� �

þ KZ ¼ FðtÞ ; ð16Þ
It is noted that Z in Eq. (16) is a rectangular matrix rather
than a vector. Therefore, Eq. (16) is a Lyapunov matrix
equation. It is worth pointing out that the DQM dis-
cretization advances progressively in time domain ele-
ment-wisely from the initial state, and thus keeps the
simplicity and flexibility of the standard time step meth-
ods. On the other hand, the DQM also holds the un-
conditionally stable merit for accuracy of order more than
two. This is due to the fact that the method is not a tra-
ditional time step scheme and circumvents the rigorous
accuracy limitation for unconditionally stable algorithms
due to Dahlquist theorem (Dahlquist 1963). The accuracy
of the DQM is O(DtN	1) where N is the number of grid
points in the DQM time element and Dt is time step size
(Chen 1996).

Solving Eq. (16) by the LU decomposition method fails
to fully utilize the special structure inherent with the
Lyapunov equation so that the computing effort is not
necessarily high. The Bartels–Stewart algorithm (Bartels
and Stewart 1972) is a very efficient and stable technique
to solve such Lyapunov algebraic matrix equation. The
solution procedures include the following four steps:

Step 1: Reduce K and �BBT þ r2s�AAT of Eq. (16) into certain
simple form via the similarity transformations
G ¼ P	1KP and R ¼ V	1 �BBT þ l2k�AAT

� �
V .

Step 2: Q ¼ P	1FV for the solution of Q.
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Step 3: Solve the transformed equation GY þ YR ¼ Q for
Y .

Step 4: Z ¼ PYV	1.

The time-consuming calculation of OðM3Þ scalar multi-
plication is required only in step one for Eq. (16) of M
dimension, while all implicit step methods also demand
OðM3Þ operations. It is noted that operation in Step 1
needs to be done only once. On the other hand, Steps 2, 3
and 4 of the Bartels–Stewart algorithm need be executed
repeatedly in each time element, which requires OðM2Þ
multiplication. The standard step methods also demand
analogous computational effort in each time step. There-
fore, the total computing effort in the DQM is comparable
to the common implicit step methods.

3.2
PIM time approximation
In the PIM, the DRBEM formulation (10) is at first reduced
to the first-order problem

_vv ¼ Hv þ r ; ð17Þ
in which

v ¼ u
_uu


 �
; H ¼ 0 I

	k 	l2k

� 	
; r ¼ 0

1


 �
f tð Þ :

ð18Þ
I is the unit matrix. The general solution v to Eq. (17) can
be written as

vkþ1 ¼ T vk þ H	1 rk þ H	1r1

� �� 

	 H	1 rkþ1 þ H	1r1

� 

;

ð19Þ
where r1 ¼ ðrkþ1 	 rkÞ=s. s is the time interval. Note that
the loading has been assumed to vary linearly within time
step [tk; tkþ1] in Eq. (19), i.e.,

r ¼ rk þ r1 t 	 tkð Þ : ð20Þ
T is given by

T ¼ exp Hsð Þ : ð21Þ
The key step in the precise integration method is to
evaluate the exponential matrix T accurately by

T tð Þ ¼ exp HD�ttð Þ½ �m ; ð22Þ
where D�tt ¼ s=m, and m ¼ 2N . In this paper, N ¼ 20 has
been used to assure the accuracy of matrix T. Therefore,
D�tt is extremely small time interval and usually much less
than the highest modal period of dynamic systems. By
using a Taylor expansion, we have

expðHD�ttÞ ffi Iþ
�
HD�tt þ ðHD�ttÞ2=2!þ ðHD�ttÞ3=3!

þ ðHD�ttÞ4=4!


¼ I þ Ta;0 ð23Þ

Substitution of Eq. (23) into Eq. (22) gives

T tð Þ ¼ I þ Ta;0

� 
2N

: ð24Þ
A recurrence procedure of computing T was suggested
(Zhong and Williams 1994; Lin et al. 1996):

Ta;i ¼ 2Ta;i	1 þ Ta;i	1 � Ta;i	1 : ð25Þ

Finally, we have

T ¼ I þ Ta;N : ð26Þ
The error in Eq. (26) is caused by the truncation of the
Taylor expansion of Eq. (23). When N ¼ 20, the trunca-
tion error is of the order O D�ttð Þ ¼ 10	30O Dsð Þ, which is of
the order of the round-off errors of ordinary computers.
So it is claimed that the T is obtained in the highest
accuracy of a digital computer by the precise integration
method (Zhong and Williams 1994; Lin et al. 1996).

4
Numerical results and discussions
In this study, the plates subjected to longitudinal half
triangular, rectangular and Heaviside impact loads as
shown in Fig. 2 are considered as the numerical examples.
The initial conditions of the cases are taken as

uðx; 0Þ ¼ 0 ; ð27aÞ
_uu x; 0ð Þ ¼ 0 ; ð27bÞ
and boundary conditions are specified as

uðx; tÞ ¼ 0; x1 ¼ 1 ; ð28aÞ
T x; tð Þ ¼ 0; x1 ¼ 0 x2 ¼ 0; 1 : ð28bÞ
c ¼ k=p in the following discussions means the
dimensionless damping coefficient. Mansur et al. (1998)
also applied time domain BEM to accurately compute the
Heaviside plate impact problems. We confine our atten-
tions in this paper within the time integrators combined
with the DRBEM. Thus, the discussions below do not
involve the work of Mansur et al. (1998).

Figure 3 shows the solutions of time-displacement
curves at middle point A of the free edge of the long-
itudinal vibration of a square plate subjected to a half-
triangular impact force. Time step is cDt=t0 ¼ 0:1. It is
found from Fig. 3 that all methods yield the exact results
using such sufficiently small time step. It is also noted that
the PIM and DQM encounter small oscillation in the long-
term response and their solutions are indistinguishable.
On the other hand, the accurate solutions also reveal high
degree of accuracy of the DRBEM spatial discretization. In
order to manifest the high accuracy of the DQM and PIM
in time approximation, we employed coarser time step
cDt ¼ 0:5 to investigate the Heaviside impact time–dis-
placement response at point A as shown in Fig. 4. The
parameters a ¼ 0:25, d ¼ 0:5 are taken in the Newmark
method for this case. We observe quite distinct perfor-

Fig. 2. Impact forces applied to plates
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mances of various different time-marching schemes. The
DQM and PIM produce much more accurate solutions
than the standard finite difference integrators. This de-
monstrates the superb converging rate and accuracy of the
DQM and PIM. In particular, the DQM requires computing
resources comparable to the Newmark and Houbolt
methods and much less than the PIM. Therefore, the DQM
is preferred for this case. An evident amplitude attenuation
and phase shift is observed in the Houbolt method due to
its undesirable numerical damping in this case.

Figures 5 and 6 show the solutions of time–traction
curves at point B of a square plate subjected to the half
triangular and rectangular impact forces, respectively. The
solutions of the DQM and PIM are found again almost the
same and have evident oscillation. This is due to the fact
that the high order models have strong effect on the
traction behavior of the shock impact, while both methods
lack artificial damping. It was seen from Figs. 5 and 6 that
the solutions of the damped Newmark and Houbolt
methods have less oscillations because of their high
numerical damping. The DQM and PIM can not yield the

exact traction response as in the previous displacement
response where the lower and intermediate models dom-
inate the response. The high artificial damping in the
Newmark and Houbolt methods is considered beneficial in
the present problems.

To investigate the influences of step size on the solu-
tions of the traction responses, Figs. 7–10 depict the
traction response curves using smaller time step
cDt=t0 ¼ 0:05. More evident oscillation can be found in the
DQM and PIM solutions shown in Figs. 9 and 10, while the
solution accuracy of the damped Newmark and Houbolt
methods is improved as shown in Figs. 7 and 8. It is also
found that the DQM and PIM yield nearly the same
solutions.

Zhong and Williams (1994) and Lin et al. (1996) con-
cluded that the PIM could produce the accurate solutions
if the force function is approximated exactly. In the pre-
sented cases, the linear approximation of the half-trian-

Fig. 3. Displacement curves at point A of a square plate subjected
to a half-triangular impact ðc ¼ 0; cDt=t0 ¼ 0:1Þ

Fig. 4. Displacement curves at point A of a square plate subjected
to a Heaviside-type impact ðc ¼ 0; cDt ¼ 0:5Þ

Fig. 5. Traction curves at point B of a square plate subjected half-
triangular impact ðc ¼ 0; cDt=t0 ¼ 0:1Þ

Fig. 6. Traction curves at point B of a square plate subjected to a
rectangular impact ðc ¼ 0; cDt=t0 ¼ 0:1Þ
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gular and rectangular impact force shown in Eq. (20) is
exact. However, the PIM can not still traced the analytical
solutions of traction response closely. To clarify whether
the numerical oscillation in computing traction is due to
the spatial approximation of the DRBEM, Figs. 11–14
illustrate the numerical traction response based on the
DRBEM discretziation with 16 interior grid points in
comparison with the previous one interior point.

The Newmark and Houbolt solutions of traction
response using the DRBEM formulation of 16 interior
points are displayed in Figs. 11 and 12 respectively for half
triangular and rectangular impact forces. By comparing
them with the corresponding solutions shown in Figs. 7
and 8, some improvements in solution accuracy are
achieved due to the incremental interior points of the
DRBEM spatial approximation. It is observed that the

Newmark method performs slightly better in rectangular
impact force case, while the Houbolt method is more ac-
curate in half-triangular impact force case. The present
damped Newmark method appears to have higher nu-
merical damping than the Houbolt method. It is worth
pointing out that the damping of the Newmark method
depends on two chosen parameters. Therefore, the New-
mark method has more flexibility than the Houbolt
method in practical computations.

Figures 13 and 14 show the traction response curves by
the DQM and PIM in the context of the DRBEM spatial
approximation using 16 interior points. It is surprise to see
that the oscillation of the PIM and DQM becomes even
stronger than the previous ones shown in Figs. 9 and 10
based on the one interior points DRBEM. Therefore, it is
clear that the oscillation of the resulting solutions is
mainly due to the numerical integrators rather than the
DRBEM discretization itself. It is found again that the
DQM and PIM yield the same traction response curves.

Fig. 7. Traction curves at point B of a square plate subjected to a
half-triangular impact by the Newmark and Houbolt methods
ðc ¼ 0; cDt=t0 ¼ 0:05Þ

Fig. 8. Traction curves at point B of a square plate subjected to
a rectangular impact by the Newmark and Houbolt methods
ðc ¼ 0; cDt=t0 ¼ 0:05Þ

Fig. 9. Traction curves at point B of a square plate subjected to a
half-triangular impact by the DQM and PIM ðc ¼ 0; cDt=t0 ¼ 0:05Þ

Fig. 10. Traction curves at point B of a square plate subjected to
a rectangular impact by the DQM and PIM ðc ¼ 0; cDt=t0 ¼ 0:05Þ
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The numerical experiments show that the accuracy is not a
major factor in the choice of the numerical integrator for
the analysis of impact traction response, especially if the
very small time step is used.

The numerical response curves of traction at point B of
a damped plate subjected to a Heaviside impact are
depicted in Fig. 15 against the analytical solutions. High
order frequency components have a strong affect on the
traction behaviors of this case. It is seen from Fig. 15 that
among the DQM, Houbolt and Newmark methods, the
Houbolt and Newmark methods produce the accurate
solutions, while the DQM encounters evident oscillation
and phase shift due to the lack of artificial damping. It is
also observed that the damped Newmark method yields
slightly better solutions than the Houbolt method.

Furthermore, considering the need of a distinct starting
procedure in the Houbolt method, the method is not re-
commended.

5
Concluding remarks
It is noted that the DQM and PIM produce almost the
same results for all tested cases. The resulting algebraic
system of the DQM is found a Lyapunov matrix equation.
By using the Bartels–Stewart solver, the DQM computa-
tional effort is greatly reduced to approximately the same
as that of the common implicit step methods and much
less than that of the PIM.

The preceding numerical experiments reveal that all
these four numerical integrators can accurately compute
the displacement responses of Heaviside, half-triangular

Fig. 11. Traction curves at point B of a square plate subjected to
a half-triangular impact by the Newmark and Houbolt methods
based on the DRBEM discretization with 16 interior points
ðc ¼ 0; cDt=t0 ¼ 0:05Þ

Fig. 12. Traction curves at point B of a square plate subjected to
a rectangular impact by the Newmark and Houbolt methods
based on the DRBEM discretization with 16 interior points
ðc ¼ 0; cDt=t0 ¼ 0:05Þ

Fig. 13. Traction curves at point B of a square plate subjected to
a half-triangular impact by the DQM and PIM based on the
DRBEM discretization with 16 interior points
ðc ¼ 0; cDt=t0 ¼ 0:05Þ

Fig. 14. Traction curves at point B of a square plate subjected to
a rectangular impact by the DQM and PIM based on the DRBEM
discretization with 16 interior points ðc ¼ 0; cDt=t0 ¼ 0:05Þ
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and rectangular impact forces. In terms of accuracy, effi-
ciency and stability, the DQM is preferred to calculate
impact displacement response, which is primarily domi-
nated by low and intermediate frequency modes. However,
there are quite distinct performances for impact traction
responses since the higher modes play a significant role in
this case. It is also found that the PIM and DQM always
produce the oscillation solutions of traction response due
to the absence of the numerical damping. In contrast, the
high numerical damping in the damped Newmark and
Houbolt methods is preferable.

For elastodynamic systems on which the high order
modes have important effect, the numerical damping
seems more important than the solution accuracy.
Therefore, although the PIM and DQM enjoy the high
order of accuracy than the Houbolt and Newmark meth-
ods, they are not recommended for handling traction
analysis of the shock-excited vibration of elastodynamic
bar. According to the foregoing numerical results, the
damped Newmark method performs as well as the Houbolt
method. Since the Newmark method does not need a
distinct starting procedure, the method should be pre-
ferred in the combination with the DRBEM for analyzing
this type of problems. This conclusion is in agreement
with common practice in the FEM (Kim et al. 1997).
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