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Abstract 

 

This paper concerns a numerical study of convergence properties of the boundary 

knot method (BKM) applied to the solution of 2D and 3D homogeneous Helmholtz, 

modified Helmholtz, and convection-diffusion problems. The BKM is a new 

boundary-type, meshfree radial function basis collocation technique. The method 

differentiates from the method of fundamental solutions (MFS) in that it does not 

need the controversial artificial boundary outside physical domain due to the use of 

non-singular general solutions instead of the singular fundamental solutions. The 

BKM is also generally applicable to a variety of inhomogeneous problems [11,12,22] 

in conjunction with the dual reciprocity method (DRM). Therefore, when applied to 

inhomogeneous problems, the error of the DRM confounds the BKM accuracy in 

approximation of homogeneous solution, while the latter essentially distinguishes the 

BKM, MFS, and boundary element method. In order to avoid the interference of the 

DRM, this study focuses on the investigation of the convergence property of the BKM 

for homogeneous problems. The given numerical experiments reveal rapid 

convergence, high accuracy and efficiency, mathematical simplicity of the BKM.  
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1. Introduction 

 

Due to the pioneer work by Nardini and Brebbia [1], the boundary element method in 

conjunction with dual reciprocity method (DRM) and radial basis function (RBF), can 

now be used to obtain approximate solutions of general partial differential equation 

(PDE) systems. This strategy is often called as the dual reciprocity BEM (DR-BEM) 

[2]. An explosive increase in applying the DR-BEM to various problems is seen in 

recent years [3]. However, as was pointed out by Golberg and Chen [4], the DR-BEM 

still suffers some inefficiencies inherent in the standard BEMs. Compared with the 

FEM, the method is mathematically more complicated to learn and to use for common 

engineers. Handling singular integral is also often cumbersome and the lower order of 

polynomial approximation greatly slows its convergence speed. For higher-

dimensional moving boundary and discontinuous problems, the mesh or remesh can 

be very time-consuming. As a consequence, the method of fundamental solution 

(MFS), originally introduced in Russian in 1964 [5], was strongly recommended by 

ref. [4,6]. The method is also called as the regular BEM in some literature [7]. The 

MFS is indeed simple to learn and to program and has spectral convergence and high 

order of accuracy. More importantly, the MFS combining with the DRM and RBF is 

an essentially meshfree technique for various higher-dimensional PDEs, which is 

especially attractive in handling moving boundary, nonlinear and multiscale problems 

[4,8]. Despite these salient merits, the MFS has not been popular in the computational 

engineering community [9]. The blame goes to the controversial artificial boundary 

outside physical domain [7] to circumvent the singularity of the fundamental 

solutions. An arbitrary in determining the fictitious boundary significantly 

downgrades the practical applicability of the method, especially for complicated-

shape problems [7,10].   

 

As an alternative technique, Chen and Tanaka [11,12] introduced the boundary knot 

method, which eliminates the drawback applying the ambiguous auxiliary boundary 

and holds all advantages of the MFS. The essential difference between the BKM and 

MFS is that the former uses the non-singular general solutions instead of the singular 

fundamental solutions. With the help of the DRM and RBF, the BKM was also tested 

successfully in some inhomogeneous problems [11,12]. The method is a truly 

meshfree, integration-free, mathematically simple, boundary-type, RBF collocation 
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discretization technique for a variety of PDE systems. Unlike the other meshfree FEM 

and BEM schemes based on moving least squares [13], the RBF-based schemes 

requires no mesh either for interpolating variables or for numerical integrations in 

handling high-dimensional problems with any complex-shaped domains. This 

inherent meshfree advantage in the BKM owes to the fact that the method is a pure 

radial basis function technique.   

 

Very recently, the authors became aware of relevant pioneer works by Kang et al [14-

16] and Chen et al [17-20], where the nonsingular general solutions, the influence 

functions called in Kang et al [14-16], of the Helmholtz equation and thin plate 

vibration equation are first employed to construct a meshfree boundary-only 

collocation formulation of the corresponding eigenvalue problems. Their approach is 

closely similar to the BKM in that both use the nonsingular general solution to 

evaluate the homogeneous solution. As mentioned by Chen et al [17], the nonsingular 

general solution of the Helmholtz equation has also in fact earlier been used by DE 

MEY [21] with a weak form boundary integral formulation to evaluate the Helmholtz 

eigenvalue problems. It is noted that different from the approach given in [14-20], the 

BKM is feasible for the inhomogeneous and nonlinear problems in general in 

conjunction with the dual reciprocity method for the evaluation of the particular 

solution. A symmetric nonsingular boundary formulation was also proposed in Chen 

[22] for dealing with self-adjoint problems having mixed boundary conditions.  

 

The RBF was originally introduced in the early 1970s to multivariate scattered data 

approximation and function interpolation [23]. The strategy has since been applied to 

neural network, computational geometry [24,25], and most recently, numerical PDEs 

[1,26]. The prominent merits of the RBF approaches are independent of 

dimensionality and geometric complexity, and mathematically very simple to 

implement [27-30]. For example, the introducing the RBF into the BEM [1] has 

eliminated its major weakness in handling general inhomogeneous terms, while the 

domain-type RBF collocation method, pioneered by Kansa [26], is very promising for 

a wide range of problems. Nevertheless, constructing efficient RBF is still an open 

research topic. Chen and Tanaka [31] attributed the prowess of the RBF to the 

essential relationship between Euclidean distance concept and the field theory, and 

more broadly, to kernel functions of convolution integral equations. A general strategy 
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creating efficient operator-dependent kernel RBF was also presented there on the 

grounds of integral equation theory, in particular, the Green second identity for 

numerical PDE.  

 

As a boundary-type RBF methodology, the BKM has great potential to handle a broad 

range of problems. The method has been applied successfully to 2D linear 

homogeneous and inhomogeneous Dirichlet Helmholtz, modified Helmholtz, and 

nonlinear Burger problems with a smooth elliptical domain [11,12,31,32]. Hon and 

Chen [33] also verified that for Helmholtz and convection-diffusion problems having 

2D domain with sharp outside corners and inside cutouts and mixed Dirichlet and 

Neumann boundary conditions, the BKM produced very accurate, stable solutions 

with small numbers of nodes. Due to its very recent origin, however, the systematic 

numerical and theoretical studies on the issues of convergence, stability, and accuracy 

are still missing now. As was mentioned earlier, the DRM and RBF are employed in 

the BKM to approximate the particular solution of inhomogeneous problems. 

Therefore, in terms of resulting experimental results, the error of the DRM confounds 

the BKM accuracy in approximation of homogeneous solution, while the latter 

essentially distinguishes the BKM, MFS, and boundary element method. It is well 

known that the accuracy of the DRM approximation is largely dependent on the 

proper choice of the RBF just as used in the MFS and DR-BEM. An in-depth analysis 

of this issue is beyond the present study. The readers are advised to see an excellent 

analysis of the DRM convergence and accuracy given in [34]. For the BKM solution 

of inhomogeneous problems see refs. [11,12,31-33]. In order to avoid the interference 

of the DRM, this paper focuses on numerical investigation of convergence, stability, 

and accuracy of the BKM in the analysis of some typical 2D and 3D homogeneous 

Helmholtz, modified Helmholtz, and convection-diffusion problems.  

  

In what follows, the BKM is introduced first in section 2, followed by numerical 

investigation of convergence, accuracy, and stability in section 3, and finally, some 

remarks are presented based on the results reported herein. 
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2. Boundary knot method and applications 

 

The BKM divides the solution of the general PDEs into two components of 

homogeneous and particular solutions. Like the MFS and DR-BEM, the DRM and 

RBF are usually used to evaluate the particular solution, and then, differently from 

both, the BKM formulates the resulting homogeneous solutions in terms of the non-

singular general solutions of the respective homogeneous equation. The DRM has 

been well developed in recent years [2,4,34]. For completeness, we briefly present its 

basic methodology first, and after that, the non-singular general formulation for 

homogeneous solution is introduced in details. 

 

2.1. Approximation of Particular Solution 

 

Let us consider the modified Hemholtz problem  

 

( )xfuu =−∇ 22 λ      (1) 

 

defined in a region V bounded by a surface S as an illustrative case, where f(x) is 

inhomogeneous term and x represents multidimensional independent variable. 

Boundary conditions on surface S are stated in a general form 

 

( ) ( )xRxu = , ,    (2) uSx ⊂

 

( ) ( )xN
n
xu =

∂
∂ , x ,    (3) TS⊂

 

where n is the unit outward normal. The solution of Eq. (1) can be decomposed as 

 

ph uuu += ,     (4) 

 

where uh and up are respectively the homogeneous and particular solutions. The 

particular solution satisfies 
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( )xfuu pp =−∇ 22 λ ,     (5) 

 

but does not necessarily satisfy boundary conditions, while the homogeneous solution 

v satisfies 

 

022 =−∇ hh uu λ ,    (6) 

 

( ) ( ) ph uxRxu −= ,    (7) 

 

( ) ( ) ( )
n

xu
xN

n
xu ph

∂
∂

∂
∂ −= ,   (8) 

 

To evaluate the particular solution, the left-side inhomogeneous term of Eq. (5) is 

approximated first by 

 

( ) ( )k

LN

k
k rxf φα∑

+

=

≅
1

,    (9) 

 

where kk xxr −=  represent the Euclidean norm distance; ϕ is the RBF; and kα  are 

the unknown coefficients. N and L respectively denote the numbers of knots on 

boundary and domain. If the RBF ϕ is conditionally positive definite, a linear 

polynomial term ϕ is usually added [4,34-36]. In terms of Eq. (9), we have 

 

( )xfA 1−= φα ,    (10) 

 

where Aϕ is the RBF interpolation matrix. Finally, we get particular solutions at any 

point by summing localized approximate particular solutions 

 

(∑
+

=

Φ=
LN

k
kkp ru

1

α ) ,    (11) 

 

 6



where Φ is related to the radial basis function ϕ, namely, 

 

φλ =Φ−Φ∇ 22 .    (12) 

 

In [2,11,12,31,33] the approximate particular solution Φ is determined beforehand, 

and then we evaluate the corresponding RBF ϕ by a simple differentiation process, 

while in [4,34], the RBF ϕ is a priori defined, and accordingly, the analytical 

approximate solution Φ is then derived by a sophisticated integration procedure. Both 

approaches work equally well in practical numerical computations. The latter is, 

however, practically workable only in the limited cases [4].   

 

2.2. Non-singular general solution formulation  

 

What differentiates the BKM from the DR-BEM and MFS is that the former applies 

the non-singular general solution to produce a boundary-only formulation of the 

homogeneous problems. In terms of the homogeneous modified Helmholtz equation 

[7], the non-singular general solution is given by  

 

( )
( )

( ) ( )rI
r

ru n

n

n λ
π
λ

π 12

12
#

22
1

−

−







= , n≥2,  (13) 

 

and the singular fundamental solution 

 

( )
( )

( ) ( )rK
r

ru n

n

n λ
π
λ

π 12

12
*

22
1

−

−







= , n≥2,  (14) 

 

where I and K represent the modified Bessel functions of the first and second kinds, 

respectively. It is noted that K has logarithm singularity at the origin, which leads to 

troublesome singular integral in the BEM and controversial fictitious boundary in the 

MFS.  
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By using the non-singular general solution (13), the homogeneous solution of Eq. (6) 

is represented by a weighted linear sum of function values of the non-singular 

solution at all boundary nodes, i.e.,  

 

( ) (∑
=

=
L

j
jnjh ruxu

1

#β )

)

,    (15) 

 

where j is index of source points on physical boundary; and L denotes the total 

number of boundary knots; and βj are the desired coefficients. Collocating boundary 

equations (7) and (8) by approximation representation (15), we have 

 

( ) ( ) ( i

L

j
piijnj xuxRru

D

∑
=

−=
1

#β ,   (16) 

 

( ) ( ) ( )
∑

=

−=
NL

m

mp
m

mjn
j n

xu
xN

n
ru

1

#

∂
∂

∂
∂

β ,   (17) 

 

where i and m indicate boundary response knots respectively located on Dirichlet 

surface  and Neumann surface S ; and LuS Γ D and LN are the corresponding numbers 

of the response nodes. For the inhomogeneous problems, the following equations at 

interior knots are supplemented 

 

( ) ( l

N

j
plljnj xuuru∑

=

−=
1

#β ) ,  ,   (18) Nl ,,1K=

 

where N is the total number of interior points used. Eqs. (16), (17) and (18) make up 

of the resulting simultaneous algebraic equations. It is seen from the preceding 

procedure that unlike the MFS, the BKM places all nodes only on physical boundary 

and the same set of boundary knots is used as either source or response points. 
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2.3. Non-singular general solutions of Helmholtz and convection-diffusion 

operators  

 

It is straightforward to extend the above BKM procedure for the modified Helmholtz 

problems to more general cases. We here present the non-singular general solutions of 

Helmholtz and convection-diffusion operators. For the non-singular general solutions 

of the other known operators such as time-dependent diffusion and wave operators, 

biharmonic operators see Chen and Tanaka [31]. Note that the following x and r 

respectively represent n-dimensional independent variable and the corresponding 

Euclidean distance. For the homogeneous Helmholtz equation 

 

022 =+∇ ww λ ,     (19) 

 

the non-singular general solution is 

 

( ) ( rJ
r

rw n

n

n λ
π
λ

12

12
#

2 −

−







= ) , n≥2,   (20) 

 

where J is the Bessel function of the first kind. For the convection-diffusion operator  

 

02 =−∇•+∇ kppvpD ,    (21) 

 

where D denotes the diffusivity; k represents the reaction coefficient; v is velocity 

vector; and marked r denotes the distance vector between the source and response 

knots. Its non-singular general solution is  

 

( )
( )

( ) ( )rIe
r

rp n
D
rvn

n µ
π
µ

π 12
2

12
#

22
1

−

⋅−
−







= , n≥2,  (22) 

 

where    

2
1

2

2 












+










=

D
k

D
v

µ .    (23) 
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In section 3, we will investigate 2D and 3D homogeneous Helmholtz, modified 

Helmholtz, and convection-diffusion problems with different shaped domains. It is 

noted that in the 3D cases, the corresponding non-singular solutions have simpler 

forms, namely,    

 

( ) ( )
r

rrw λsin#
3 =     (24) 

for the Helmholtz,  

 

( ) ( )
r

rru λsinh#
3 =      (25) 

 

for the modified Helmholtz, where sinh denotes the hyperbolic function, and   

 

( ) ( )
r

rerp D
rv µsinh2#

3

⋅−
=    (26) 

 

for convection-diffusion, where µ is defined in Eq. (23).  

 

It is stressed here that by using computer algebra package “Maple”, we have verified 

that all the above RBF non-singular general solutions rigorously satisfy the 

corresponding homogeneous equations. Moreover, these general solutions are C∞ 

smoothness.  

 

 

3. Results and discussions 

 

To show the convergence, accuracy and stability of the BKM, we analysed a number 

of homogeneous Helmholtz, modified Helmholtz, and convection-diffusion problems 

with different 2D domain geometries shown in Figs. 1-3 and a 3D sphere. The 

average relative error in the following figures is defined as 
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∑
=

−=
N

k k

kk

u
uu

N
err

1

1 ,    (27) 

 

where k is the index of inner nodes; uk and ku are respectively analytical and BKM 

solutions at inner node k; and N represents the number of interior nodes of interest. 

The interior knots were randomly chosen and shown as small crosses in Figs. 1-3 for 

the 2D cases. The blank circles along boundary represent the boundary knots. The 

convergence behaviour of the BKM is clearly shown in the given curves of the 

average relative error against knot numbers.   

 
Case 1. 2D Helmholtz problems 

 

The Helmholtz equation is fundamentally important in many engineering and science 

branches. Figs. 4 and 5 illustrate the average relative error curves for a Dirichlet 

homogeneous Helmholtz problem with the analytical solution 
 

( ) ( ) (yxyxu cossin, = ) .   (28) 

 

The domain geometries are ellipse, square, and square with an elliptical hole. The 

wave number of the non-singular general solution (20) is λ= 2  for this case. It is 

seen from both Figs. 4 and 5 that the BKM solutions consistently converge very 

quickly. For example, the convergence rate for the square plate is 31.8 before 

reaching the minimum relative error value. Fig. 6 displays the average relative error 

curve of the homogeneous Neumann Helmholtz problem with the same analytical 

solution and square domain shown in Fig. 1. It is observed that like the Dirichlet 

cases, the convergence behaviour of the Neumann problem is very sound and stable 

with a convergence rate of 50.7. After reaching the minimum values, the error curves 

have the oscillations of small range in all these cases. Numerically, one concludes that 

the BKM has the super-convergent speed in the present cases.  

 
To investigate the Helmholtz problems with the medium and high wave numbers, 

consider the Dirichlet problem with analytical solution 
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( ) ( ) ( yxyxu )λλ cossin, += .   (29) 

 

Figs. 7 and 8 respectively show the error curves for the cases involving wave number 

λ=20 and λ=100. It is found that in each figure, the BKM requires more knots to 

produce the solution of acceptable accuracy for the case with ellipse domain than for 

that with square domain. By comparing the results of Figs. 7 and 8, it is also noted 

that the higher the wave number, the more knots are necessary to suffice accuracy. 

The convergence curves of both cases are also quite oscillatory and show that the 

severe ill-conditioning seriously affects the solution accuracy. 

 

To clearly expose the wave property of the Helmholtz problem, Fig. 9 illustrates the 

solution surface with wave number λ=20 in a square domain. Figs. 10 and 11 present 

the relative error surfaces using 12 and 18 BKM boundary knots, respectively, which 

were generated with the relative errors at 101×101 knots uniformly covering the unit 

square. It is seen that with the exception of the relatively less accurate solutions at 

very few knots, the BKM solution accuracy as a whole is quite high even with 12 

boundary knots.  

 
Case 2. 2D modified Helmholtz problems 

 
The BKM is tested to the modified Helmholtz problems with analytical solution  

 

( ) yxeyxu +=, .     (30) 

 

λ in the corresponding non-singular general solution (13) is here equivalent to 2 .  

 

As a matter of interest, Fig. 12 shows the accurate solution surface of this Dirichlet 

problem with square domain. Figs. 13 and 14 display the corresponding relative error 

surfaces using the BKM with 8 and 20 boundary knots, respectively, where the error 

surfaces were also yielded by relative errors at 101×101 knots uniformly covering the 

unit square. It is surprising to note that the error surface of the 8 boundary knots BKM 
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is very smooth and regular, while, in contrast, that of BKM using 20 boundary knots 

is very random. In both cases, highly accurate solutions were obtained. 

 

The relative error behaviours against the knot numbers are clearly illustrated in Figs. 

5, 6 and 15, respectively. It is seen from Fig. 15 that the BKM converges stably and 

quickly in both Dirichlet cases involving ellipse and square domains. Furthermore, 

Fig. 5 shows that the BKM performs equally well for the Neumann case, while Fig. 6 

demonstrates that the BKM is robust and yields very accurate solutions for the 

Dirichlet modified Helmholtz problem with relatively complex-shaped domain, a 

square with an elliptical hole.  

 

Case 3. 2D convection-diffusion problems 

 
Next, we look into the BKM solution of the steady Dirichlet convection-diffusion 

problems with analytical solution 

 

( ) yx eeyxu −− +=, .    (31) 

 

The parameter µ in the non-singular general solution (22) is 22  for this case. The 

BKM average relative error curves are given respectively in Fig. 5 for square domain 

with an elliptical hole and Fig. 16 for both square and elliptical domains. It is seen 

from Fig. 16 that the BKM performs better in square domain case than in elliptical 

domain case. In the latter, the visible oscillation is observed for the larger numbers of 

knots. It is, however, worth stressing that the BKM solutions in both cases are very 

accurate. For the case involving square domain with elliptical hole, the BKM solution 

converges very quickly as shown in Fig. 5. From the above experiments, the boundary 

geometry seems not to have strong affect on the convergence and accuracy of the 

BKM solution.   

 

Case 4. 3D Helmholtz, modified Helmholtz, and convection-diffusion problems 

 
Finally, we examine the 3D Dirichlet problems under unit sphere domain. The 

analytical solutions are respectively  
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( ) ( ) ( ) (zyxzyxu coscossin,, = )    (32) 

 
for the Helmholtz equation,  

 

( ) zyx eeezyxu ++=,,    (33) 

 
for the modified Helmholtz equation, and    

 

( ) zyx eeezyxu −−− ++=,,    (34) 

 
for the convection-diffusion equation. The characteristic parameters λ and µ in the 

corresponding non-singular solutions (13), (20) and (22) are 3 , 3 , and 23 , 

respectively. The same Helmholtz and convection-diffusion cases involving a unit 

cube have been investigated in [33]. Here they are reanalysed to show the 

convergence and stability of the BKM through the curves of the relative errors against 

knot numbers. The average relative error curves of the BKM solutions at the interior 

knots of x=0,0.2,-0.4,0.5,-0.6,0.8,-0.9, y=z=0 are plotted in Fig. 17. It is noted that the 

BKM boundary knots on the sphere surface were taken randomly.  

 

It is found that the accuracy of all three cases is constantly improved as the 

incremental BKM boundary knots. It is especially stressed that the programming 

effort for 2D and 3D cases makes no difference for the BKM. The present 3D 

experiments further confirm the excellent accuracy and efficiency of the BKM.  

 

 

4. Concluding remarks 

 

It is revealed from the forgoing relative error curve figures that with the increasing 

number of sampling BKM boundary nodes, the calculated results do exhibit 

convergence trend in all tested cases. Moreover, the convergence is quick and stable 

in general. The efficacy of the BKM formulation is validated for the Helmholtz, 
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modified Helmholtz, and convection-diffusion problems, which are practically 

important in a broad range of physical and engineering areas.  

 

The present study was undertaken to numerically examine the convergence behaviour 

of the BKM. The given experiments meet this objective. The BKM has neither 

singular integration, slow convergence and mesh in the DR-BEM nor artificial 

boundary outside physical domain in the MFS. These merits lead to excellent 

performances in computational accuracy, efficiency and stability as shown in the 

preceding section 3. On the other hand, the method is extremely simple to learn and 

easy to program, especially for complicated shapes and higher dimensions. In shark 

contrast, the MFS suffers a severe difficulty in handling complex geometry problems 

[7,37] due to a controversial artificial boundary.  

 

More theoretical analysis and experimental studies of the BKM should be beneficial. 

For example, we do not know by now if the BKM can be applied to exterior 

problems. We also do not have a mathematical proof of the solvability and 

convergence of the method although it always succeeds in various experiments. Some 

issues concerning the optimal location of the knots and the choice of the radial basis 

function in the context of the BKM for the inhomogeneous problem has yet to be 

investigated. This is the subject of the future study.  

 

 

Acknowledgements 
 

The work described in this paper was partially supported by a grant from the Research 

Grants Council of the Hong Kong Special Administrative Region, China (Project No. 

CityU 1178/02P). The first author was then a visiting research fellow to the 

Mathematics Department of City University of Hong Kong. 

 

 

References 

 

1. D. Nardini, C.A. Brebbia, A new approach to free vibration analysis using 

boundary elements. Appl. Math. Modeling, 7 (1983) 157-162. 

 15



2. P.W. Partridge, C.A. Brebbia, L.W. Wrobel, The Dual Reciprocity Boundary 

Element Method, Comput. Mech. Publ., Southampton, UK, 1992. 

3. T. Yamada, L.C. Wrobel, H. Power, On the convergence of the dual reciprocity 

boundary element method, Eng. Anal. BEM, 13 (1994) 291-298.  

4. M.A. Golberg, C.S. Chen, The method of fundamental solutions for potential, 

Helmholtz and diffusion problems. In Boundary Integral Methods - Numerical and 

Mathematical Aspects, ed. M.A. Golberg, pp. 103-176, Comp. Mech. Publ., 1998.  

5. A. Bogomolny, Fundamental solutions method for elliptic boundary value 

problems, SIAM J. Numer. Anal. 22(4) (1985) 644-669. 

6. J. Li, Mathematical justification for RBF-MFS, Engng. Anal. Bound. 25(10) (2001) 

897-901. 

7. J.H. Kane, Boundary Element Analysis in Engineering Continuum Mechanics, 

Prentice Hall, New Jersey, 1994. 

8. K. Balakrishnan, P.A. Ramachandrant, A particular solution Trefftz method for 

non-linear Poisson problems in heat and mass transfer, J. Comput. Phy. 150 (1999) 

239-267.  

9. P.W. Partridge, B. Sensale, The method of fundamental solutions with dual 

reciprocity for diffusion and diffusion-convection using subdomains, Eng. Anal. 

BEM, 24 (2000) 633-641. 

10. T. Kitagawa, Asymptotic stability of the fundamental solution method. J. Comput. 

Appl. Math. 38 (1991) 263-269. 

11. W. Chen, M. Tanaka, New insights in boundary-only and domain-type RBF 

methods, Int. J. Nonlinear Sci. Numer. Simulation, 1(3) (2000) 145-152. 

12. W. Chen, M. Tanaka, A meshfree, integration-free, and boundary-only RBF 

technique, Comput. Math. Appls. 43 (2002) 379-391.  

13. P. Mendonca, C. Barcellos, A. Durate, Investigations on the hp-Cloud method by 

solving Timoshenko beam problems, Comput. Mech. 25 (2000) 286-295. 

14. S. W. Kang, J. M. Lee, Y. J. Kang, Vibration analysis of arbitrarily shaped 

membranes using non-dimensional dynamic influence function, J. Sound Vibr., 

221(1) (1999) 117-132. 

15. S. W. Kang, J. M. Lee, Eigenmode analysis of arbitrarily shaped two-dimensional 

cavities by the method of point-matching, J. Acoust. Soc. Am., 107(3) (2000) 

1153-1160. 

 16



16. S. W. Kang, J. M. Lee, Free vibration analysis of arbitrarily shaped plates with 

clamped edges using wave-type functions, J. Sound Vibr. 242(1) (2001), 9-26.  

17. J. T. Chen, M. H. Chang, K. H. Chen, S. R. Lin, The boundary collocation method 

with meshless concept for acoustic eigenanalysis of two-dimensional cavities 

using radial basis function, J. Sound Vibr., 257(4) (2002), 667-711. 

18. J. T. Chen, I. L. Chen, K. H. Chen, Y. T. Lee, Comments on “Free vibration 

analysis of arbitrarily shaped plates with clamped edges using wave-type 

function”, Comput. Mech., (in press), 2002.  

19. J. T. Chen, M. H. Chang, I. L. Chung, Y. C. Cheng, Comment on “Eigenmode 

analysis of arbitrarily shaped two-dimensional cavities by the method of point 

matching”, J. Acoust. Sco. Am. 111(1) (2002), 33-36. 

20. J. T. Chen, M. H. Chang, K. H. Chen, I. L. Chen, Boundary collocation method 

for acoustic eigenanalysis of three-dimensional cavities using radial basis 

function, Comput. Mech., 29 (2002), 392-408.  

21. G. DE MEY, A simplified integral equation method for the calculation of the 

eigenvalues of Helmholtz equation, J. Acoust. Soc. Am., 11 (1977) 1340-1342. 

22.  W. Chen, Symmetric boundary knot method, Engng. Anal. Bound. Elem., 26(6) 

(2002) 489-494. 

23. R.L. Hardy, Multiquadratic equations for topography and other irregular surfaces, 

J. Geophys. Res. 176 (1971) 1905-1915. 

24. M. Powell, Recent advances in Cambridge on radial basis functions. The 2nd 

International Dortmunt Meeting on Approximation Theory, 1998. 

25. R. Schaback, H. Wendland, Numerical techniques based on radial basis functions. 

In Curve and Surface Fitting: Saint-Malo 1999, ed. A. Cohen et al., pp. 359-374, 

Vanderbilt University Press, 2000. 

26. E.J. Kansa, Multiquadrics: A scattered data approximation scheme with 

applications to computational fluid dynamics. Comput. Math. Appl. 19 (1990) 

147-161. 

27. X. Zhang X.H. Liu, K.Z. Song, M.W. Lu, Least-square collocation meshless 

method, Int. J. Numer. Methds. Engng., 51(9) (2001) 1089-1100.  

28. X. Zhang, M.W. Lu, J.L. Wegner, A 2-D meshless model for jointed rock 

structures, Int. J. Numer. Methds. Engng. 47(10) (2000) 1649-1661. 

29. X. Zhang, K.Z. Song,  M.W. Lu, Meshless Methods Based on Collocation with 

Radial Basis Functions, Comput. Mech. 26(4) (2000) 333-343.  

 17

http://www.hre.ntou.edu.tw/~msvlab/paper/cm/Cm-04.pdf
http://www.hre.ntou.edu.tw/~msvlab/paper/cm/Cm-04.pdf
http://www.hre.ntou.edu.tw/~msvlab/paper/cm/Cm-04.pdf
http://xxx.lanl.gov/abs/cs.CE/0207010


30. Y.C. Hon, X.Z. Mao, A radial basis function method for solving options pricing 

model. Financial Eng. 81(1) (1999) 31-49. 

31. W. Chen, M. Tanaka, Relationship between boundary integral equation and radial 

basis function, in The 52th Symposium of JSCME on BEM, ed. M. Tanaka, Tokyo, 

2000. 

32. W. Chen, W. He, A note on radial basis function computing, Int. J. Nonlinear 

Modelling Sci. Eng., 1 (2001) 59-65. 

33. Y.C. Hon, W. Chen, Boundary knot method for 2D and 3D Helmholtz and 

convection-diffusion problems with complicated geometry, (in press), 2002.  

34. M. Golberg, C.S. Chen, H. Bowman, H. Power, Some comments on the use of 

radial basis functions in the dual reciprocity method, Comput. Mech. 21 (1998) 

141-148. 

35. M. Zerroukat, H. Power, C.S. Chen, A numerical method for heat transfer 

problems using collocation and radial basis function, Int. J. Numer. Method Eng. 

42 (1998) 1263-1278. 

36. H. Ding, C. Shu, K.S. Yeo, Simulation of natural convection in an eccentric 

annulus between a square outer cylinder and a circular inner cylinder using the 

local MQ-DQ method, (submitted), 2002. 

37. K. Balakrishnan, P.A. Ramachandran, The method of fundamental solutions for 

linear diffusion-reaction equations, Math. Comput. Modelling. 31 (2000) 221-237.   

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 18



 
 
 
 
 

 
 
 

 

 
 

 19



1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

4 12 20 28 36 4

N

4

Ellipse

Square

 

A
ve

ra
ge

 re
la

tiv
e 

er
ro

r 

 
Fig. 4. Average relative error curves for Dirichlet Helmholtz problems with elliptical 
and square domains 
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Fig. 5. Average relative error curves for Dirichlet Helmholtz, modified Helmholtz, 
and convection-diffusion problems with square domain with elliptical hole 
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Fig. 6. Average relative error curves for Neumann Helmholtz and modified Helmholtz 
problems with square domain 
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Fig. 7. Average relative error curves for Dirichlet Helmholtz problems with medium 
wave number λ=20 
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Fig. 8. Average relative error curves for Dirichlet Helmholtz problems with high wave 
number λ=100 
 
 
 
 

 
 
 
 
 
 
 
 
 

 22



 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 

 23



 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 24



 
 
 
 
 

A
ve

ra
ge

 re
la

tiv
e 

er
ro

r 

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

4 12 20 28 36 4

N

4

Ellipse

Square

 
Fig. 15. Average relative error curves for Dirichlet modified Helmholtz problem with 
elliptical and square domains 
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Fig. 16. Average relative error curves for Dirichlet convection-diffusion problem with 
elliptical and square domains 
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Fig. 17. Average relative error curve for Dirichlet Helmholtz, modified Helmholtz and 
convection-diffusion problems with 3D sphere domain 
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