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Abstract

This paper presents the very ®rst combined application of dual reciprocity BEM (DRBEM) and di�erential

quadrature (DQ) method to time-dependent di�usion problems. In this study, the DRBEM is employed to discretize

the spatial partial derivatives. The DQ method is then applied to analogize temporal derivatives. The resulting algebraic

formulation is the known Lyapunov matrix equation, which can be very e�ciently solved by the Bartels±Stewart al-

gorithms. The mixed scheme combines strong geometry ¯exibility and boundary-only feature of the BEM and high

accuracy and e�ciency of the DQ method. Its superiority is demonstrated through the solution of some benchmark

di�usion problems. The DQ method is shown to be numerically accurate, stable and computationally e�cient in

computing dynamic problems. In particular, the present study reveals that the DRBEM is also very e�cient for

transient di�usion problems with Dirichlet boundary conditions by coupling the DQ method in time discretiza-

tion. Ó 2001 Elsevier Science Inc. All rights reserved.

Keywords: Dual reciprocity BEM; Di�erential quadrature method; Transient di�usion; Lyapunov matrix equation;
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1. Introduction

In recent years, the BEM has become increasingly popular in the numerical solution of time-
dependent partial di�erential equations occurring in many branches of science and engineering.
Transformation of the domain integrals has been a central task in the BEM solution of such
problems to preserve its boundary-only merits. There are several di�erent approaches available
now for this purpose. However, as was pointed out by Partridge et al. [1] and Tanaka et al. [2] the
dual reciprocity BEM (DRBEM) stands out as the method of choice in engineering computations
due to its ease of implementation, intrinsically meshless and strong ¯exibility of applying fun-
damental solutions. On the other hand, the choice of time integration scheme is an essential part
to accurately assess the performance of the BEM solution of time-dependent problems. Recently,
Singh and Kalra [3] provided a comprehensive comparative study of various di�erent time in-
tegration algorithms (see Table 1) in context of the DRBEM di�erential±algebraic formulations
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of transient di�usion problems. A one step least squares algorithm was concluded the most ac-
curate and e�cient technique among all methods assessed [3]. In particular, when Dirichlet
boundary condition is involved, the one step backward di�erence method is recommended as the
method of choice for short term response [3]. However, as was found therein, all of those algo-
rithms encountered great drop of accuracy and e�ciency in the solution of problems with Di-
richlet boundary conditions. Therefore, an alternative algorithm is in demand, which triggers the
present work.

The objective of this paper is to apply the di�erential quadrature (DQ) method to approximate
time derivative in the DRBEM formulation of transient di�usion problems. Due to its recent or-
igin, the DQ method may not be well-known in computational community. The method can be
regarded as the ``direct approach'' of the traditional collocation (pseudo-spectral) methods in that
the governing equations are analogized in terms of practical physical variables instead of usually
®ctitious expansion (spectral) coe�cients. The salient advantages of the DQ method over the
normal collocation method are its ease in implementation and more ¯exibility in choosing the
sampling points. In the literature, the DQ method has been usually applied to approximate spatial
derivatives and shows high e�ciency and accuracy through the solution of a broad range of
problems with regular boundary shape. Recent studies have also launched the geometry ¯exibility
of the DQ applications by means of the coordinate mappings and element techniques. Although
some preliminary successes were achieved, the ¯exibility of complex geometry problems is still a
major deterrence in the broad application of the method to the practical engineering problems [4,5].

The strength of the DQ method lies in its fast rate of convergence and high accuracy, namely,
so-called spectral accuracy. It is noted that the time variable has the simplicity of geometry.
Therefore, the DQ analogue of temporal derivative is expected to perform well, while it is well
known that the BEM enjoys the strong geometry ¯exibility and boundary-only feature. So a
combined use of both DRBEM and DQ method will be very attractive. In this study, we in-
vestigate transient di�usion problems by this mixed methodology. It is found that the resultant
algebraic system is a Lyapunov matrix equation. By using the Bartels±Stewart algorithm, [6] the
computing e�ort of solving such matrix equations is greatly reduced. The detailed solution
procedure including analysis of computing stability and e�ciency is next explained, and some
conclusions are ®nally drawn based on the present study.

Table 1

Abbreviations of various time schemes

Algorithm Abbreviation

Di�erential quadrature DQ

Least squares family

One step least squares LS11

Two step least squares LS21

Cubic Hermitian family

The midstep rule CHMS

Fully implicit algorithm CHFI

SSp1

One step methods SS11

Crank±Nicholson SS11CN

Galerkin SS11GN

Backward di�erence SS11BD

Two step methods

Backward di�erence SS21BD

Three step methods

Backward di�erence SS31BD

Optimum SS31OP
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2. DRBEM discretization of spatial variables of di�usion problems

The equation governing transient di�usion problems can be expressed as

ou�x; t�
ot

ÿr2u�x; t� � 0; x � X �1�

with the initial conditions

u�x; 0� � u0�x�; �2�
and the Dirichlet, Neumann and Linear Radiation boundary conditions are given by

u�x; t� � u�x; t�; x � Cu; �3�
q�x; t� � q�x; t�; x � Cq; �4�
q�x; t� � ÿh�x; t�fu�x; t� ÿ ur�x; t�g; x � Cr; �5�

where variable domain X � R2 is bounded by a piece-wise smooth boundary C � Cu � Cq � Cr;
q � ou=on; n is the unit outward normal.

Eq. (1) can be weighted by the fundamental solution u� of Laplace operatorZ
X

ou
ot

�
ÿr2u

�
u� dX � 0: �6�

Applying Green's second identity to Eq. (6) yields

ciui �
Z

C
q�u� ÿ u�q�dC � ÿ

Z
X

ou
ot

u� dX; �7�

where subscript i denotes the source point, q� � ou�=on, and ci �
R

X d�f; x� dX. The dual reci-
procity method transforms the domain integral in Eq. (7) by means of a set of coordinate
functions f j�x�

_u�x; t� �
XN�L

j�1

f j�x� _a�t�; �8�

where the upper dot represents the time derivative, the aj are unknown functions of time, N and L
are the numbers of the boundary and selected internal nodes, respectively. The coordinate
function f j given by Wrobel and Brebbia [7] are here exploited as in Singh and Kalra [3] to fa-
cilitate later numerical comparisons. These functions are also linked with wj�x� through

r2wj � f j: �9�
Therefore, we haveZ

X

ou
ot

u� dX �
XN�L

j�1

Z
X

u�r2wj dX: �10�

Eq. (7) can ®nally be reduced to

ciui �
Z

C
q�u� ÿ u�q�dC �

XN�L

j�1

ciw
j
i

�
�
Z

C
q�wjÿ ÿ u�gj

�
dC

�
_a; �11�

where gj � owj=on: Note that wj and f j are known functions. The resulting DRBEM formula-
tion is
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C _u� Huÿ Gq � 0; �12�
where C � �GE ÿ HW�F ÿ1; H and G denote the whole matrices of boundary element with kernels
q� and u�, respectively; F, W and E comprise the coordinate function column vectors f j; wj and gj.
The discretization procedure in detail can be found in [1]. Eq. (12) is a di�erential algebraic system
for problems with Dirichlet boundary conditions. Singh and Kalra [3] presented an approach to
partition Eq. (12) in di�erential and algebraic parts in such a way that the standard form of the
®rst-order initial problem is obtained, namely

_u� Bu � f ; �13�
where B and f are known coe�cient matrix and vector. The remaining algebraic components can
be easily calculated after the solutions of the above di�erential system are accomplished. For
details of this methodology, see [3]. In this study, we applied this partitioned approach to the
di�usion problems with Dirichlet conditions.

3. DQ approximation of time derivative

The DQ analog of the ®rst-order derivative of function g�t� can be expressed as

dg�t�
dt

����
ti

�
XN

j�1

Aijg�tj�; i � 1; 2; . . . ;N ; �14�

where tjs are the discrete points in the temporal variable domain. g�tj� and Aij are the function
values at these points and the related DQ weighting coe�cients, respectively. It is worth pointing
out that the calculation of these weighting coe�cients need be done only once for speci®ed grid
points by means of an accurate and e�cient formula. For more details, see [4]. Some new de-
velopments of this method were included in [5].

Eq. (13) can be recognized as the standard form of the ®rst-order initial value problems. By
using the transformation

u � uÿ u�0�; �15�
Eq. (13) can be restated as

_u� Bu � �f ; �16�
where �f � f � Bu�0�. The initial conditions are reduced to

u�0� � 0: �17�
In terms of approximate formula (14), Eq. (16) can be analogized as

UA
T � BU � C; �18�

where A
T

is a transpose of �N ÿ 1� � �N ÿ 1� matrix A obtained by removing the ®rst row and
column of the DQ weighting coe�cient matrix A in Eq. (14). The DQ discretization at multiple
temporal gird points simultaneously causes the matrix algebraic equation (18). Similar situations
are often encountered in the optimal control modeling. It is worth stressing that the initial
conditions speci®ed in Eq. (17) have been built into the modi®ed coe�cient matrix A. The U and
C here denote rectangular matrices, namely,
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U M��Nÿ1� �
u12 u13 � � � u1N

u22 u23 � � � u2N

..

. ..
. . .

. ..
.

uM2 uM3 � � � uMN

26664
37775 and CM��Nÿ1� �

�f1
�f1 � � � �f1

�f2
�f2 � � � �f2

..

. ..
. . .

. ..
.

�fM
�fM � � � �fM

266664
377775; �19�

where M denotes the order of di�erential system. It is observed that Eq. (18) is in fact a Lyapunov
matrix equation often encountered in control engineering. It need also be pointed out that the
above procedure discretizes the time variable in the element way, which is somehow di�erent from
the standard step by step integration algorithms. In other words, the present methodology is to
advance element by element and the multiple grid points are employed in each time element in
such a way that high accuracy of solution is achieved.

3.1. Solver of Lyapunov matrix equations

Several very e�cient methods of solving the Lyapunov algebraic matrix equation (18) have
been well developed in literature. Their performances are stable and accurate. These solution
procedures generally include the following four steps:

Step 1: Reduce B and A
T

of Eq. (18) into certain simple form via the similarity transformations
G � ÿPÿ1 BP and H � V ÿ1A

T
V .

Step 2: Q � Pÿ1 CV for the solution of Q.
Step 3: Solve the transformed equation GY � YH � Q for Y .
Step 4: U � PYV ÿ1.
In the present study, the so-called Bartels±Stewart algorithm [6] is utilized. The major time-

consuming calculation occurs in Step 1, where O�M3� scalar multiplications are required. While
all implicit step methods also demand O�M3� operations. Therefore, computing e�ort of the
present scheme is the same magnitude as in the common implicit methods. Moreover, it should be
pointed out that operation in Step 1 need be done only once irrespective of the adjustable time
stepping employed. In contrast, if the time step size is changed in certain steps, the common
implicit methods do need anew LU decomposition of O�M3� multiplications.

On the other hand, Steps 2±4 of the present method need be performed repeatedly in each time
element. The computing e�ort of these steps is O�M2� multiplications. Under the same time step
size, the ratio of multiplication operations between the DQ and normal step integration methods
is about 1� �N ÿ 1�=M , where N is the number of grid points in the DQ method. N is taken 3 and
5 in this study, while di�erential system order M is comparatively by far bigger. Therefore, one
can conclude that the computing e�ort in the DQ method is nearly the same as that in the step
methods.

3.2. Error estimation and accuracy

In what follows, we will address another important issue of the error estimates in the DQ
method. The error estimator of the DQ approximation of the ®rst-order derivative of function
f �x� is given by [5]

jRij6K � erri � DtNÿ1; i � 1; 2; . . . ;N ; �20�
where K � max jf �N��x�j; erri denotes the error constants at various grids dependent on grid
spacing and can be obtained easily. Dt represents the time step size, and N is the number of grid
points in the DQ time element.

M. Tanaka, W. Chen / Appl. Math. Modelling 25 (2001) 257±268 261



According to formula (20), the accuracy of the DQ method is O�DtNÿ1�. So the accuracy of
solutions will be two order under N � 3 and four order under N � 5. The method can earn higher
order of accuracy than the standard integration techniques. Therefore, in some cases, the DQ
method can consume comparatively less computing e�ort by using larger time step while still
producing accurate solutions.

3.3. A-Stability

It is centrally important whether or not an algorithm is stable in the solution of temporal
ordinary di�erential equations. It is known that the collocation method is A-stable, [8] in the
terminology of structural dynamics, unconditionally stable. Therefore, the DQ method is also
unconditionally stable due to the actual equivalence with the collocation method. It is worth
pointing out that the present DQ method is superior to the traditional collocation methods due to
the twofold reasons. First, the practical physical values are directly computed in the DQ method
instead of the indirect expansion (spectral) variables in the collocation methods. This greatly
simpli®es the engineering implementations and manifests the DQ method in easy-to-choose
starting solutions of nonlinear iterations, while, in contrast, the ®ctitious expansion variables in
the collocation methods usually have no physical meanings and are therefore di�cult to do so.
Also, the DQ method provides more ¯exibility to choose grid points [9]. Second, the fast solver of
the Lyapunov equation drastically reduces the formulation and computing e�ort as well as
storage requirements in the solution of initial value problems.

Dahlquist [10] presented the famous Barrier theorem which restricts the maximum order of all
linear multistep methods up to two in order to preserve the A-stability. The DQ method is not a
traditional multistep algorithm and therefore circumvents this rigorous limitation of solution
accuracy while still attaining the desirable A-stability merits.

4. Applications and discussions

In the present study, the Chebyshev±Gauss±Lobatto collocation points are used in each time
element of the DQ method, namely,

ti � C
2

1

�
ÿ cos

iÿ 1

N ÿ 1
p

� ��
; i � 1; 2; . . . ;N ; �21�

where C denotes the length of DQ time element. The L2 relative error norm is a standard approach
to assess the accuracy of the solutions and de®ned as

g% � kek2

kuexactk2

� 100; �22�

where k k2 represents the L2 norm operator, e and uexact are the absolute error and the analytical
solution at boundary point, respectively. In this section, the mixed technique of the DRBEM and
DQ method was applied to four typical di�usion problems provided by Singh and Kalra [3],
where the DRBEM was exploited in coupling of several time integration techniques. Table 1 lists
these time integration schemes along with the present DQ method. The spatial variable domains
of the test problems are square and the linear element �DC � 0:1� was employed in the DRBEM.
The initial conditions of all tested numerical examples are taken as

u�x; 0� � 1: �23�
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The performances are measured via error estimate formula (22). The DQ solutions are compared
with those given in [3] by using the other integration schemes listed in Table 1.

4.1. Dirichlet problem

All boundary conditions are speci®ed as

u�x; t� � 0; x1; x2 � ÿ1; 1: �24�
The analytical solution is given by

u�x; t� � v�x1; t�v�x2; t�; �25�
where

v�z; t� � 4

p

X1
i�0

�ÿ1�i
2i� 1

cos
2i� 1

2
pz

� �
exp

�
ÿ �2i� 1�2 p2t

4

�
: �26�

Some internal points are necessary in this case due to the fact that all potential values of u at four
edges are known. We employed 33 interior points in the DRBEM, the same number as in [3] for
this case. The L2 relative errors of the solutions (t � 1:0 s) are displayed in Table 2. It is seen that
the DQ method produces the strikingly accurate solutions by comparing with all other step
schemes. The one step least square method was found the most accurate in all other methods
except for the present DQ method, while, in contrast, the DQ method can achieve much more
accurate solutions by using an evidently bigger time step. So the computing e�ciency and ac-
curacy of the DQ method is superior to all others in this case.

4.2. Dirichlet±Neumann problem

This case is a reduced form of the previous Dirichlet problem and thus holds the same ana-
lytical solution formulas (25) and (26). The Dirichlet conditions are given by

u�x; t� � 0; x1; x2 � 1: �27�
The Neumann conditions are speci®ed as

q�x; t� � 0; x1; x2 � 0: �28�
One internal point is placed in the center of domain. Table 3 shows the L2 errors of all methods
included in Table 1. It is observed that the DQ method performs more excellently against all other

Table 2

Dirichlet problem ± L2 relative error norm g (%) of boundary ¯uxes at t � 1:0 s

Algorithms Dt � 1=8 Dt � 1=16 Dt � 1=32 Dt � 1=64

DQ (N � 3) 7.70 0.61 3.07 4.16

LS11 68.71 29.62 8.00 4.52

SS11CN 52.79 9.31 10.96 11.35

SS11GN 45.13 30.67 21.76 16.93

SS11BD 145.42 78.81 45.26 28.78

CHMS 14.21 12.28 11.75 11.56

CHFI 12.96 12.13 11.73 11.56

LS21 165.05 26.82 5.65 6.41

SS21BD 53.97 6.04 14.98 16.32

SS31BD 51.66 13.76 11.30 11.02

SS31OP 40.09 14.73 13.41 12.95
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methods. It is also interesting to note that the DQ method reaches the least L2 errors with time
step Dt � 1=16. After this, the less time step decreases the accuracy of the solution. The results in
Table 2 have similar behavior. Also, it was found that the other methods also present such
phenomena. It appears that the accumulation of step errors dominates the solution accuracy in
such situations. The less time step size increases the number of solution steps.

In order to illustrate the short and long term behaviors of various methods, Tables 4 and 5
respectively illustrate propagation of the L2 error of the back di�erence, one step least square and
DQ methods with regard to the previous Dirichlet problem and present Dirichlet±Neumann
problem. Table 5 only involves the DQ and one step square methods. The accuracies of the other
methods in both cases are too low for long term response and are therefore not included there.
The data at t � 2:0 s is at most available from Singh and Kalra [3] to compare in these cases. For
short term response, Singh and Kalra [3] suggested that the backward di�erence method is the
most preferred among all methods assessed by them when the Dirichlet boundary conditions are
involved. Table 4 shows that in such cases the DQ method is more e�cient especially for pure

Table 4

Comparison of L2 relative error norm g (%) of boundary ¯uxes in Dirichlet problem and boundary potentials in

Dirichlet±Neumann problem (short term response)

t Dirichlet Dirichlet±Neumann

DQa LS11b SS11BDb DQa LS11b SS11BDb

0.0625 15.45 36 22 4.13 1.8 2.4

0.125 0.06 17 12 3.7 2.8 0.2

0.25 0.89 4.8 3.6 2.8 3.0 2.2

0.375 0.69 4.9 8.4 2.4 3.3 4.2

a Dt � 1=16.
b Dt � 1=64.

Table 5

Comparison of L2 relative error norm g (%) of boundary ¯uxes in Dirichlet problem and boundary potentials in

Dirichlet±Neumann problem (long term response)

t Dirichlet Dirichlet±Neumann

DQ �Dt � 1=16� LS11 �Dt � 1=64� DQ �Dt � 1=64� LS11 �Dt � 1=64�
0.5 0.72 3.55 1.81 2.9

1.0 0.67 4.52 0.65 4.8

2.0 0.50 11.13 5.74 7.2

Table 3

Dirichlet±Neumann problem ± L2 relative error norm g (%) of boundary ¯uxes at t � 1:0 s

Algorithms Dt � 1=16 Dt � 1=32 Dt � 1=64 Dt � 1=128

DQ (N � 3) 0.65 2.66 3.74 4.15

LS11 51.54 11.80 1.37 4.77

SS11CN 19.70 10.51 5.06 5.14

SS11GN 23.97 15.24 10.44 7.94

SS11BD 70.91 37.88 21.64 13.64

CHMS 5.78 5.36 5.23 5.19

CHFI 5.61 5.34 5.23 5.19

LS21 28.52 18.20 12.03 8.94

SS21BD 8.80 5.41 7.16 7.26

SS31BD 11.14 5.95 5.30 5.12

SS31OP 7.04 6.50 6.02 5.82
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Dirichlet problems. On the other hand, one can ®nd from Table 5 that the DQ method using
much bigger time step can achieve remarkably higher accuracy than one step least square method
for long term response. This is well in agreement with our observations in Tables 2 and 3. Singh
and Kalra [3] concluded that one step least square method for long term and the backward
di�erence method for short term are the optimal time integration method of choice for the
problems with Dirichlet boundary conditions through a comprehensive comparison of solution
accuracy. According to the present results, one can easily see that among all these methods, the
DQ method has the best accuracy and fastest convergence rate for the cases involving Dirichlet
boundary.

4.3. Linear radiation problem

In this case, the spatial domain is all bounded by the linear radiation boundary conditions

q�x; t� � ÿhu�x; t�; x1; x2 � ÿ1; 1; �29�
where h is the radiation constant and is set 2. The analytical solution is given by

u�x; t� � w�x1; t�w�x2; t�; �30�
where

w�z; t� � 2h
X1
i�1

cos�biz� sec�bi�
h�h� 1� � b2

i

exp�ÿb2
i z�: �31�

Table 6 summarizes the L2 errors of this case. All schemes of high order accuracy yield accurate
solutions. In comparison to the other methods, the DQ method performs well but not excep-
tionally excellently as in the foregoing cases involving the Dirichlet boundary.

4.4. Neumann-linear radiation problem

By utilizing the symmetry of boundary and geometry, the previous linear radiation problem
can be simpli®ed to a problem with Neumann and linear radiation boundary conditions:

q�x; t� � 0; x1; x2 � 0; �32�
q�x; t� � ÿhu�x; t�; x1; x2 � 1; 1; �33�

where h is taken 2. The analytical solution is the same as in the previous linear radiation problem.
The L2 errors are shown in Table 7. The performances of various high order methods are roughly

Table 6

Linear radiation problem ± L2 relative error norm g (%) of boundary ¯uxes at t � 1:0 s

Algorithms Dt � 1=4 Dt � 1=8 Dt � 1=16 Dt � 1=32

DQ (N � 5) 5.77 2.16 2.13 2.14

LS11 2.95 2.41 2.12 2.09

SS11CN 5.61 2.42 2.07 2.14

SS11GN 10.91 7.18 4.88 3.58

SS11BD 26.82 16.87 10.23 6.39

CHMS 2.21 2.21 2.15 2.15

CHFI 1.81 2.11 2.14 2.15

LS21 16.63 2.36 0.36 1.07

SS21BD 12.34 2.02 1.08 1.89

SS31BD 34.08 5.67 2.92 2.34

SS31OP 1.92 2.69 2.05 2.02
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similar to those in the linear radiation problems. For both linear radiation problem and Neu-
mann-linear radiation problem, Table 8 further lists the L2 errors of the short and long term in
applying the one step least square and DQ methods. It is found that the one step least square
method yields slightly better solutions in long term response, while the DQ method performs a
little more accurately in short term response.

Based on the above-given four numerical examples, the DQ method is found to perform
continuously well. In the problems involving Dirichlet boundary, all other algorithms behave
much below the DQ method. In terms of constantly good accuracy and e�ciency, the DQ method
is considered the method of choice for the tested di�usion problems.

5. Concluding remarks

In this paper, the DRBEM and DQ method were coupled to solve four time-dependent dif-
fusion problems. The high accuracy, e�ciency and stability of the mixed method are demon-
strated. The proposed methodology retains the boundary-only feature and strong geometry
¯exibility of the DRBEM and high accuracy and e�ciency of the DQ method. Based on the
foregoing discussions of numerical results, the DQ method is found to perform continuously well.
For the di�usion problems with Dirichlet boundary, the DQ method outperforms remarkably all
other time algorithms investigated in [3]. For the problems without Dirichlet boundary, the
method performs well. In terms of constantly good accuracy and e�ciency, the DQ method is
considered the best one among all methods listed in Table 1 for solving the DRBEM formulation

Table 7

Neumann-linear radiation problem ± L2 relative error norm g (%) of boundary ¯uxes at t � 1:0 s

Algorithms Dt � 1=4 Dt � 1=8 Dt � 1=16 Dt � 1=32

DQ (N � 5) 3.29 0.94 0.90 0.90

LS11 1.77 0.64 0.60 0.69

SS11CN 5.30 1.07 0.71 0.77

SS11GN 10.25 6.15 3.70 2.32

SS11BD 27.06 16.54 9.44 5.33

CHMS 1.93 1.25 0.95 0.85

CHFI 1.09 0.98 0.89 0.83

LS21 9.44 3.80 1.10 0.23

SS21BD 13.10 3.96 0.43 0.51

SS31BD 17.38 4.61 1.61 0.99

SS31OP 0.98 1.30 0.70 0.66

Table 8

Comparison of L2 relative error norm g (%) of boundary potential in radiation and Neumann-radiation problems

�Dt � 1=32�
t Radiation Neumann-radiation

DQ LS11 DQ LS11

0.0625 2.0 2.7 1.5 3.4

0.125 4.1 4.0 0.83 1.2

0.25 4.3 4.2 0.45 0.75

0.375 2.9 2.8 0.24 0.41

0.5 1.7 1.6 0.3 0.4

1.0 2.1 2.09 0.9 0.7

2.0 10.1 9.1 2.2 1.4

4.0 27.9 26.3 4.9 2.9
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of di�usion problems. The method also attains the following attractive merits in computing dy-
namic problems:
1. A-stable, in other words, unconditional stability.
2. The computing e�ort is nearly the same as that of common implicit time step methods. O�M3�

operations need be done only once irrespective of adjustable time step is used.
3. High order accuracy O�DtNÿ1�, where N denotes the number of collocation points in time ele-

ment.
4. Self-starting.

More numerical experiments may be bene®cial. At least, the present study shows that the DQ
method is the most preferred alternative to solve the di�erential±algebraic systems resulting from
the DRBEM discretization of the time-dependent di�usion problems. It was seen from Singh and
Kalra [3] that the DRBEM seems not to perform well for the problems involving Dirichlet
boundary conditions. The present work reveals that such ine�ciencies to the Dirichlet problems
are due to the integration schemes used therein rather than the DRBEM itself. It should be
mentioned that Garica and Power [11] got the similar DRBEM solutions by using three-level
integration scheme together with active polynomial Richardson extrapolation. The DRBEM are
here demonstrated as very attractive for use in time-dependent di�usion problems with Dirichlet
boundary conditions. The extension of the present coupled DRBEM and DQ method to elasto-
dynamic problems, which usually involve the second-order time derivative, is the subject of
current research.

Acknowledgements

This work was carried out as a part of the research program supported by the Japan Society for
Promotion of Science. Additional ®nancial support was provided by the Monbusho Grant-in-
Aid. The authors are also very grateful to Dr. Singh and Mr. Oguchi who provided many helps in
this study.

References

[1] P.W. Partridge, C.A. Brebbia, L.W. Wrobel, The Dual Reciprocity Boundary Element Method, Computational

Mechanics Publications, Southampton, UK, 1992.

[2] M. Tanaka, T. Matsumoto, S. Oguchi, W. Wang, Approximate analysis of unsteady coupled thermoelastic

problems using DRBEM (consideration on 2D problems), in: Proceedings of the Eighth BEM Technology

Conference, vol. 8, Tokyo, 1998, pp. 85±90.

[3] K.M. Singh, S. Kalra, Time integration in the dual reciprocity boundary element analysis of transient di�usion,

Engrg. Anal. Boundary Elements 18 (1996) 73±102.

[4] C.W. Bert, M. Malik, Di�erential quadrature method in computational mechanics: a review, Appl. Mech. Rev. 49

(1996) 1±28.

[5] W. Chen, Di�erential quadrature method and its applications in engineering ± applying special matrix product to

nonlinear computations, Ph.D. Dissertation, Shanghai Jiao Tong University, December 1996.

[6] R.H. Bartels, G.W. Stewart, A solution of the equation AX � XB � C, Commun. AM 15 (1972) 820±826.

[7] L.C. Wrobel, C.A. Brebbia, The dual reciprocity boundary element formulation for nonlinear di�usion problems,

Comput. Meth. Appl. Mech. Engrg. 65 (1987) 147±164.

[8] M.K. Burka, Solution of sti� ordinary di�erential equations by decomposition and orthogonal collocation,

AIChE J. 28 (1982) 11±20.

[9] J.R. Quan, C.T. Chang, New insights in solving distributed system equations by the quadrature methods ± II,

Comput. Chem. Engrg. 13 (1989) 1017±1024.

[10] G. Dahlquist, A special stability problem for linear multistep methods, BIT 3 (1963) 27±43.

M. Tanaka, W. Chen / Appl. Math. Modelling 25 (2001) 257±268 267



[11] R.G. Garcia, H. Power, High accurate time integration schemes for the dual reciprocity boundary element

method, in: C.A. Brebbia, (Ed.), Boundary Element Research in Europe, Computational Mechanics Publications,

Southampton, UK, 1998, pp. 271±284.

268 M. Tanaka, W. Chen / Appl. Math. Modelling 25 (2001) 257±268


