
Dual reciprocity BEM applied to transient elastodynamic
problems with di�erential quadrature method in time

Masataka Tanaka *, Wen Chen

Department of Mechanical Systems Engineering, Faculty of Engineering, Shinshu University, 500 Wakasato, Nagano 380-8553, Japan

Received 16 August 1999

Abstract

This paper is concerned with numerical analysis of the transient elastodynamic problems by the dual reciprocity BEM (DRBEM) in

space combined with the di�erential quadrature method (DQM) in time. Emphasis is placed on a comparative study of various time-

marching schemes. Three numerical examples considered are for the longitudinal forced vibration of plates and the transverse free

vibration of membranes. To authorsÕ best knowledge, this is the ®rst attempt to apply the DQM to the second-order time derivative in

the DRBEM elastodynamic formulations. A recent approach using boundary conditions in the DQM was here extended to handle the

initial conditions of elastodynamic problems. The resulting algebraic formulation is a Lyapunov matrix equation, which can be very

e�ciently solved by the Bartels±Stewart algorithm. It is revealed that the DQM is an unconditionally stable algorithm and gives much

better accuracy than the standard ®nite di�erence schemes such as the Wilson h, Newmark and Houbolt methods, for the same time

step size for the cases considered. Ó 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently, the introduction of the dual reciprocity boundary element method (DRBEM) [1±3] has been
bringing a major breakthrough in the BEM analysis of time-dependent problems. The DRBEM has been
widely recognized as a technique which can retain the boundary-only merit in the BEM analysis of general
nonlinear and linear time-dependent problems [3]. Nowadays, the application of the DRBEM to various
transient problems has been a subject of growing interest. The boundary integral equations for the
DRBEM are dependent only on geometrical data and free of interior cells. The resulting DRBEM for-
mulation of initial-boundary value problems is therefore expressed in the standard form of ordinary dif-
ferential equations of initial value problems, which can easily be solved by the mature time integrators.

In conjunction with the DRBEM discretization in space, the predominant numerical procedures cur-
rently used for time integration in analysis of elastodynamic problems are ®nite di�erence approximations
such as the Newmark, Houbolt and Wilson methods, which is similar to the situation in the FEM. In
compound sources of errors due to approximate representations of spatial and time derivatives, it is seen
that the accuracy and computing e�ciency of the resulting solutions depend greatly on the proper choice of
time-marching schemes.
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Some pioneer works on the DRBEM analysis of elastodynamics are due to Nardini and Brebbia [1]
and Loe�er and Mansur [4]. They have concluded that the Houbolt method is preferred in the DRBEM
since the arti®cial damping inherent with this method can e�ectively depresses in¯uence of higher modes
in the response. Kontoni and Beskos [5] also followed this idea to choose the Houbolt method in the
DRBEM analysis of dynamic elastoplastic problems. However, this conclusion is not in agreement with
the common sense in the FEM dynamics analysis that the Newmark method is normally preferred to
other methods [6]. There exist some de®nite shortcomings in the Houbolt method; it is recognized that
high numerical damping in the Houbolt method often impairs the accuracy of the solutions due to un-
desirable amplitude attenuation if large time step is used, especially for structural dynamic problems in
which the response is often dominated by the low-frequency components of the system [7]. Furthermore,
Hilber and Hughes [8] have pointed out that the self-starting is one of essentially desirable properties of a
competitive numerical integrator for most elastodynamic problems, while the Houbolt method necessarily
requires a distinct starting procedure and fails to satisfy this condition. The time integrators of such type
not only increase the programming labor but also may cause some complexity of computing. Numerical
experiment which preferred to the Houbolt method in [3,4] was an elastic wave propagation problem in
which the contribution of high frequency structural modes to the response is important. However, in the
cases of such type, the explicit algorithms are very e�cient and rather frequently used in practice [7]. In
addition, the time step size used in [3,4] was very small, and therefore, those experiments cannot ade-
quately provide an explicit comparison among a variety of integrators. It is clear from the preceding
discussions that there is still a strong need to further investigate various numerical integrators in the
DRBEM elastodynamic analysis.

On the other hand, Singh and Kalra [9] presented a comprehensive comparative study on the time in-
tegrators in the context of the DRBEM formulation of transient di�usion problems involving only the ®rst-
order time derivative. They concluded that the one step least squares algorithm was the most accurate and
e�cient numerical integrators among all the ones assessed. However, for the problems involving the Di-
richlet boundary condition, all time integration methods used in [9] encountered a sharp drop in accuracy
and e�ciency of computation. Very recently, the present authors [10] employed the di�erential quadrature
method (DQM) to approximate the ®rst-order time derivative in the DRBEM analysis of the same transient
di�usion problems investigated in [9]. It was found that the obtained solutions of the Dirichlet problems are
very accurate with comparatively much less computing e�ort than the other existing methods. This work
has also revealed that the ine�ciency of the DRBEM analysis of the Dirichlet problems reported in [9] are
due to the numerical integrator in time rather than the DRBEM discretization in space.

The success in applying the DQM for the di�usion problems has been encouraging the present authors to
further extend the method along with the DRBEM to the elastodynamic problems with the second-order
time derivatives. This paper also places emphasis on a comprehensive comparative study of various
standard time-marching schemes in the context of the DRBEM formulation of elastodynamic problems.
The in-plane forced vibration of plates and the transverse free vibration of membranes are taken as nu-
merical examples because their analytical solutions are easily obtainable.

The DQM [11,12] may not be well-known in computational community due to its recent origin. The
method can be regarded as the ``direct approach'' of the traditional collocation method in the sense that the
governing equations are analogized in terms of physical variables instead of usually ®ctitious expansion
coe�cients. Some details on this method are presented. It has been well known that the DQM as well as the
collocation method shows the exponential rate of convergence. The weakness of this method is its ¯exibility
for irregular geometry. Since the time domain has no such di�culty, the strengths of higher-order accuracy
of the DQM can be fully exploited in approximating the time derivatives. In addition, the DQM also holds
the unconditionally stable feature for accuracy of order more than two. This is due to the fact that the
method is not a traditional time step scheme and circumvents the rigorous limitation of accuracy for un-
conditionally stable algorithms due to Dahlquist theorem [13]. On the other hand, the DQM advances
progressively in time domain element-wisely from the initial state, and thus keeps the simplicity and ¯ex-
ibility of the standard time step methods. The resulting set of algebraic equations is in fact the Lyapunov
matrix equation and can be very e�ciently solved by the well-established Bartels±Stewart algorithm [14].
The total computing e�ort required in the DQM is comparable to the common implicit step methods.
Following the ideas of recent work by Wang and Bert [15] for boundary value problems, this paper also
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develops a simple technique to exactly satisfy all the initial conditions in the DQM analogue of the dynamic
systems with the second-order time derivatives.

2. Vibration of plates and membranes

The governing di�erential equation for the longitudinal vibration of plates and the transverse vibration
of membranes can be expressed as

r2u�x; t� � 1

c2

o2u�x; t�
ot2

; x 2 X; �1�

subject to the initial conditions:

u�x; 0� � u0�x�; �2a�

_u�x; 0� � v0�x�; �2b�
and the displacement and traction boundary conditions:

u�x; t� � u�x; t�; x � Cu; �3�

T �x; t� � T �x; t�; x � CT ; �4�
where T � ou=on, in which n is the unit outward normal. It is assumed that the domain X 2 R2 is bounded
by a piece-wise smooth boundary C � Cu � CT .

In this study, the three typical vibration problems of plates and membranes with analytical solutions
available in the literature are considered to evaluate the performances of the DQM, Newmark, Houbolt
and Wilson methods in conjunction with the DRBEM spatial discretizations. The spatial variable domains
of the test problems are square. It is noted that the analytical solutions of the longitudinal vibration of
square plates considered are in agreement with those of one-dimensional rod cases [3,23].

2.1. Vibration of plate subjected to periodic in-plane force

The initial conditions of this case are assumed as

u�x; 0� � 0; �5a�

_u�x; 0� � 0; �5b�
and the boundary conditions are speci®ed as

u�x; t� � 0; x1 � 1; �6a�

T �x; t� � 0; x1 � 0; x2 � 0:1: �6b�

When a periodic in-plane force

p � P cos
3p
8a

����
E
q

s
t �7�

is applied at the left side of plate as shown in Fig. 1, we can derive the analytical solution [16,17]:

u � 8

p2

Pa
EA

X1
i�1

�ÿ1�iÿ1

�2iÿ 1�2 ÿ 9=16

 !
sin

2iÿ 1

2a
px1

� �
cos

3p
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����
E
q

s
t

 
ÿ cos

�2iÿ 1�p
2a

����
E
q

s
t

!
; �8�
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where a denotes the length of the plate edges; A is area of cross-section; E is the Young modulus and p the
density of the plate material. The traction can be obtained by

T � EA
ou
ox
: �9�

2.2. Free vibration of membranes

It is assumed that a square membrane of a� b is released from rest in an initial position and velocity, i.e.,

u�x; 0� � ax1

ÿ ÿ x2
1

�
bx2

ÿ ÿ x2
2

�
; �10a�

_u�x; 0� � 0: �10b�
The boundary conditions are given by

u�x; t� � 0 at x1 � ÿa; a and x2 � ÿb; b: �11�

By using formulas given in [18], the analytical solution for this case is given by

u�x; t� �
X1

m;n�1

162a2b2

p6

1ÿ �ÿ1�m
m3

1ÿ �ÿ1�n
n3

sin
mpx1

2a

� �
sin

npx2

2b

� �
cos �kmnct�; �12�

where

c �
����
T
q

s
; k2

mn � p2 m2

4a2

�
� n2

4b2

�
;

T and q are tension and density, respectively.

2.3. Vibration of plate subjected to Heaviside-type impact load

In this case, the initial and boundary conditions are the same as Eqs. (5a)±(6b) of example 1. An impact
load of Heaviside-type

p � P ; t P 0 �13�

Fig. 1. Linear elements and interior points of a square plate.
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is enforced at the left side of plate as shown in Fig. 1. The analytical solution is given by [17]

u � 8

p2

Pa
EA

X1
i�1

�ÿ1�iÿ1

�2iÿ 1�2 sin
�2iÿ 1�px1

2a
1

 
ÿ cos

�2iÿ 1�p
2a

����
E
q

s
t

!
: �14�

The traction can be evaluated by Eq. (9).

3. DRBEM discretization in space

The governing equation (1) can be weighted by the fundamental solution u� of Laplace operator as
follows:Z

X

1

c2

o2u
ot2

�
ÿr2u

�
u� dX � 0: �15�

Applying GreenÕs second identity to Eq. (15) yields

diui �
Z

C
T �u� ÿ u�T � dC � ÿ

Z
X

1

c2

o2u
ot2

u� dX; �16�

where subscript i denotes the source point, T � � ou�=on, and di �
R

X d�f; x� dX: The dual reciprocity
method transforms the domain integral on the right-hand side of Eq. (16) by means of a set of coordinate
function f j�x�:

�u�x; t� �
XN�L

j�1

f j�x��aj�t�; �17�

where the superimposed dot represents the time derivative, aj are unknown functions of time, and N and L
are the numbers of the boundary and selected internal nodes, respectively. The coordinate functions used in
this paper were presented by Wrobel and Brebbia [2]. These functions are also linked with wj�x� through

r2wj � f j: �18�
Therefore, we haveZ

X

o2u
ot2

u� dX �
XN�L

j�1

Z
X

u�r2wj dX: �19�

Eq. (15) can ®nally be reduced to

diui �
Z

C
T �u� ÿ u�T � dC �

XN�L

j�1

diw
j
i

�
�
Z

C
T �wjÿ ÿ u�gj

�
dC

�
�a
c2
; �20�

where gj � owj=on. Note that wj and f j are known functions. The resulting DRBEM formulation for the
present transient elastodynamic problems is given by

M�u�Huÿ GT � 0; �21�
where M � �GE ÿHW�Fÿ1 is the mass matrix; H and G denote the whole matrices of boundary element
with kernels T � and u�, respectively. F, W and E are comprised of the coordinate function column vectors f j,
wj and gj. The discretization procedure in detail can be found in [3].

If displacement boundary conditions are involved in the problems, Eq. (21) is a di�erential algebraic
system. By using an approach of matrix partition [1,2]

u � u1

u2

� �
and T � T1

T2

� �
; �22�
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where u and T are divided into two parts corresponding to Cu and CT parts of the boundary, we can in
general have

M̂�u2 � Ĥu2 �Mu1 �Hu1 � GT2: �23�

In particular, we have

M̂�u2 � Ĥu2 � GT2 �24�

for forced vibrations when only external traction is applied, which is the case for examples 1 and 3 in this
study. Note that all excitation sources are placed in the right-hand side of Eq. (24). All the coe�cient
matrices of these equations are dependent only on the geometric data of the problem. The remaining so-
lution procedure is the same as the treatment of the standard initial value problems. The desired traction
can be easily calculated after the solutions of the above di�erential system are accomplished.

The linear element (DC � 0:1) was employed in the present DRBEM discretization as shown Figs. 1
and 2. For examples 1 and 3, one internal point is placed in the center of domain, as shown in Fig. 1. For
example 2, 33 internal points are used due to the fact that a homogeneous boundary condition u � 0 is
applied at all the boundary (Fig. 2).

4. DQM approximation in time

The DQM is in fact a variant of the standard collocation methods. The advantages of the DQM over the
latter were well established in [11,19]. First, the practical physical values are directly computed in the DQM,
whereas the collocation methods use the indirect expansion (spectral) variables. This greatly simpli®es
implementations and manifests the DQM in easy-to-choose starting solutions of nonlinear iterations. It is
noted that the ®ctitious expansion variables in the collocation methods usually have not physical meanings
and are therefore di�cult to choose initial iterative solutions for nonlinear problems [20]. Second, the DQM
provides more ¯exibility to choose grid points to enhance the rate of convergence [19]. For more details of
the method see [11] and references cited therein.

The DQM analogue of the ®rst- and second-order derivatives of function f �t� can be expressed as

df �t�
dt

����
ti

�
XN

j�1

Aijf �tj�; �25a�

Fig. 2. Linear elements and interior points of a square membrane.

2336 M. Tanaka, W. Chen / Comput. Methods Appl. Mech. Engrg. 190 (2001) 2331±2347



d2f �t�
dt2

����
ti

�
XN

j�1

Bijf �tj�; i � 1; 2; . . . ;N ; �25b�

where tjÕs are the discrete points in the temporal variable domain. f �tj� is the function values at these points,
Aij and Bij are the related DQM weighting coe�cients for the ®rst- and second-order derivatives, respec-
tively. In the present study, the Chebyshev±Gauss±Lobatto collocation points are used in each time element
of the DQM, namely,

ti � s
2

1

�
ÿ cos

iÿ 1

N ÿ 1
p

� ��
; i � 1; 2; . . . ;N ; �26�

where s denotes the length of DQM time element and N is the number of grid points.
The DRBEM formulations (23) and (24) can be expressed as the standard form

�u� Ku � f ; �27�
where K � M̂ÿ1Ĥ is sti�ness matrix. By using simple algebraic transformation

z � uÿ u0 ÿ v0t � v0t0; �28�
where t0 is the initial instance of each DQM time element, Eq. (27) is restated as

�z� Kz � F; �29�
where F � f ÿ Ku0 ÿ Kv0t � Kv0t0, and the respective two initial conditions (2a) and (2b) are set zero,
namely,

zjt�t0
� 0; �30a�

_zjt�t0
� 0: �30b�

The above transformation is a key step to apply initial conditions exactly in the DQM approximation of the
second-order time derivative. The DQM analogue of the ®rst-order time derivative can be stated as

Afzg � f_zg; �31a�
according to the initial condition (30a), and

Af_zg � f�zg �31b�
according to the initial condition (30b), where A is yielded by removing the ®rst column of the original
DQM weighting coe�cient matrix A in Eq. (25a). Substituting Eq. (31a) into Eq. (31b), we have

AAfzg � Bfzg � f�zg; �32�
where the modi®ed DQM coe�cient matrix B is �N ÿ 1� � �N ÿ 1� dimension. It is stressed that the initial
conditions speci®ed in Eqs. (30a) and (30b) have been built into the modi®ed coe�cient matrix B. The
above scheme is an analogy with the recently developed technique in applying boundary conditions for the
DQM solution of high-order boundary value problems presented by Wang and Bert [15].

In terms of approximate formula (32), Eq. (29) can be analogized as

ZB
T � KZ � F�t�; �33�

where B
T

is a transpose of modi®ed DQM weighting coe�cient matrix B with the inclusion of two initial
conditions given in Eqs. (30a) and (30b). It is noted that Z in Eq. (33) is a rectangular matrix rather than a
vector. Therefore, Eq. (33) is a Lyapunov matrix equation. The present DQM procedure discretizes the
time variable in the element-wise way, which is somehow di�erent from the standard step-wise solution of
single step or multi-step integration. In other words, the present methodology is to advance element by
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element and the multiple grid points are employed in each time element to keep high accuracy of solution. It
is worth stressing that the DQM advances progressively in time and thus can maintain the simplicity and
¯exibility of the common time step methods.

4.1. Solver of Lyapunov matrix equations

It is easy to transform the resulting algebraic formulation of the Lyapunov equation (33) into a standard
form of simultaneous algebraic equations applicable to being solved by the LU decomposition method.
However, such procedure will fail to fully utilize the special structure inherent with the Lyapunov equation
so that the computing e�ort is not necessarily high. In the present study, the so-called Bartels±Stewart
algorithm [14] was utilized to solve the Lyapunov algebraic matrix equation (34). The performances of this
method are very e�cient, stable and accurate. The solution procedures include the following four steps:

Step 1. Reduce K and B
T

of Eq. (34) into certain simple form via the similarity transformations
G � Pÿ1KP and R � Vÿ1B

T
V :

Step 2. Q � Pÿ1FV for the solution of Q.
Step 3. Solve the transformed equation GY � YR � Q for Y.
Step 4. Z � PYVÿ1.
The time-consuming calculation of O�M3� scalar multiplication is required only in Step 1 for Eq. (29) of

M dimension, while all implicit step methods also demand O�M3� operations using LU decomposition.
Moreover, operation in Step 1 need be done only once. On the other hand, Steps 2±4 of the Bartels±Stewart
algorithm need be executed repeatedly in each time element, which requires O�M2� multiplication. The
standard step methods also demand analogous computational effort in each time step. Therefore, the
present DQM scheme is comparable in computing effort to that of the normal step implicit methods.

4.2. A-stability

It is centrally important whether or not an algorithm is stable in the integration solution of ordinary
di�erential equations. It is known that the collocation method is A-stable [20] which is, in the terminology
of computational structural dynamics, unconditionally stable. Therefore, the DQM is also unconditionally
stable due to the actual equivalence to the collocation method.

4.3. Error estimation and accuracy

The accuracy of the algorithms is of vital importance in computing e�ciency and closely related to the
truncation error. The error estimator of the DQM approximation of the second-order derivative of
function f �t� is given by Chen [12]

jRij6K � erri � DtNÿ1; i � 1; 2; . . . ;N ; �34�
where K � maxfjf �N��n�j; jnif �N�1��n�jg; erri denotes the error constants dependent on grid spacing and
can be obtained easily, N the number of grid points in the DQM time element and Dt is time step size.

According to formula (34), the accuracy of the DQM is O�DtNÿ1�, for example, ten-order of accuracy
when N � 11. Due to Dahlquist [13], there is no third-order accurate unconditionally stable linear multi-
step method, and the maximum order of accuracy in the step methods up to two in order to preserve the A-
stability. The DQM is not a traditional multi-step algorithm and therefore circumvents this rigorous
limitation of solution accuracy. The DQM can produce accurate solutions by using larger time step, while
still attaining the desirable A-stability merits.

5. Results and discussion

In this section, the numerical results of three examples in Section 2 are provided and discussed based a
performance comparison of the DQM, Newmark, Houbolt and Wilson methods in conjunction with the
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DRBEM spatial discretization. Parameters a � 0:25 and d � 0:5 are taken in the Newmark method and
h � 1:4 in the Wilson method as in [21]. The coordinates of the displacement, traction and time are di-
mensionless as uE/Pa and TA/P for plate, and ct where c � 1=a

���������
E=q

p
for plates and c � ���������

T=q
p

for
membrane. In this study,

Dt � c
s
N
; �35�

where s is the length of the DQM time element, N denotes the number of grid points in the time element and
is taken as 11. Dt represents the average two-point spacing, which is analogous to the time step size in the
usual time step methods.

Figs. 3 and 4 display the solutions of time±displacement curves at point A of Fig. 1 for the longitudinal
vibration of square plate subjected to a periodic in-plane force. It is found from Fig. 3 that all methods
provide the exact results using su�ciently small time step Dt � 0:1. It is also noted that various ®nite
di�erence methods confront some small attenuation of amplitude and overshoot for long-term response,
while DQ method always gives the very accurate solutions. On the other hand, this also reveals high degree
of accuracy of the DRBEM spatial discretization. When a larger time step D � 0:5 is employed, Fig. 4
illustrates quite distinct performances of various di�erent time-marching schemes. It is observed that the
DQM produces strikingly much more accurate solutions than all other time schemes. This demonstrates the
superb converging rate and accuracy of the DQM. The Wilson method is found obvious overshoot. In fact,
the solutions in long-term response by the various ®nite di�erence schemes using the large time step
Dt � 0:5 is not acceptable in engineering accuracy for this case.

The time±traction response curves at ®xed point B of Fig. 1 for the same example 1 are shown in Figs. 5
and 6. As in the displacement situations, the response by all these methods closely traces the analytical
solution curve for the small time step size Dt � 0:1 as shown in Fig. 5. However, as the time step becomes
larger Dt � 0:5, the solutions of the traditional ®nite di�erence schemes including the Newmark, Houbolt
and Wilson methods encounter a sharp drop of accuracy for the long-term response as shown in Fig. 6,
while the DQM results always remain in very good agreement with analytical solutions. The Wilson so-
lution is found a strong oscillation at the initial response and evident overshoot in long-term response.
Also, all ®nite di�erence schemes produce a manifest phase shift.

Figs. 7 and 8 illustrate the analytical and numerical displacement±time curves at central point C of free
vibration of a square membrane. As is expected, all methods produce the exact solutions using the small

Fig. 3. Displacement curve at point A of a square plate subjected to a periodic in-plane force �Dt � 0:1�.
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time step Dt � 0:1 shown in Fig. 7. Among them, the Houbolt solutions have visible phase shift. Signi®cant
di�erences in numerical accuracy, amplitude attenuation, and phase shift are easily observed from Fig. 8
when using larger time step Dt � 0:5. Except for the DQM, all other methods have a great loss of accuracy
and evident phase shift. The amplitude attenuation is clearly noted in the Houbolt and Wilson methods,
especially in the former due to the excessive arti®cial damping. To provide more insights into the distinct
performances of these methods under coarse time step, Fig. 9 also plotted the normal derivative curves at
the boundary point D in Fig. 2. using Dt � 0:5. Again, the DQM shows the high accuracy, while the

Fig. 4. Displacement curve at point A of a square plate subjected to a periodic in-plane force �Dt � 0:5�.

Fig. 5. Traction curve at point B of a square plate subjected to a periodic in-plane force �Dt � 0:1�.

2340 M. Tanaka, W. Chen / Comput. Methods Appl. Mech. Engrg. 190 (2001) 2331±2347



Newmark, Houbolt and Wilson methods have a great drop in the solution accuracy and apparent phase
shift. In particular, undesirable high numerical damping of the Houbolt method is also observed from
Fig. 8.

In conclusion of the above two examples, there are essential di�erences in the accuracy, amplitude at-
tenuation and phase shift behaviors between the DQM and the standard di�erence schemes if large time
step is chosen for computing economy. This is easily explained by the fact that the DQM is characterized as
high accuracy and rate of convergence we referred to din Section 4. It is commonly known that for periodic
system analysis, the major factors a�ecting accuracy of a given method should be truncation error,

Fig. 6. . Traction curve at point B of a square plate subjected to a periodic in-plane force �Dt � 0:5�.

Fig. 7. Displacement curves at center point C of free vibration of a square membrane with initial displacement �Dt � 0:1�.
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numerical damping, and frequency distortion. From the theoretical analysis in Section 4.3 and the given
numerical experiments, it is concluded that the DQM retains much higher truncation error and less fre-
quency distortion than the Newmark, Houbolt and Wilson methods.

Example 3 is the longitudinal vibration of a square plate subjected to a Heaviside-type impact. The
DQM is tested along with the standard Newmark, Houbolt and Wilson methods. The numerical responses
of both displacement at point A and traction at point B are depicted in Figs. 10±14 compared to the
corresponding analytical solutions. For small time step Dt � 0:1, it is found from Fig. 10 that all schemes

Fig. 8. Displacement curves at center point C of free vibration of a square membrane with initial displacement �Dt � 0:5�.

Fig. 9. Normal derivative curve at edge point D of free vibration of a square membrane with initial displacement �Dt � 0:5�.

2342 M. Tanaka, W. Chen / Comput. Methods Appl. Mech. Engrg. 190 (2001) 2331±2347



can yield the exact solutions of the time±displacement curve. However, as was seen in the previous examples
1 and 2, Fig. 11 shows that the Newmark, Houbolt and Wilson methods confront an obvious fall in so-
lution accuracy when using large Dt � 0:5. Also, an evident amplitude attenuation and phase shift is ob-
served in the Houbolt method. The DQM remains the exact solutions for Dt � 0:5 and behaves very well
over any other methods.

High-order modes have a strong e�ect on the traction response behavior of example 3. This fact is easily
observed from Figs. 12±14. It is seen from Fig. 12 that the solutions of all methods have oscillations when
very small step size Dt � 0:05 is employed. Among them, the Houbolt method gave the best solutions with
the smallest ¯uctuations. The high arti®cial damping of the Houbolt method becomes bene®cial in this case.
This is one of the major reasons in [3,4] to conclude that the Houbolt method is preferred over the other

Fig. 10. Displacement curve at point A of a square plate subjected to a Heaviside-type impact �Dt � 0:1�.

Fig. 11. Displacement curve at point A of a square plate subjected to a Heaviside-type impact �Dt � 0:5�.
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®nite di�erence schemes. However, as mentioned previously, it was generally recommended that the explicit
method is more e�cient for this type of problems in which the high and intermediate frequency components
have important a�ect on the response [7]. The explicit methods are much cheaper and simpler than the
implicit algorithms. The weakness in the explicit methods lies in that the numerical stability requires em-
ploying the very small time steps. In such case, the explicit methods are much more advantageous in ap-
plying the small time step size than the implicit Houbolt method. We con®ne our attentions in this paper
within the implicit methods. For more details on explicit methods see [22].

To investigate the a�ect of step size on the oscillations of the traction solutions, Figs. 13 and 14 illustrate
respectively the traction curves using time step Dt � 0:1 and Dt � 0:4. It is found from Fig. 13 that the

Fig. 12. Traction curve at point B of a square plate subjected to a Heaviside-type impact �Dt � 0:05�.

Fig. 13. Traction curve at point B of a square plate subjected to a Heaviside-type impact �Dt � 0:1�.
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Houbolt method loses some solution accuracy, while the oscillations of the DQM and Newmark method
become somewhat weak when using time step Dt � 0:1. The Wilson method emerges comparatively the best
time scheme with Dt � 0:1. Furthermore, Fig. 14 depicts the traction curves of the DQM and the Houbolt
method. We can ®nd that the oscillation of the DQM solutions using Dt � 0:4 is much less than using
Dt � 0:05 in the reference of Fig. 12. Mansur and Brebbia [23] also pointed out the evident relationship
between time step size and traction solutions noise of this case, in which a di�erent BEM technique rather
than the DRBEM was used to handle domain integral. It is also noted here that the accuracy of the DQM
using Dt � 0:4 is almost the same as that of the Houbolt method using Dt � 0:05, while the Houbolt
method confronts a great loss of accuracy employing Dt � 0:4. By comparing behaviors of various methods
in Figs. 12±14, it is concluded that for the Houbolt method, the time step should necessarily be small
enough to produce adequately accurate solutions. In contrast, the DQM method can smooth the solutions
and alleviate the oscillation e�ect of high-order modes by using the larger time step. From the viewpoint of
computational economy using coarse time step, the DQM appears the method of choice for this case.

The foregoing discussions indicate that, for the cases where response is primarily dominated by low and
intermediate frequency modes, the DQ method exhibits an impressive advantage in the solution accuracy.
For the systems on which high modes have important a�ect such as the traction analysis of example 3, the
DQM is preferred if the large time step is employed and the Houbolt method is the best for the very small
time step. However, an explicit algorithm should be considered at ®rst for such type of dynamic systems. It
is conceivable that the DQM with other type of basis functions such as harmonic basis functions [24] may
yield better characteristics traction analysis of example 3. This is left for further study. Whether the nu-
merical oscillation in computing traction of example 3 is partly due to the spatial discretization also requires
further investigation.

6. Conclusions

Some important characteristics of numerical integrators for elastodynamics problems have been ex-
amined in detail through numerical experiments. It is found that although the Houbolt method seems
predominant currently in the solution of the DRBEM formulation of elastodynamics problems [1,3±5],
excessive numerical damping in the method can have a very detrimental e�ect on the accuracy of solutions
if large time step is employed, and strengthens the case of applying an alternative method. Based on the

Fig. 14. Traction curve at point B of a square plate subjected to a Heaviside-type impact.
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present study, we conclude that the Newmark method should be in general preferred in the context of the
DRBEM formulations of elastodynamics problems in comparison with the Wilson and Houbolt methods.

In this paper, we have applied the DQM to approximate temporal derivative in conjunction with the
DRBEM spatial discretization for three typical elastodynamics problems. It is validated through theoretical
analysis and numerical experiments that the DQM holds the desirable attributes of unconditional stability
yet has higher-order of accuracy than the standard ®nite di�erence integrators such as the Newmark,
Houbolt and Wilson methods. An e�ective approach applying the initial conditions was developed in this
paper by analogy with a recent work by Wang and Bert [15] in the DQM solution of high-order boundary
value problems. The use of the Bartels±Stewart algorithm greatly reduces the computational e�ort of the
DQM to comparable level of the normal implicit ®nite di�erence methods. However, the special procedure
of the Bartels±Stewart algorithm increases the complexity of the programming. The robustness and su-
perior accuracy of the DQM over the traditional ®nite di�erence schemes are clearly observed by com-
paring the numerical results of three examples. The DQM appears to be a promising technique in practical
engineering computations. Further evaluation of this method should be bene®cial.

How to satisfy all initial conditions exactly is a key step to successfully implement the DQM to analogize
the second-order derivatives in time. There exist two competitive approaches employing multiple boundary
conditions in the DQM solution of high-order boundary problems [11,12,15,25]. This paper follows the
basic idea in [15] to incorporate initial conditions into the modi®ed DQM coe�cient matrix. It is still
possible to develop a di�erent approach by analogy with the strategy in [12,25]. In addition, the choice of
grid spacing in each DQM time element should have some e�ect on the solution accuracy as in the DQM
solution of boundary value problems. The study of the above these problems are now under way.
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