Journal of Computational Physié$3,452—-466 (2000) :
doi:10.1006/jcph.2000.6576, available online at http://www.idealibrary.col DE &L

Free Vibration Analysis of Curvilinear
Quadrilateral Plates by the Differential
Quadrature Method

C. Shu¥ W. Chen’ and H. D4

*Department of Mechanical and Production Engineering, National University of Singapore, 10 Kent Ridge
Crescent, Singapore 119260; ap8chool of Mechanical and Production Engineering,
Nanyang Technological University, Nanyang Avenue, Singapore 639798

Received June 15, 2000; revised June 22, 2000

A methodology for applying the differential quadrature (DQ) method to the free
vibration analysis of arbitrary quadrilateral plates is developed. In our approach, the
irregular physical domain is transformed into a rectangular domain in the compu-
tational space. The governing equation and the boundary conditions are also trans-
formed into relevant forms in the computational space. Then all the computations
are based on the computational domain. As compared to the approach proposed by
C. W. Bert and M. Malik [nt. J. Mech. Sci38, 589 (1996)), the present approach
requires much less computational effort and virtual storage. In addition, the present
work uses a simple and convenient way to implement clamped and simply supported
boundary conditions. An exact mapping technique is used to perform the coordinate
transformation in this study. Some numerical examples are provided to show the
computational efficiency of the present scheme; 2000 Academic Press

Key Wordsdifferential quadrature method; vibration analysis; arbitrary quadrilat-
eral plates; coordinate transformation.

INTRODUCTION

Inrecent years, the differential quadrature (DQ) method has become increasingly pop
in the numerical solution of initial and boundary value problems [1]. The advantages of |
DQ method lie in its easy use and flexibility with regard to arbitrary grid spacing. Compar
to the conventional low-order numerical techniques such as the finite element and fi
difference methods, the DQ method can yield accurate solutions with relatively much fe\
grid points. On the other hand, it is well known that the strength of the finite eleme
method is its ability to handle irregular geometry with curved boundaries. In previol
applications, the DQ method was limited to distributed parameter systems or proble
with regular domains. Recent studies have extended the application of the DQ metho
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solving relatively complex problems. Shu [2] presented a DQ multidomain approach
fluid mechanics problems with irregular domains. Lam [3] introduced a mapping technic
to apply the DQ method to conduction, torsion, and heat flow problems with arbitre
geometries. These applications involved the second-order differential systemet &triz
[4] and Wang and Gu [5] developed two different schemes for a DQ element to analy
some realistic structural problems with discontinuous loads or geometry. Bert and M:e
[6] made the first attempt to apply the DQ method to the vibration analysis of irregul
plates. Liew and Han [7, 8] also used a similar approach to analyze irregular quadrilat
thick plates. All these efforts show that the element and mapping techniques can extent
DQ method to general geometry problems while retaining its attractive features of ra
convergence and high accuracy.

The contribution of Bert and Malik [6] is that they were the first to handle curvilinez
geometries involving structural mechanics problems in fourth-order differential syster
The difficulties of the high-order systems lie in the complexity of the governing and bound:
equations. In Bert and Malik's approach, the matrices of the first-order derivativesn th
andy directions are first formed by the DQ method. Then by using the differential cha
rule and matrix multiplication techniques, the matrices for the discretization of the high
order derivatives are obtained. It is noted that the idea of Bert and Malik’s approach is v
simple. However, the computational effort and virtual storage required by Bert and Mali
approach are very large. Actually, the dimension of the matrix by matrix multiplicatic
in Bert and Malik’s approach isNxNy) x (NxNy), which is much larger tharNy x Ny)
used in the regular domain. Herldy and Ny represent the numbers of grid points along
the x andy directions. Therefore, the computational effort for a matrix multiplication i
proportional to the order ofNx Ny)*# scalar multiplications. In contrast, the traditional DQ
application to two-dimensional problems with regular domains only involves on the ordet
(NxNy)? scalar multiplications. Therefore, Bert and Malik's approach requires much larg
computational effort in comparison to the application of DQ to regular domain problen
especially for a large number of grid points.

The boundary condition equations used by Bert and Malik [6] involve the angle betwe
the normal to the plate boundary and thaxis. When applied to problems with complex
curvilinear boundaries, this may increase the programming and computing effort by hav
to obtain the value of the angle at each boundary point. Another problem in Bert and Mal
approach is that cubic serendipity shape functions are used to map plate configurations
ing curvilinear edges. As pointed out by Campion and Jarvis [9], geometric mapping is m
demanding for a large element, which is often employed in high-order or global numeri
techniques such as the DQ method. In some cases, the cubic serendipity shape func
are sufficiently accurate for mapping the irregular domain into a square region. Howe'
for complex geometries, it is necessary to employ more accurate mapping techniques |

This paper focuses on the DQ vibration analysis of irregular plates. Some innovati
are presented to cure the above-mentioned deficiencies in Bert and Malik’s approach.
we derive the governing and boundary condition equations of a vibrating plate in the cul
linear coordinate system (computational space). By using these equations, the convent
differential quadrature rule on the rectangular domain can be directly extended to hat
the complex geometry problems. Therefore, only the original DQ weighting coefficients
each direction are involved, and the procedure of the reformation of the quadrature r
in Bert and Malik [6] is no longer needed. Second, an approach is presented to implen
the boundary conditions, which does not involve the angle between the normal to the
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boundary and th& axis. The implementation of this approach is very simple, especiall
for the simply supported condition. Third, following the approach proposed by Shu and
[11, 12], two boundary conditions at each boundary are exactly satisfied in the present s
while, in contrast, only one boundary condition is exactly satisfied at-teehnique imple-
mented by Bert and Malik [6]. Therefore, the drawbacks ofstiiechnique are eliminated.
Another improvement in the present work is to employ exact mapping for the coordin:
transformation. Exact geometric mapping circumvents the effects of the inaccuracies of
mapping on the DQ solutions. Finally, some numerical examples are provided to dem
strate the computational efficiency of the present approach.

2. DIFFERENTIAL QUADRATURE METHOD

One of the key issues in the DQ method is how to determine its weighting coefficier
The earlier approach, which required solving algebraic equations with an ill-condition
Vandermonde matrix, is neither efficient nor accurate when the number of grid pointsis la
[13]. By using the analysis of a high-order polynomial approximation and of a linear vect
space, Shu and Richards [13] presented a simple algebraic formulation or a recurre
relationship to compute the weighting coefficients of the DQ method. Fonttherder
derivative of a functionf (x, t) with respect tox at a grid pointx;, the DQ approximation
can be expressed as

N
VD= ¢ fxt, n=12... . N-1 i=12..N (1)
k=1

whereN is the number of grid points in the whole domain aﬁﬁ are the weighting coef-
ficients to be determined by the DQ method. As shown in the work of Shu and Richards
and Shu and co-workers [11-14], the weighting coefficients of the first-order derivative c
be calculated by a simple algebraic formulation without any restriction on the choice of g
point distribution, and the weighting coefficients of the second- and higher-order deri
tives can be computed from a recurrence relationship. For details of these computati
the reader is advised to refer to Refs. [2, 11-14].

3. COORDINATE TRANSFORMATION FROM PHYSICAL SPACE
TO COMPUTATIONAL SPACE

Like low-order finite difference schemes, the DQ method requires the computatiol
domain to be rectangular. For irregular domains, the DQ method cannot be applied dire
To apply the DQ method to such problems, a coordinate transformation is necessary;
is, the irregular physical domain is transformed into a regular computational domain.
example of coordinate transformation is shown in Fig. 1. The coordinate transformat
can be made using the expression

X = X(&, 1) (2a)
y=yE& n. (2b)

It is noted that Eq. (2) gives a one-to-one mapping from the physical sgag {0 the
computational spacé (n) or from the computational spacge §) to the physical space(y).
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FIG. 1. Physical and computational domains.

In the work of Bert and Malik [6]x (&, n) andy(&, ) are taken as the isoparametric shape
functions used in the finite element analysis. However, since the computational domail
the DQ method is much larger than that of finite elements, this kind of transformation nr
cause significant errors when the domain is large and any of the boundaries has a

curvature. To improve this, accurate transformation expressions are needed. The bler
function method is such a scheme, which was originated in a computer-aided design

and used by Malik and Bert [20] in the DQ application. In this study, we will introduce thi
technique for coordinate transformation.

Several kinds of blending functions are available. Defining the vacttér n) as

X(&, 77)]

V s =
en=[ye

the linear blending function gives [15]

1-— 1 1—
V(e ) = (’3) M(~1 1) + (ﬁ> ML ) + (2") M, 1)

2 2

+<1+’7)M(§’1)_WM(_1’ _]_)_WM(_L 1)
2 4 4

_WM(L—D—WM(LD’ ©

where the functiond/ (&, n) andM (&, ;) represent the four boundary parametric curves
of the original physical domain and the functibh(&;, ;) denotes the& andy coordinates
of the point corresponding to the coordina{és »;) in the computational space.
For the geometry shown in Fig. 2, EqQ. (3) gives
X, m) =[ra + @—ra)(n +1)/2] cosp( +1)/2), (4a)
yé. n) =[ra+@—ra)n+1)/2]sin(pE + 1)/2), (4b)

where

sin(r —a — @&/2)
q = - b
sin(p§/2)

o= —arcsin{g Siﬂ((pé‘/Z)}

)
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FIG. 2. An eccentric sectorial plate.

¢ is the angle of the sectorial plate,s the radius of the outer surfadejs the radius of
the inner surface, anglis the distance between two centers of eccentric surfaces. For t
geometry shown in Fig. 3, Eq. (3) is simplified to

X(€,n) = aE +1)/2, (5a)
yE, ) = —v/b2— (02— ) (¢ +1)/2+ 2n/b2 — (b2 — c?)(§ + 1)/2.  (5b)

Similarly, using Eg. (3), we have

X(&,7) = 0.75(1 + 1) + 0.25( + 1) cos(% — %g), (6a)
y(&, m) = 0.3751 — £)(L+ 1) + 0.25(1 — n) sin(’; — 7;;) (6b)
AY
4
A X
2]: 2C :
A
A 4
i a |-

FIG. 3. A symmetric, parabolic, trapezoidal plate.
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FIG. 4. A section of a right triangular plate with a corner cutout.

for the geometry shown in Fig. 4 and

X(&, 1) = (0.6255) + 2.6255 CoS((¢ + 1) /4), (7a)
y(&, 1) = (0.8755% + 1.8755 sin((€ + 1)7/4) (7b)

for the geometry shown in Fig. 5. Itis indicated that Bert and Malik [6], using a cubic sha
function, have also considered the geometries shown in Figs. 2 and 3. All of the ab
geometries will be used as test examples for the present study.

4. PLATE VIBRATION EQUATIONS IN THE CURVILINEAR COORDINATE SYSTEM

In this section, we will show the plate vibration equations in the curvilinear coordina
system so that the traditional DQ rules for regular domains [11] can be directly extende
the plate vibration problems with arbitrary quadrilateral domains. The equation govern

AY

(1.5, 1.5)

(3.25,0)

v

FIG.5. A quarter section of an elliptical plate.
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the free vibration of plates can be expressed as
Wyxxx 1 2wxxyy + Wyyyy = sz» (8)

whereQ = wa?/ph/D, D is the plate stiffnesd is the total plate thicknesg, is the
density,w is the deflection, and is the natural frequency of free vibration. The govern-
ing equation (8) can be transformed in ttge ) system (computational space) into the
form

~ (41 ~ (42 ~ (43 N (44 ~ (4 ~ (31)
D™ w geee + D w ey + D™ w gy + D w gy + DV w pppy + DV w g

+ 5(32)7‘),&&7 + 6(33)11),5,],7 + 5(34)w,rmn + 5(21)7‘),&& + 5(22)“),5'7

+ 5(23)7‘),?717 + S(ll)w.,é + 5(12)11),,7 = Q%w, 9)
where

DU — 52,

D“?2 — 2ab,

D“ = 2ac+ b2,

D“Y — 2ch,

5 — 2

D®Y = 2da+ 2ag + ba,,

D®? = 2bd 4 2ae+ 2ah: + 2ca, + ba: + bb,,

D®® = 2dc+ 2ac + 2be+ 2ch, + bb; + b,

D®¥ = 2ec+ 2cc, + bc:,

D@ = d? + 2ad. + da: + ea, + aa: + ba;, + ca,, + bd,,

D@ — 2de+ 2ae + 2cd, + db: + bd: + eb, + be, + ab; + bb., +cb,,,
D@ = € + 2ce, + dc: + ec, + ac: + ba, + cc,, + be,

D™ = dd + ed, + adk + bdk, + cd,,,

D2 = de + eg +ae; + be, +cey,

A 2B C B B: +C
a=—, b=", c=—, d=(A§+ ”), e=(§+ "),
J J J J J

o —B Y
A:_9 B=_9 C=_1
J J J

O[:Xg—i—yi, IB=X5X'7+yEyVI’ V=X52+y2, J=ngn—Xy,y;~.

The variable domain of Eq. (9) is a rectangle as shown in Fig. 1. It is noted that Eq.
with varying coefficientsD@) is much more complicated in form than Eq. (8). How-
ever, it should be indicated that, since the computational domain is regular, Eq. (9) «
be solved in exactly the same way as regular domain problems by using the |
method.
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Simply supported (SS) and clamped (C) boundary conditions will be considered in
present study. They are given as follows:

Clamped (C)
w =0, (10a)
2—1;} =0. (10b)
Simply Supported (SS)
w =0, (11a)
AT (11b)

wheren andt denote the normal and tangential directions, respectively. Equations (1(
and (11a) represent zero deflection, Eq. (10b) represents zero normal rotation, and Eq. |
represents zero normal moment. The zero deflection condition can be easily implemer
In the work of Bert and Malik [6], the zero normal rotation and moment conditions in tt
clamped and simply supported edges are expressed as

w x €0SH + w,ysing =0, (12)
(COS 0 + v Sir O)w xx+ (SIP 6 + v o )w yy +2(1 — v) cOsA SiNdw xy = 0, (13)

whered is the angle between the normal to the plate boundary ang-thes. It is noted
that Eq. (12) is equivalent to Eq. (10b), while Eqg. (13) is equivalent to Eq. (11b). In tl
following, we will show how to simplify Egs. (12) and (13) along the= constant and
n = constant boundaries in the curvilinear coordinate system.

For the clamped and simply supported edges, the defleetisralways zero. Thus, we
have

ow

-0 (14a)
an
9w
— =0 14b
o (14b)
on the¢ = constant boundaries, and
ow
= 1
T 0 (15a)
92w
— =0 15b
7 (15b)

on then = constant boundaries. On the other hand, we notétistthe angle between the
normal to the plate boundary and tkeaxis. So, along thé = constant boundaries, we
have
cosd = y,//a (16a)
sing = —x,/+«a. (16b)
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Using Egs. (14) and (16), the zero normal rotation condition (12) along theonstant
boundaries can be simplified to

Jw

i3
and the zero normal moment condition (13) along éhe constant boundaries can be
reduced to

=0 17)

32 28 3*w 3
w28 +s2% _ o, (18)
062 o 0&0n 0&

where
= i[(Otzy — 20BYey + B Y Xy — (@ Xex — 20BXey + B2Xy) Y]
= Ja2 33 Yen Ynn) Xy 3 £n ) Yn
vJ
+ ?(ynnxn — XpnYp)-
Similarly, along the; = constant boundaries, césnd sirp can be expressed as
COS = Y/ /¥ (19a)
sing = —X://v. (19b)

Therefore, Eq. (12) is reduced to

9
M _o (20)
an

and Eqg. (13) is simplified to

w28 3w taw

a2y 8gdn | an

=0, (21)
where
1 2 2 2 2
= J—j/z[(ﬁ X’;‘E - ZVﬂXsn + Y Xr]n)yé - (IB y&é - ZVIByEn + Y yr]n)xé]
vJ
+ F(eryé = YimXe)-

5. APPLICATIONS AND DISCUSSIONS

In this section, the DQ method is used to solve Eq. (9) governing the transverse vibra
of irregular plates. The independent varialeandy in the square computational domain
as shown in Fig. 1 range from1l to 1. Application of the DQ method to Eq. (9) gives

D" Df wig + D2 Cli Alywim + D By Bl wim + Df; Aj Cliicm + D} DIy im
+ D Clwig + DS B Al wim + DY A Bl wiem + DY Clwim + DY Bwy

+ Di(jZZ)AikA)}mwkm‘i‘ D(ZS) Bn Wim + Di(jll)Alkw + D(lZ)An mWim = Q° Wi j (22)
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fori, j =3,..., (N —2), whereAj, Bjj, Cij, andDj; with superscript§ andn denote
the weighting coefficient matrices of the first-, second-, third-, and fourth-order derivativ
along the¢ andn directions, and\N and M are the numbers of grid points along the
andn directions, respectively. The repeated intexeans summation from 1 4 along
the & direction, while the repeated index indicates summation from 1 el along then
direction. It is noted that all the DQ weighting coefficient matrices in Eq. (22) are obtain
in the same way as the application of the DQ method to regular domain problems. Itis nc
that Eq. (22) only involves the order df>?M? scalar multiplications.

Because vibration plate problems are actually high-order boundary value problems \
double boundary conditions at each edge, some careful consideration is needed to pro
implement the boundary conditions [11, 12]. To our knowledge, at least four kinds
approaches are available to implement such multiple boundary conditions. The earlie
the so-calleds-technique proposed by Begt al. [16] and widely used in the literature.
The approach enforces the geometric boundary conditions at the actual boundary p
and the derivative boundary conditions at theoints, which are a very small distance
8 (8=107° in dimensionless values [6]) away from the respective boundary. Thus, o
boundary condition cannot be satisfied exactly at the boundary points and the accurac
the solutions is affected. As mentioned earlier, arbitrariness in the choicedééhge may
introduce unexpected oscillations into the solution behavior. To overcome the drawba
of the § approach, Wang and Bert [18] developed a new technique which incorpora
the boundary conditions into the DQ weighting coefficient matrices in advance, and tf
the weighting coefficients with built-in boundary conditions are employed to discretize t
governing equations for the problems of interests. The essence of the approach is
the boundary conditions are applied during the formulation of the weighting coefficie
matrices for the inner grid points. The technique improves the accuracy of the DQ solut
for problems with simply supported conditions. However, the technique is limited to sim
problems due to its inability to handle problems with discontinuous geometry and load
as well as cross derivative boundary conditions. Céeal. [21] presented an efficient
approach to treat the fourth-order boundary conditions. More recently, Wang and Gu
presented a so-called differential quadrature element method (DQEM). The DQEM shq
flexibility in a variety of beam and beam structure problems with discontinuous geome
and loading. However, it also seems to have difficulty in covering problems with mix
partial derivative boundary conditions. An intuitive methodology is to directly implemer
the double boundary conditions exactly at the edge points. Shu and Du [11, 12] sho
a systematic use of the methodology in the solution of vibration problems for beams :
plates with various boundary conditions, including the first application to plates with fr
corners. The approach of Shu and Du is conceptually simple and effective for all ty
of boundary conditions. The idea of this approach is to replace the discretized goverr
equation by the discretized boundary condition equation for some interior points.

According to the above discussion, one can easily conclude that only the convestion:
technique and Shu and Du’s approach are capable of solving problems with cross deriv:
boundary conditions encountered in irregular geometry problems. It is well demonstra
in [11, 12] that the accuracy, simplicity, efficiency, and stability of Shu and Du’s approa
are consistently superior to those of theechnique. Therefore, in this study we adopt Sht
and Du’s approach to implement double boundary conditions at each edge.

In the present study, the mesh point distribution used in the work of Shu and Richa
[13] is adopted to generate the mesh points in the computational space. The algorith
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2b

FIG. 6. A rhombic plate.

carried out in FORTRAN 77 and is run on a HP C200 workstation using double precisi
arithmetic. The performance of the present method is demonstrated through the vibra
solution of plates with irregular geometry as shown in Figs. 2—6. Table | displays the fi
six frequencies of the flexural vibration of eccentric sectorial plates. The DQ results
obtained using a mesh size of 2121 for three cases of the SS-SS-SS-SS, SS-C-SS-
and C—-C-C-C configurations. It can be seen from the table that the present DQ res
agree very well with those given by Bert and Malik [6]. It should be pointed out that tr
differences between the present solutions and those in Bert and Malik [6] are due to
use of different approaches for coordinate transformation and implementation of multi
boundary conditions. Figure 7 shows the ratio of CPU time (present/reference [6]) Xersu
(the number of grid points in thedirection) for the vibration analysis of eccentric sectorial
plates. It is noted that the CPU time of Ref. [6] is also obtained on a HP C200. We edi
a program using the approach proposed in Ref. [6] and ran it on a HP C200. In this stt
the numbers of grid points used in tReandy directions are taken to be the same. It is
apparent that for the same number of grid points, solution by the present method reqt
much less CPU time than solution by Bert and Malik’s approach. It should be pointed ¢
that the computational effort in the solution of the resulting eigenvalue equation syst

TABLE |
Converged Solutions of the First Six Frequencies of Flexural Vibration of Eccentric Sectorial
Plates (Fig. 2:a/b=8/3,e/b= 1.0, ¢ = 4%, = wa?/w?/ph/D)

Mode
N=M 1 2 3 4 5 6
SS-SS-SS-SS
21 17.717 23.168 33.744 48.564 62.542 65.863
[6] 17.592 23.130 33.729 48.575 62.414 65.878
SS-C-SS-C
21 35.361 37.727 45,998 58.537 75.918 93.540
[6] 35.352 37.794 46.010 58.560 75.941 93.721
c-Cc-Cc-C
21 36.405 40.417 50.487 65.448 85.239 95.720

[6] 36.360 40.452 50.498 65.463 85.254 95.782
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FIG.7. Ratio of CPU time (present/reference [6]) verdug=M) for vibration analysis of eccentric sectorial
plates.

is the same in the present approach and Bert and Malik's approach. The computati
efficiency of the present approach comes from the fact that it does not involve on
order of N*M# scalar multiplications to obtain the discretization matrices for higher-ords
derivatives. It was found from Fig. 7 that the solution of the resultant eigenvalue equat
system dominates the CPU time in the present approach, while, in contrast, the oper:
of matrix multiplication accounts for most of the CPU time in Bert and Malik's approacl
On the other hand, by comparing solutions for plates with different boundary conditiol
it is seen that CPU time does not change much when the same number of grid poin
used.

The results of the first six frequencies of flexural vibration of symmetric parabolic trap
zoidal plates with C-C-C—-C, SS-C-SS—-C, and C-SS—C-SS boundaries are presen
Table 1l. It is noted that there is a small difference between the present solutions and tt
in Bert and Malik [6] due to the different implementation of the coordinate transformatic

TABLE Il
Converged Solutions of the First Six Frequencies of Flexural Vibration of Symmetric
Parabolic Trapezoidal Plates (Fig. 3:a/b = 3.0, b/c = 2.5; = wa?/w?+/ph/D)

Mode
N=M 1 2 3 4 5 6

C-C-C-C

17 9.3723 13.9641 19.7460 21.8375 27.2672 29.165C

[6] 9.3645 13.977 19.799 21.843 27.334 29.139

PV-2 RitZ2 9.3428 14.1186 20.0527 21.6208 27.6616 29.2138

SS-C-SS-C

17 8.5709 12.8800 18.0984 20.7258 24.6152 27.7824

[6] 8.5694 12.886 18.154 20.746 24.691 27.757
C-SS-C-SS

19 5.4742 9.9289 15.4196 16.1466 21.930 24.2740

[6] 5.4831 9.9535 15.424 16.178 21.942 24.306

2The solutions of the PV-2 Ritz method were provided by Mr. Yang Lei of the Civil Engineering Departme
of National University of Singapore.
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TABLE 11l
Converged Solutions of the First Six Frequencies of Flexural Vibration of a Right Triangular
Plate with a Corner Cutout (Fig. 4: © = wa?y/ph/D)

Mode
N=M 1 2 3 4 5 6

SS-SS-SS-SS

21 1.226 2.655 3.259 4.462 5.655 6.119
SS-C-SS-C

19 1.526 3.068 3.707 4.978 6.243 6.696

C-C-C-C
19 2.362 4.198 4.928 6.416 7.771 8.308

and the boundary conditions. Solutions of a C—C—C-C plate using the PV-2 Ritz mett
are also included in Table Il. It is observed that the DQ solutions agree very well wi
those yielded by the PV-2 Ritz method. It should be indicated that in the case of symme
parabolic trapezoidal plates with all edges simply supported, the present approach has f
convergence speed using unequal numbers of grid points than using equal numbers of
points along thé& andn directions. This coincides with Bert and Malik’s approach. For the
sake of brevity, we do not display the relative solutions here.

The vibration of irregular plates as shown in Figs. 4 and 5 was also investigated. To
authors’ knowledge, such plate configurations have never been analyzed before. There
these results are provided as benchmarks for future research. Both the present and Be
Malik’s approaches are applied to solve these problems. It was found that the two res
were almost the same. Table Il summarizes the first six frequencies of flexural vibratior
a right triangular plate with a corner cutout. Since the results of Bert and Malik’s approa
are almost the same as those of present approach, only the present results are sho
Table IIl. In Table 1V, the DQ solutions of the first six frequencies of flexural vibration of al
elliptical sectorial plate are given. It is noteworthy that the present DQ solutions obtain
with a mesh size of 1% 11 are very accurate. This may be due to less mapping distortic
being present. It is true for all the cases that grid distortion caused by geometric mapy
impairs the accuracy of the DQ method compared with that of DQ solutions of regu
domain problems.

TABLE IV
Converged Solutions of the First Six Frequencies of Flexural Vibration of Quarter Sections
of Elliptical Plates (Fig. 5: 2 = wa’?+/ph/D)

Mode
N=M 1 2 3 4 5 6
SS-SS-SS-SS
11 0.491 0.773 1.183 1.624 1.699 1.997
C-SS-C-SS
11 0.536 0.879 1.358 1.675 1.943 2.178
c-c-c-C

11 0.974 1.292 1.715 2.245 2.444 2.980
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TABLE V
Converged Solutions of the First 10 Frequencies of Flexural Vibration of Clamped
Rhombic Plate (Fig. 6:92 = wa?y/ph/D)

Mode

N=M 1 2 3 4 5 6 7 8 9 10

17 12.703 23.369 28.254 34.738 45948 48.969 49.794 61.130 65.361 745
[6] 12.703  23.369 — 34.738 45.948 48.969 49.794 61.130 65.362 74.53
[19] 12.70 23.37 28.25 34.74 45.95 48.98 49.79 61.13 — 74.54

Finally, Table V lists the first 10 frequencies of clamped rhombic plates when the ratio
the major and minor diagonal length® &) is 1.5 : 1. The geometry of these plates is showr
in Fig. 6. For this case, Bert and Malik [6] could not converge on the third frequency. Tt
may be due to the fact that one of the double boundary conditions at each edge is impos
the so-called pointin their approach, which is not exactly on the boundary. Itis claimed [€
that Gorman [19] gave the most accurate solutions of this case by using the superpos
method. The present DQ solutions agree very well with those given by Gorman [19]
is also interesting to note that Gorman [19] did not provide the ninth frequency for tt
problem.

6. CONCLUSIONS

This paper presents a new approach to the study of the vibration of irregular plates v
simply supported and clamped boundary conditions. In this approach, the irregular phys
domain is transformed into a regular domain (square) in a curvilinear coordinate sys
(computational space) and, accordingly, the governing equation and boundary condition
transformed into relevant forms in the curvilinear coordinate system. Then all computatit
are based on the computational domain. Since the computational domain is regular
application of the DQ method to irregular plates in the computational space is exactly
same as the application of the DQ method to regular plates in the physical domain.
only difference is that more terms are involved in the governing equation and the bounc
conditions in the curvilinear coordinate system. The present approach avoids the h
operation of matrix multiplication, which is involved in Bert and Malik’s approach [6], anc
as a result, computational effort and virtual storage are greatly reduced. It is demonstr
through test examples that the present approach requires less than one-tenth of the
time that Bert and Malik’s approach requires when the number of grid points is the same
addition, the present paper introduces a simple way to implement the simply supported
clamped boundary conditions, which avoids the difficulty of determining the angle betwe
the direction normal to the boundary and thexis used in Bert and Malik’s approach.
An exact coordinate transformation is used in the present work, and the two bound
conditions at each edge are satisfied accurately at the boundary points. It is demonst
by test examples that, although the present approach requires less CPU time than Bet
Malik's approach, it shows slight improvement in the accuracy of the numerical results
compared to Bert and Malik’s approach. This improvement is probably due to the use o
exact coordinate transformation in the present work and to the different implementatior
the boundary conditions between the two approaches. Through the present study;, it ce



466 SHU, CHEN, AND DU

concluded that the present approach combines the attractive features of rapid converg
and high accuracy of the DQ solution of regular domain problems with general geome
flexibility. This work makes the DQ method more promising for further development int
an efficient and flexible numerical technique for solving practical engineering problems
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