
                                                                                                                                                                                                                                                              
Simulation of nonuniform interconnects by 
harmonic differential quadrature method 

Qin-Wei Xu, Zheng-Fan Li and Wen Chen 

The harmonic differential quadrature (HDQ) method is employed
to simulate the nonuniform interconnects in very large scale
integration and multichip modules. The HDQ method reduces
partial differential equations to ordinary differential equations.
Being a direct numerical technique, it can easily be applied to the
simulation of nonuniform interconnects. 

Introduction: The simulation of interconnects is of great interest in
modern VLSI (very large scale integration) and multichip module
(MCM) design. Many methods have been proposed to deal with the
uniform interconnects. When the nonuniform interconnects are ana-
lysed, they are generally segmented into many sections, each of
which is regarded as being uniform. Such a process makes the com-
puting quantity increase considerably [1]. The spectral method can
be employed directly to analyse the nonuniform transmission lines.
It approximates spatial or time derivatives by constructing a global
interpolant through discrete data points. However, this method suf-
fers from complexity of derivation and computation [2]. 

Classical numerical techniques, such as finite difference methods,
can be employed easily in engineering and can provide very accurate
results by using a large number of grid points. Despite their applica-
bility, it is impractical to apply them in the transient analysis of
transmission lines because the required computer capacity is always
too large. In this Letter, a direct numerical technique called the har-
monic differential quadrature (HDQ) method [3, 4] is employed to
analyse the nonuniform transmission lines. It is based on the idea
that a derivative, ∂/∂x, can be expressed as a weighted linear sum of
all the function values at all mesh points along the x-direction.
Owing to the global approximation in the HDQ method, it usually
requires fewer grid points than other numerical methods to achieve
accurate results. Being a direct numerical technique, the method can
be applied in almost any case. 

Harmonic differential quadrature method: For a single lossy transmis-
sion line whose length is d, let r(z), l(z), c(z) and g(z) be the resist-
ance, inductance, capacitance and conductance per unit length
(PUL) at point z (z ∈  [0, d]), respectively. If  the length is normalised
to 1, then the other normalised parameters are: R(x) = r(z)d, L(x) =
l(z)d, C(x) = c(z)d and G(x) = g(z)d (x ∈  [0, 1]). The distributed volt-
age v(x, t) and current i(x, t) at location x and time t can be
described by Telegrapher’s equations: 

and boundary conditions 

Assuming that the functions v(x, t) and i(x, t) satisfying the above
equations are smooth [3], we can make the approximate relations of
differential quadrature: 

where f(x, t) = v(x, t) or f(x,t) = i(x, t), aIJs are global coefficients to
be determined and N is the order of differential quadrature. 

From eqns. 1 and 3 we can obtain: 

where   
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However, eqn. 4a and b are not independent, and do not have
nontrivial solutions. By analogy with the finite difference method
using the backward Euler’s method, we can substitute equations at x
= 0 by the boundary conditions in eqn. 2. 

In eqn. 3, x1 = 0 and xN = 1 hold. Hence, under the assumption
that eqn. 3 is valid, we have succeeded in reducing the partial differ-
ential equations (PDEs) in eqn. 1 to ordinary differential equations
(ODEs) in eqn. 4. It turns out that relatively low order differential
quadrature is needed, so the total amount of storage and time
required on the machine is thus quite low. 

The most important step of the HDQ method is to determine the
weighting coefficients aIJ. In general, a set of orthogonal functions is
selected to meet with eqn. 3. Because many solutions in circuits use
Fourier series, sine and cosine functions (harmonic functions) are
naturally selected to determine the weighting coefficients. We require
that eqn. 3 is exact when v(x, t) and i(x, t) take the following forms: 

where N is the number of grid points, which is normally an odd
number, and 0 ≤ x ≤ 1. As described in [3], N sets of N linear alge-
braic equations are obtained: 

Hence the weighting coefficients are completely determined. Such
an approach is called the harmonic differential quadrature (HDQ)
method [4]. In the process of the HDQ method, the points x1 = 0 and
xN = 1 should be included for computing the responses of the two
ends of the transmission lines, and the other can be either equally
spaced or not. 

It is significant that for the HDQ method, once the grid points are
fixed, the global coefficients are determined. So the global coeffi-
cients for each approach can be computed precedingly and saved as
fixed constants. In fact, equally spaced grid points are usually
selected. In such cases, all the global coefficients can be totally deter-
mined. 

For completeness, the error estimation is given here. In eqn. 3,
there is an error e(x) in the Nth order differential quadrature to
approximate ∂f/∂x. Provided that 
(i) ∂Nf/∂xN is continuous, and ∂Nf/∂xN ≤ K, K is a constant
(ii) among points xJ, j = 1, 2, ..., N – 1, max(xJ+1 – xJ) = h
the error can be evaluated by [3]: 

As illustrated by the case of a single transmission line, the method
can easily be applied to coupled lines. 

Numerical results: The circuit (see Fig. 1) includes a coupled nonuni-
form transmission line whose parameters are: 
d = 0.48m, R11 = R12 = R2 = 50Ω, L1 = 10nH, C1 = 2pF;
L(x) = 387/(1 + K(x))nH/m, LM(x) = K(x)L(x);
C(x) = 104.3/(1 – K(x))pF/m, CM(x) = –K(x)C(x);
R(x) = 12Ω/m, RM(x) = 1Ω/m; G(x) = GM(x) = 0;
K(x) = 0.25 (1 + 0.6 sin (πx + π/4));

Fig. 1 Circuit for example 
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where L(x), C(x), R(x) and G(x) are self-parameters of transmission
lines; Lm(x), Cm(x), Rm(x) and Gm(x) mutual-parameters; K(x) is a
function of space. The signal is 1.5ns, rise/fall time, plus 3ns, 1V, top
square voltage. 

We take seven equally spaced points in the HDQ method. That
means that , besides the two end points, another five grid points are
sampled along the transmission line. For comparison, the method of
characteristics (MC), which is believed to be an efficient method, is
also employed in this example. To apply the MC, we segmented the
nonuniform transmission lines into eight sections, each of which is
regarded as being uniform. The time-step method is employed in
both the HDQ and the MC methods. For each time step, the sev-
enth-order HDQ method needs to solve a set of 28 × 28 equations,
while the MC method solves a set of 34 × 34 equations [5]. For more
accurate results, we furthermore take the ninth-order HDQ method,
adopting equally spaced points. The responses of the seventh-order
HDQ metbod (labelled as HDQ7) and the ninth-order HDQ
method (labelled as HDQ9) are shown in Fig. 2, altogether with
those of the MC. 

Fig. 2 Results for example 
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Conclusions: The harmonic differential quadrature method is first
employed to simulate nonuniform interconnects in VLSI and
MCMs. It is based on the idea that the derivative of a function with
respect to a co-ordinate direction can be approximated by a
weighted linear sum of all the function values at every mesh point.
The process of the HDQ method is considerably simple. This
method requires fewer grid points than other traditional numerical
methods to achieve accurate results. Being a simple direct numerical
technique, the HDQ method can easily be applied in the simulation
of nonuniform interconnects. It can circumvent the difficulties of
programming complex algorithms, as well as excessive use of storage
and computer time. Numerical experiments show that considerable
accurate solutions can be calculated rapidly at the cost of computing
the quantities at a few points along the transmission lines. 
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