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1. INTRODUCTION

Civan and Sliepcevich [1, 2] suggested that a special matrix solver should be developed
to further reduce the computing effort in applying the differential quadrature (DQ) method
for the Poisson and convection–diffusion equations. Therefore, the purpose of the present
communication is to introduce and apply the Lyapunov formulation which can be solved
much more efficiently than the Gaussian elimination method. Civan and Sliepcevich [2] first
presented DQ approximate formulas in polynomial form for partial derivatives in a two-
dimensional variable domain. For simplifying formulation effort, Chenet al. [3] proposed
the compact matrix form of these DQ approximate formulas. In this study, by using these
matrix approximate formulas, the DQ formulations for the Poisson and convection–diffusion
equations can be expressed as the Lyapunov algebraic matrix equation. The formulation
effort is simplified, and a simple and explicit matrix formulation is obtained. A variety of
fast algorithms in the solution of the Lyapunov equation [4–6] can be successfully applied
in the DQ analysis of these two-dimensional problems, and, thus, the computing effort can
be greatly reduced. Finally, we also point out that the present reduction technique can be
easily extended to three-dimensional cases.

2. DQ APPROXIMATE FORMULAS IN MATRIX FORM

For details about the differential quadrature method see Ref. [2]. By analogy with the pro-
cedure incorporating boundary conditions in Civan and Sliepcevich [1, 2], the DQ weighting
coefficient matrices are modified in advance by using the boundary conditions. For example,

78

0021-9991/98 $25.00
Copyright c© 1998 by Academic Press
All rights of reproduction in any form reserved.



           

REDUCTION TECHNIQUE IN THE DQ ANALYSIS 79

considering the Dirichlet and Neumann boundary conditions in thex-direction (x ∈ [0, 1]),

φ(0, y) = h (1)

∂φ(1, y)

∂x
= q. (2)

Equation (2) can be approximated by

N∑
j =1

AN jφ j = q. (3)

The function values at boundary points can be expressed by the unknown interior point
function values, namely,

φN = 1

AN N

q − AN1h −
N−1∑
j =2

AN jφ j

 . (4)

Substituting Eqs. (4) and (1) into the DQ formulations for the first and second derivatives,
respectively, we have

∂φ
⇀

∂x
= Āxφ

⇀ + a⇀x (5)

∂2φ
⇀

∂x2
= B̄xφ

⇀ + b
⇀

x, (6)

whereφ
⇀ = {φ2, φ3, . . . , φN−1}, a⇀x andb

⇀

x are the constant vectors,̄Ax andB̄x are the
modified(N − 2) × (N − 2) weighting coefficient matrices for the first- and second-order
derivatives, respectively.

Chenet al. [3] presented the DQ approximate formulas in matrix form for the partial
derivative of the function9(x, y) in two-dimensional domain:

∂29̃

∂x2
= B̄x9̃ + B0x,

∂29̃

∂y2
= 9̃B̄T

y + BT
0y,

∂9̃

∂x
= Āx9̃ + A0x,

∂9̃

∂y
= 9̃ĀT

y + AT
0y,

(7)

where the unknowñ9 is an × m rectangular matrix rather than a vector as in Refs. [1, 2],
n andm are the number of inner grid points along thex andy directions, respectively. The
superscriptT means the transpose of the matrices.A0x andB0x are generated by stacking
the corresponding constant vectorsa⇀x andb

⇀

x in Eqs. (5) and (6). For example,

A0x =


a1x a1x · · · a1x

a2x a2x · · · a2x
...

...
. . .

...

anx anx · · · anx


n×m

. (8)

A0y and B0y can be obtained in a similar way. For higher order partial derivatives, there
exist similar approximate matrix formulas.
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3. COMPUTATIONAL REDUCTION

3.1. Formulations in the Lyapunov Matrix Equation Form

The Poisson equations can be normalized as

∂2ϕ

∂x2
+ β2∂2ϕ

∂y2
+ S = 0, (9)

wherex andy are the dimensionless Cartesian coordinates, namelyx, y ∈ [0, 1], β denotes
the aspect ratio,S is a given strength, andϕ is the desired variable. For more details see
Ref. [1].

Applying the DQ matrix approximate formulas (7), the DQ formulation for Eq. (9) is
given by

B̄xϕ̃ + β2ϕ̃B̄T
y + H = 0, (10)

whereϕ̃,B̄x andB̄y are(n − 2) × (n − 2) rectangular matrices,H = S+ B0x + BT
0y. Since

the boundary conditions have been taken into account in formulation of the weighting
coefficient matrices̄Bx andB̄y, no more additional equations are required.

The equation governing steady-state convection–diffusion (e.g., Eq. (24) in Ref. [2]
neglecting the time derivative term) can be simplified as

α
∂2φ

∂x2
+ β

∂2φ

∂y2
= φ

4α
, (11)

whereϕ is the desired values as defined in Eq. (23) in Ref. [2] andα andβ are constants.
In terms of the DQ matrix approximate formulas [7], we have

αB̄xφ̃ + βφ̃B̄T
y − 1

4a
φ̃ = Q, (12)

whereQ is constant matrix generated from the modified DQ weighting coefficient matrices
as in Eq. (7). Furthermore, the above equation can be restated as(

αB̄x − 1

4a
I

)
φ̃ + βφ̃B̄T

y = Q. (13)

The above DQ formulations (10) and (13) are the Lyapunov algebraic matrix equation.
Compared with the conventional polynomial form in Refs. [1, 2], they have a more explicit
matrix form.

3.2. Fast Algorithms in the Solution of the Lyapunov Equations

Several efficient methods for solving the Lyapunov algebraic matrix equations have been
developed in Refs. [4–6]. To simplify the presentation, BS, HS, and R-THR denote the
methods proposed, respectively, by Bartels and Stewart [4], Golur, Nash, and Loan [5],
and Gui [6]. All these methods are stable and accurate. Considering the Lyapunov matrix
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TABLE 1

Comparison of Computational Effort in the BS, HS, and R-THR Methods

Steps

G∗ = U−1GU F = U−1QV G∗Y + Y R∗ = F X = UY V−1

Methods R∗ = V−1RV for F for Y for X

BSa 10(n3 + m3) n2m + nm2 (n2m + nm2)/2 n2m + nm2

HSb 5n3/3 + 10m3 n2m + nm2 3n2m + nm2/2 n2m + nm2

R-THRc n3 + m3 n2m + nm2 m3/3 + 5n2m + 3nm2 n2m + nm2

a Ref. [4].
b Ref. [5].
c Ref. [6].

equation

G X + X R = Q, (14)

whereG, R, andQ aren×n, m×m, andn×m constant matrices. The solution procedures
in the BS, HS, and R-THR methods generally include the following four steps.

Step1. ReduceG andR to certain simple forms via the similarity transformationsG∗ =
U−1GU andR∗ = V−1RV.

Step2. F = U−1QV for the solution ofF .
Step3. Solve the transformed equationG∗Y + YR∗ = F for Y.
Step4. X = UYV−1.

The respective computational effort is listed in Table 1. The total computing effort in
these methods isO(n3 + m3) scalar multiplications. For the details on these methods see
the corresponding references.

As can be seen from Table 1, the R-THR method requiresn3 + 4
3m3 +7n2m+5mn2 +n2

(or 141
3n3 + n2 whenn = m) scalar multiplications and may be the most efficient in the

solution of the Lyapunov matrix equations. By using the R-THR method, the same examples
given in Ref. [1] are recalculated by the DQ method, and the results are coincident with
those given by Civan and Sliepcevich [1]. However, the conventional approach in Ref. [1]
required solving linear simultaneous equations of(Nx − 2)(Ny − 2) order by using the
Gaussian elimination method, whereNx andNy are the number of grid points alongx andy
directions, respectively. IfN = Nx = Ny, about13(N−2)6 multiplications were performed.
In contrast, the present reduction approach requires about 141

3(N − 2)3 multiplications.
Thus, the computational effort is only about 34%, using 7× 7 grid points, and 6%, using
11×11 grid points, of that in Ref. [1]. The steady-state convection–diffusion (Example 1 in
Ref. [2]) is also computed by using the present technique, and the same computing reduction
is achieved. The computational effort in the present DQ method for these cases is reduced
in proportion to (N − 2)3. Reference [6] also pointed out that the parallel computation was
very efficient in the solution of the Lyapunov equations.

The weighting coefficient matrices in the DQ method were found to be the centrosym-
metric and skew centrosymmetric matrices if a symmetric grid spacing is used. One of the
present authors [3] applied the factorization properties of the centrosymmetric matrix to
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reduce the computing effort by 75% in the DQ analysis of structural components. In the
present cases with symmetric boundary conditions, we can factorize the centrosymmetric
coefficient matrixB̄x andB̄y into two smaller size submatrices, nearly half, in all the four
computing steps of the BS, HS, and R-THR methods. Therefore, the computing effort can
be further reduced to 8.5%, under 7× 7 grid points, and 1.5%, under 11× 11 grid points,
of that in Refs. [1, 2]. For detailed discussions on the centrosymmetric matrix see Ref. [7];
they are not presented here for the sake of brevity.

3.3. On the Three-Dimensional Problems

For three-dimensional cases, we first convert them into a set of ordinary differential equa-
tions by using the DQ matrix approximate formulas (7) and the Kronecker product. It is
straightforward that the DQ matrix approximate formula for a set of ordinary differential
equations is similar to formulas (7). Thus, the ordinary differential equations can be for-
mulated into a Lyapunov matrix equation. The following examples can illustrate our idea
more clearly. Consider the three-dimensional steady-state convection–diffusion equation
(Eq. (52) in Ref. [2], neglecting the time derivative term)

∂c

∂x
= β

∂2c

∂y2
+ γ

∂2c

∂z2
. (15)

First, in terms of the DQ matrix approximate formulas (7), the above equation can be
approximated as the ordinary equations,

ĀxC̃ − βC̃B̄T
y + Q = γ

d2C̃

dz2
, (16)

whereC̃ is a (Nx − 2) × (Ny − 2) rectangular matrixQ = A0x − βBT
0y. By using the

Kronecker product of matrices [8], we have

γ
d2 EC
dz2

= [Āx ⊗ I y − β Ix ⊗ B̄y] EC + Q, (17)

where EC is a ((Nx − 2)(Ny − 2)) × 1 vector stacked from matrix̃C and⊗ denotes the
Kronecker product. The DQ analog equation for the above ordinary differential equations
can be written as

[Āx ⊗ I y − β Ix ⊗ B̄y]Ĉ − γ ĈB̄T
z = R, (18)

whereĈ is a ((Nx −2)(Ny−2))× (Nz−2) rectangular matrix,R = γ BT
0z−Q. The equation

is also a Lyapunov matrix equation. Thus, the reduction technique for the Lyapunov equation
can be used to achieve a considerable savings in computational effort.

3.4. On Time-Dependent Problems

The governing equation for transient-state convection–diffusion problems can be gener-
ally stated as (Eq. (24) in Ref. [2])

∂φ

∂t
+ φ

4α
= α

∂φ

∂x
+ β

∂φ

∂y
. (19)
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Similar to steady-state cases, the DQ analog equation can be expressed as

dφ

dt
=

(
αB̄x − 1

4a
I

)
φ̃ + βφ̃B̄T

y − Q. (20)

The above DQ approximation equation is the simplified Riccati differential equation,
namely, the quadratic nonlinear term in the Riccati differential equation is omitted. Choi
and Laub [9] have successfully applied the fast algorithms for solving the Lyapunov equa-
tion to time-varying Riccati differential equation, while it is an easier task to apply these
fast algorithms for calculating Eq. (20) in the same way as in Ref. [9]. The computational
effort is reduced by three orders of magnitude as in the foregoing steady cases. Therefore,
the extension of the present reduction DQ method to the transient convection–diffusion
equations are also obviously applicable. For the details see Ref. [9].

4. CONCLUSIONS

Compared with the Galerkin, control-volume, and finite difference methods, the dif-
ferential quadrature method has proved to be a most efficient numerical technique in the
calculation of the Poisson and convection–diffusion equations [1, 2]. The present work
further minimizes the computational effort in the DQ solution of these cases. The principal
advantages of the matrix approximate formulas are to offer a more compact and convenient
procedure for obtaining an explicit matrix formulation and to make the DQ method more ef-
ficient computationally for multidimensional problems by means of the existing techniques
in the solution of the Lyapunov equations.
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