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Abstract

This paper is concerned with the boundary particle method (BPM), a new boundary-only radial basis function collocation schemes. The

method is developed based on the multiple reciprocity principle and applying either high-order nonsingular general solutions or singular

fundamental solutions as the radial basis function. Like the multiple reciprocity BEM (MR-BEM), the BPM does not require any inner nodes

for inhomogeneous problems and therefore is a truly boundary-only technique. On the other hand, unlike the MR-BEM, the BPM is

meshfree, integration-free, symmetric, and mathematically simple technique. In particular, the method requires much less computational

effort for the discretization than the MR-BEM. In this study, the accuracy and efficiency of the BPM are numerically demonstrated in some

2D inhomogeneous Helmholtz problems under complicated geometries. q 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Multiple reciprocity principle; Boundary particle method; Radial basis function; Meshfree; Method of fundamental solution; Boundary knot

method; Multiple reciprocity BEM

1. Introduction

In last decade the dual reciprocity BEM (DR-BEM) and

multiple reciprocity BEM (MR-BEM) have been emerging

as two most promising BEM techniques to handle

inhomogeneous problems [1,2], where the dual reciprocity

principle and multiple reciprocity principle are, respect-

ively, used. It is well known that unlike the DR-BEM, the

MR-BEM does not require inner nodes for general

inhomogeneous problems and therefore is a truly bound-

ary-only technique, especially attractive for high-dimension

free surface and unbounded domain problems. The draw-

backs of the MR-BEM, however, are that compared with the

DR-BEM, the method in general requires more computational

efforts [3] and is not easily applied to nonlinear problems [2].

Despite these disadvantages, in recent years the MR-BEM has

been successfully used for a broad variety of problems [1,4].

In this study, we introduce the boundary particle method

(BPM) [5,6], a new exact boundary-only discretization

technique based on applying the radial basis function (RBF)

and multiple reciprocity principle. The method is regarded

as a boundary-type RBF collocation scheme since we use

either high-order nonsingular general solutions or singular

fundamental solutions as the RBFs to evaluate high-order

homogeneous solutions, and then their sum approximates

the particular solutions. Compared with the MR-BEM, the

BPM is an easy-to-program, inherently meshfree, inte-

gration-free, and mathematically simple approach. The

computational effort is also relatively reduced significantly.

In particular, inspired by Fasshauer’s Hermite RBF

interpolation [7], we give the symmetric BPM scheme.

This paper testifies this method to some Helmholtz

problems under complicated geometry.

Developing the BPM was mainly motivated by some

recent substantial advances on the method of fundamental

solution (MFS), boundary knot method (BKM), and RBF.

Golberg [8] combines the dual reciprocity principle and

RBF with the MFS to solve some typical Poisson problems

in a simple and efficient manner. The strategy is essentially

meshfree and RBF-only method, where the fundamental

solution can be regarded as the RBF for the evaluation of

homogeneous solution. Very recently Chen and Tanaka [9,

10] further developed a boundary knot method, which

applies the nonsingular general solution, RBF and dual

reciprocity principle and therefore effectively eliminates the

need of controversial fictitious boundary outside physical

domain in the MFS. Both the MFS and BKM, however,

need to use the inner nodes for inhomogeneous problems to

guarantee the stability and accuracy of the solution. For

more details on the MFS and BKM see Refs. [11,12]. On the

other hand, since Kansa’s pioneer work [13] in 1990, the

research on the RBF method for PDEs has become very

active. The methods based on radial basis function are

inherently meshfree due to the fact that the RBF method
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uses the one-dimensional distance variable irrespective of

dimensionality of problems [14]. Therefore, the RBF methods

are independent of dimensionality and complexity of

geometry. These recent developments on the MFS, BKM

and RBF inspire the present author to present the boundary

particle method which uses the multiple reciprocity principle,

nonsingular general solution and fundamental solution.

In what follows, the BPM is introduced first in Section 2,

followed by numerical validations in terms of some 2D

inhomogeneous Helmholtz problems under complicated

geometries in Section 3, and finally, Section 4 concludes

some remarks based on the reported results.

2. Boundary particle methods

To clearly illustrate our idea, consider the following

example without loss of generality

R{u} ¼ f ðxÞ; x [ V; ð1Þ

uðxÞ ¼ RðxÞ; x [ Su; ð2aÞ

›uðxÞ

›n
¼ NðxÞ; x [ ST ; ð2bÞ

where R is a differential operator, x means multi-

dimensional independent variable, and n is the unit outward

normal. The solution of Eq. (1) can be expressed as

u ¼ u0
h þ u0

p; ð3Þ

where u0
h and u0

p are the zero-order homogeneous and

particular solutions, respectively. The multiple reciprocity

method evaluates the particular solution in Eq. (3) by a sum

of higher-order homogeneous solution, namely

u0
p ¼

X1

m¼1

um
h ; ð4Þ

where superscript m is the order index of the homogeneous

solution. Eq. (4) is also essential in the MR-BEM to evaluate

the particular solution [1]. Thus, the solution of inhomo-

geneous equation (Eq. (1)) can be expressed as

u ¼ u0
h þ u0

p ¼
X1

m¼0

um
h : ð5Þ

It is noted that albeit the widespread use of the multiple

reciprocity method, a general mathematical proof is not

found in the literature.

The zero-order homogeneous solution has to satisfy both

the governing equation and the boundary conditions, i.e.

R u0
h

n o
¼ 0; x [ V; ð6Þ

u0
hðxiÞ ¼ RðxiÞ2 u0

pðxiÞ x [ Su;

›u0
hðxjÞ

›n
¼ NðxjÞ2

›u0
pðxjÞ

›n
x [ ST ;

8><
>:

ð7Þ

where i and j indicate, respectively, the response knots

located on the Dirichlet and Neumann boundary Su, SG. Eq.

(7) is in fact the dual reciprocity method [1] formula without

using inner nodes. In contrast, the multiple reciprocity

method also involves the higher order homogeneous

solution. For the first-order homogeneous solution, we have

R
1 u1

h

n o
¼ 0; x [ V; ð8Þ

R
0 u1

hðxiÞ
n o

¼ f ðxiÞ2 R
0 u1

pðxiÞ
n o

; x [ Su;

›R
0 u1

hðxjÞ
n o

›n
¼

› f ðxjÞ2 R
0 u1

pðxjÞ
n o� 	

›n
; x [ ST ;

8>>><
>>>:

ð9Þ

where R
1{ } ¼ R{R{ }}; R

0{ } ¼ R{ }: Note that here we

employed the external forcing function f ðxÞ and its normal

derivative, respectively, as the corresponding Dirichlet and

Neumann boundary conditions. Through a similar incre-

mental differentiation operation over Eq. (9) via operator

R{ }; we have successive higher order boundary differential

equations

R
n un

hf g ¼ 0; x [ V; ð10Þ

R
n21 un

hðxiÞf g ¼ R
n22{f ðxiÞ} 2 R

n21 un
pðxiÞ

n o
; x [ Su;

›R
n21 un

hðxjÞ
n o

›n
¼

› R
n22{f ðxjÞ} 2 R

n21 un
pðxjÞ

n o� 	

›n
; x [ ST ;

8>>><
>>>:

n ¼ 2; 3;…; ð11Þ

where R
n{ } denotes the nth order operator of R{ }; say

R
2{ } ¼ R{R

1{ }}: It is stressed that the inhomogeneous

term f ðxÞ was repeatedly differentiated as the boundary

conditions for higher-order operator equations.

In terms of the multiple reciprocity method, the nth order

particular solution un
p is approximated by

un
p ¼

X1

m¼nþ1

um
h : ð12Þ

The mth-order homogeneous solution can be analogized by

um
h ðxÞ ¼

XL

k¼1

bm
k u#

mðrkÞ; ð13Þ

where L is the number of boundary nodes, k is the index of

source points on boundary; u#
m is the nonsingular general

solution of operator R
m{ }: bk are the desired coefficients,

and rk ¼ kx 2 xkk represents the Euclidean distance norm.

Note that we can use the fundamental solution up
m instead of

general solution u#
m in Eq. (13). However, the use of

fundamental solution requires a fictitious boundary outside

physical domain as encountered in the MFS.

Collocating Eqs. (7), (9) and (11) at all boundary knots in

terms of the representation (13), we have the BPM boundary

discretization equations:

XL

k¼1

b0
ku#

0ðrikÞ ¼ RðxiÞ2 u0
pðxiÞ

XL

k¼1

b0
k

›u#
0ðrjkÞ

›n
¼ NðxjÞ2

›u0
pðxjÞ

›n

9>>>>>=
>>>>>;

¼ b0; ð14Þ
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XL

k¼1

b1
kR

0 u#
1ðrikÞ

n o
¼ f ðxiÞ2 R

0 u1
pðxiÞ

n o

XL

k¼1

b1
k

›R
0 u#

1ðrjkÞ
n o

›n
¼

› f ðxjÞ2 R
0 u1

pðxjÞ
n o� 	

›n

9>>>>>=
>>>>>;

¼ b1; ð15Þ

XL

k¼1

bn
kR

n21 u#
nðrikÞ

n o
¼ R

n22{f ðxiÞ} 2 R
n21 un

pðxiÞ
n o

XL

k¼1

bn
k

›R
n21 u#

nðrikÞ
 �

›n
¼

› R
n22{f ðxjÞ} 2 R

n21 un
pðxjÞ

n o� 	

›n

9>>>>>=
>>>>>;

¼ bn; n ¼ 2; 3;… ð16Þ

It is noted that the use of the naı̈ve representation (13) will

simply lead to the unsymmetric BPM interpolation matrix

(14)–(16) due to the mixed boundary conditions. In order to

get symmetric BPM scheme for self-adjoint operators, by

analogy with Fasshauer’s Hermite RBF interpolation [7],

we presented the following RBF approximate expression to

homogeneous solution instead of expression (13)

um
h ðxÞ ¼

XLD

s¼1

bsu
#
mðrsÞ2

XLDþLN

s¼LDþ1

bs

›u#
mðrsÞ

›n
; ð17Þ

where n is the unit outward normal as in boundary condition

(2b), and LD and LN are, respectively, the numbers of knots

at the Dirichlet and Neumann boundary surfaces. The minus

sign associated with the second term is due to the fact that

the Neumann condition of the first-order derivative is not

self-adjoint. In terms of expression (17), the collocation

analogue equations (Eqs. (14)–(16)) are rewritten as

XLD

s¼1

bsu
#
0ðrisÞ2

XLDþLN

s¼LDþ1

bs

›u#
0ðrisÞ

›n
¼ RðxiÞ2 u0

pðxiÞ

XLD

s¼1

bs

›u#
0ðrjsÞ

›n
2

XLDþLN

s¼LDþ1

bs

›2u#
0ðrjsÞ

›n2
¼ NðxjÞ2

›u0
pðxjÞ

›n

9>>>>>=
>>>>>;

¼ b0 ð18Þ

XLD

s¼1

bsR
0 u#

1ðrisÞ
n o

2
XLDþLN

s¼LDþ1

bs

›R
0 u#

1ðrisÞ
 �

›n
¼ f ðxiÞ2 R

0 u1
pðxiÞ

n o

XLD

s¼1

bs

›R
0 u#

1ðrjsÞ
n o

›n
2

XLDþLN

s¼LDþ1

bs

›2
R

0 u#
1ðrjsÞ

n o

›n2
¼

› f ðxjÞ2 R
0 u1

pðxjÞ
n o� 	

›n

9>>>>>>=
>>>>>>;

¼ b1 ð19Þ

The system matrix of the above equations is symmetric if

operator R{ } is self-adjoint. Note that i and j are reciprocal

indices of Dirichlet (Su) and Neumann boundary (SG) nodes.

In terms of the multiple reciprocity, the successive

process is truncated at some order M, namely, let

R
M21 uM

p

n o
¼ 0: ð21Þ

It is expected that as in the MR-BEM [1,3], the truncated

order M in the BPM may not be large in a variety of practical

uses if the problem has been properly scaled. However, a

general strategy deciding M a prior is not available now.

The practical solution procedure of the BPM is a reversal

recursive process:

bM ! bM21 ! · · · ! b0: ð22Þ

It is noted that due to

R
n21 u#

nðrÞ
n o

¼ u#
0ðrÞ; ð23Þ

the coefficient matrices of all successive equations (Eqs.

(14)–(16) or Eqs. (7), (9) and (11)) are the same, i.e.

Qbn ¼ bn; n ¼ M;M 2 1;…; 1; 0: ð24Þ

Thus, the LU factorization algorithm is suitable for this task.

Finally, after the solution of the above recursive algebraic

equations (Eqs. (7), (9), (11) or (14)–(16)), we can employ

the obtained expansion coefficients b to calculate the BPM

solution at any knots. The unsymmetric and symmetric

BPM solutions are given, respectively, by

uðxiÞ ¼
XM

n¼0

XL

k¼1

bn
ku#

nðrikÞ ð25Þ

and

uðxiÞ ¼
XM

n¼0

XLD

s¼1

bn
s u#

nðrisÞ2
XLDþLN

s¼LDþ1

bn
s

›u#
nðrisÞ

›n

0
@

1
A: ð26Þ

The BPM can use either singular fundamental solution or

nonsingular general solution, relative to the MFS and BKM,

where the former requires an artificial boundary outside

physical domain while the latter not. It is noted that the

BPM with M ¼ 1 degenerates into the BKM or MFS

without using the inner nodes. The only difference between

the BKM (MFS) and BPM lies in how to evaluate the

particular solution. The former applies the dual reciprocity

principle, while the latter employs the multiple reciprocity

XLD

s¼1

bsR
n21 u#

nðrisÞ
n o

2
XLDþLN

s¼LDþ1

bs

›R
n21 u#

nðrisÞ
 �

›n
¼ R

n22{f ðxiÞ} 2 R
n21 un

pðxiÞ
n o

XLD

s¼1

bs

›R
n21 u#

nðrjsÞ
n o

›n
2

XLDþLN

s¼LDþ1

bs

›2
R

n21 u#
nðrjsÞ

n o

›n2
¼

› R
n22{f ðxjÞ} 2 R

n21 un
pðxjÞ

n o� 	

›n

9>>>>>>=
>>>>>>;

¼ bn; n ¼ 2; 3;… ð20Þ
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principle. The advantage of the BPM over the BKM and

MFS is that it dose not require interior nodes which may be

especially attractive in such problems as moving boundary,

inverse problems, and exterior problems. However, the

BPM may be more mathematically complicated and

computationally costly due to the iterative use of higher-

order fundamental or general solutions.

The present form of the BPM uses the expansion

coefficients rather than the direct physical variables in the

approximation of boundary value. Therefore, such scheme

is called as the indirect BPM. Chen [5] also gave the direct

BPM with physical variable as basic variable.

3. Numerical experiments

The 2D irregular geometry tested is illustrated in Fig. 1,

which includes a triangle cut-out. Except for Neumann

boundary conditions shown in Fig. 1, the boundary

conditions are all of the Dirichlet type. Equally spaced

knots were applied on the boundary. The L2 norms of

relative errors are calculated based on the BPM

numerical solutions at 364 inner and boundary nodes.

The absolute error is taken as the relative error if the

absolute value of the solution is less than 0.001. Note that

different nodes are used for BPM coefficients and for L2

norm of relative errors.

Helmholtz system equation is given by

72u þ g2u ¼ 2 sinðdxÞ cosðdxÞ þ 4x cosðdxÞ cosðdyÞ: ð27Þ

The accurate solution is

u ¼ x2 sinðdxÞ cosðdyÞ ð28Þ

for 2D inhomogeneous Helmholtz problem ðg ¼ d
ffiffi
2

p
Þ: The

corresponding high-order general solutions of Helmholtz is

straightforward according to [15]

u#
mðrÞ ¼ AmðgrÞ2n=2þ1þmJn=221þmðgrÞ; ð29Þ

where Am ¼ Am21=ð2mg2Þ; A0 ¼ 1; n is the dimension of

the problem; m denotes the order of general solution; J

represents the Bessel function of the first kind.

The experimental results are displayed in Table 1 where

the UBPM and SBPM denote, respectively, the unsym-

metric and symmetric BPM schemes. It is found that both

BPM schemes produce very accurate solutions with a small

number of boundary nodes for inhomogeneous Helmholtz

problems. We also observed that the maximum relative

errors occurred in random locations in difference cases.

Note that we did not use any inner nodes here. Ref. [16]

applied the BPM successfully to the steady convection–

diffusion problems.

4. Concluding remarks

The BPM circumvents the troublesome singular integral

inherent in the BEM and are very easy to learn and program.

The method has advantage not requiring inner nodes for

inhomogeneous problems, and therefore is very suitable for

problems whose higher-order homogeneous solution

quickly tends to zero. It is noted that unlike the MR-BEM,

the BPM does not need to generate more than one

interpolation matrix, which tremendously reduces comput-

ing effort and memory requirements. In addition, the BPM is

essentially meshfree, spectral convergence and symmetric

technique. It is expected that compared with other numerical

techniques, the BPM may become more efficient for higher-

dimensional complex-shape geometry problems since the

general solutions of high-dimensional operators are simpler

and radial basis function is independent of dimensionality

and geometry complexity.

Similar to the BEM and MFS, the drawbacks of the

method are the poor condition of the global interpolation

and costly computing effort for full matrix. Some fast

solvers based on the multipole [17] and wavelets may be

promising to cure these inefficiencies. More investigations

on the method are still under way and will be reported in

subsequent papers.Fig. 1. Configuration of a square with a triangle cutout.

Table 1

L2 norm of relative errors for 2D inhomogeneous Helmholtz problems by

the unsymmetric and symmetric BPMs

UBPM (26) UBPM (40) SBPM (26) SBPM (40)

g ¼
ffiffi
2

p
2.8 £ 1023 4.5 £ 1024 1.3 £ 1023 2.9 £ 1024

UBPM (77) UBPM (91) SBPM (91) SBPM (119)

g ¼ 5
ffiffi
2

p
1.5 £ 1023 4.1 £ 1024 6.7 £ 1023 7.8 £ 1024

W. Chen / Engineering Analysis with Boundary Elements 26 (2002) 577–581580



Acknowledgments

This research is supported by Norwegian Research

Council.

References

[1] Nowak AJ, Neves AC, editors. The multiple reciprocity boundary

element method. Southampton: Computational Mechanics Publi-

cation; 1994.

[2] Partridge PW, Brebbia CA, Wrobel LW. The dual reciprocity

boundary element method. Southampton: Computational Mechanics

Publication; 1992.

[3] Nowak AJ, Partridge PW. Comparison of the dual reciprocity and the

multiple reciprocity methods. Engng Anal Bound Elem 1992;10:

155–60.

[4] Ramachandran PA. Boundary elements methods in transport phenom-

ena. Southampton: Computational Mechanics Publication; 1994.

[5] Chen W. New RBF collocation schemes and their applications.

International workshop meshfree methods for partial differential

equations, Bonn, Germany; September 2001.

[6] Chen W. RBF-based meshless boundary knot method and boundary

particle method. Proceedings of China Congress on Computational

Mechanics’2001, Guangzhou, China; December 2001.

[7] Fasshauer GE. Solving partial differential equations by collocation

with radial basis functions. In: Mehaute A, Rabut C, Schumaker

L. Proceedings of Chamonix; 1996. p. 1–8.

[8] Golberg MA. The method of fundamental solutions for Poisson’s

equation. Engng Anal Bound Elem 1995;16:205–13.

[9] Chen W, Tanaka M. A meshless, exponential convergence, inte-

gration-free, and boundary-only RBF technique. Comput Math Appl

2002;43:379–91.

[10] Chen W, Tanaka M. New insights into boundary-only and domain-

type RBF methods. Int J Nonlinear Sci Numer Simul 2000;1(3):

145–51.

[11] Golberg MA, Chen CS. The method of fundamental solutions for

potential, Helmholtz and diffusion problems. In: Golberg MA, editor.

Boundary integral methods—numerical and mathematical aspects.

Southampton: Computational Mechanics Publication; 1998. p.

103–76.

[12] Chen W, Tanaka M. Relationship between boundary integral equation

and radial basis function. The 52nd Symposium of Japan Society for

Computational Methods in Engineering (JASCOME) on BEM.

Tokyo; 2000.

[13] Kansa EJ. Multiquadrics: a scattered data approximation scheme with

applications to computational fluid-dynamics. Comput Math Appl

1990;19:147–61.

[14] Itagaki M. Higher order three-dimensional fundamental solutions to

the Helmholtz and the modified Helmholtz equations. Engng Anal

Bound Elem 1995;15:289–93.

[15] Mai-Duy N, Tran-Cong T. Mesh-free radial basis function network

methods with domain decomposition for approximation of functions

and numerical solution of Poisson’s equations 2002;26(2):133–56.

[16] Chen W. High-order fundamental and general solutions of convec-

tion–diffusion equation and their applications with boundary particle

method. Engng Anal Bound Elem 2002;. in press.

[17] Beatson RK, Cherrie JB, Ragozin DL. Fast evaluation of radial basis

functions: methods for four-dimensional polyharmonic splines. SIAM

J Math Anal 2001;32(6):1272–310.

W. Chen / Engineering Analysis with Boundary Elements 26 (2002) 577–581 581


	Meshfree boundary particle method applied to Helmholtz problems
	Introduction
	Boundary particle methods
	Numerical experiments
	Concluding remarks
	Acknowledgments
	References


