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Financial market dynamics is rigorously studied via the exact generalized
Langevin equation. Assuming Brownian market self-similarity, the market return
memory and autocorrelation functions are derived, which exhibit an oscillatory-
decaying behavior and a long-time tail similar to the empirical observations.

In 1900 Bachelier, at that time a student of Poincaré, has published his doctoral thesis
entitled “Théorie de la speculation” [1], where he has developed the mathematical theory of
the Brownian motion five years before the famous Einstein paper [2] has came out to explain its
physics. Bachelier introduced also the geometric Brownian motion, which is the background of
the well-known Black-Scholes option pricing model [3] and the most powerful tool for qualita-
tive description of financial market fluctuations [4-6]. According to the geometric Brownian mo-

tion, the market fluctuations obey a stochastic differential equation

dM = uMdt + cMdwW (1)

where M is the market prize, u is the market mean rate of return, t is time, ¢ is the market
volatility and W is a random Wiener process. As is seen, the noise in Eq. (1) is multiplicative. In
finances, the stochastic products MdW is traditionally treated via the Ito rules [7] but there are
also other definitions proposed in the literature for handling this peculiarity [8, 9].

Equation (1) describes geometric Brownian motion without memory, while the financial
markets are driven by people, who possess ability to remember. Hence, the model in Eq. (1) is
oversimplified and requires a generalization, which is the scope of the present paper. Thus, an
explicit expression for the market memory function is derived based on the Brownian dynamic
self-similarity concept [10]. The latter was already applied to hydrodynamics memory [11] and
corresponds to the simplest Hermitian dynamics, governed by an infinite-dimensional hyper-

spherical Hilbert space [12].



In the frames of the classical mechanics the evolution of an observable R(t), being a

function of momentums and coordinates of some particles of the Universe, is governed by the

following dynamic equation

dR(t) =iLR(t)dt (2)

where il is the global Liouville operator. The latter takes into account all the interactions in
the Universe, including the human activities as well. Equation (2) is an alternative presentation
of the Newton laws from the classical mechanics. The formal solution of Eq. (2) can be written

in the form

R(t) = exp(iLt)R (3)

where R =R(0) is the initial value of the observable. This exact solution is, however, useless
since no one is able to define precisely the Universe Liouville operator and even its approxima-
tions will not make the problem easier since Eq. (3) involves infinite number of differentiations.

Obviously, we are not able to describe the evolution of the whole Universe but our in-
terest is concentrated solely on the description of a very small part of it, particularly, the prize
M of a market. Of course, the latter is influenced by processes in the whole Universe but some

of them are important, while others are meaningless. Hence, the basic idea in statistical physics
is to introduce a projection operator P , Which focuses the observation on the variable R . Evi-

dently the projector satisfies idempotence (I32 = |3) and a possible definition of the projection
operator reads

PX=R<RX>/<R?> (4)

where <-> denotes a statistical average. As is seen, the operator P from Eqg. (4) projects the

effect of X on R via the correlation < RX > between these two quantities. If they are statisti-



cally independent and zero centered than < RX >=< R >< X >=0, and the evolution of R will
not be affected by X in an average sense. On the other hand the projector (4) preserves com-
pletely the information about R since PR=R.

In the physical literature a general integral representation for the exponential operator

form Eq. (3) is proposed [13, 14], which is the base of the Mori-Zwanzig formalism

exp(iLt) = jexp(i[s)]lSiI:exp[(l— P)iL(t —s)]ds + exp[(L— P)iLt] (5)

Applying this integral identity on the initial velocity iLR and using Eq. (4) leads to the following

dynamic equation equivalent to Eq. (2)

dR(t) :_j-< F(t)F(s) >

ot RS R(s)ds + F(t) (6)

0

where the fluctuation force is introduced via F(t) =exp[(1— Is)il:t]iI:R . The benefit of the exact
Mori-Zwanzig presentation (5) and the generalized Langevin equation (6) is the separation of
the whole interaction into two general forces, dissipation and fluctuation ones, governing the
evolution on a macroscopic level. The integral in Eq. (6) represents the dissipation force. The
fluctuation-dissipation theorem is also emphasized in Eq. (6) by the fact that the memory kernel
in the integral is proportional to the autocorrelation function of the fluctuation force. In addi-
tion, the rigorous definition of the fluctuation force above proves the relations < F(t) >=0 and
< F(t)R>=0, where the latter means that there is no correlation between the Langevin force
at a given moment and the observable at the beginning. Using these relations one can derive,

via multiplying Eq. (6) by R and taking an average value, an integro-differential equation

dCRR (t) J. CFF (t — S) CRR (S)ds (7)

CRR (O)



for the observable autocorrelation function C,(t) =< R(t)R > as related to the Langevin force
autocorrelation function C_.(t) =< F(t)F >. Applying the standard Laplace transformation to

Eq. (7) results in the following image expression

CRR ( p) = CRR (0)/[p + C~:FF ( p) / CRR (0)] (8)

where p is the transformation variable. As is seen the autocorrelation function of the Langevin
force C.- determines uniquely the autocorrelation function of the observable R(t).

The derivation of the equations above is general and can be applied to arbitrary observ-

able, which is stationary and zero centered. A very popular model for the fluctuation Langevin
force is the white noise with a constant spectral density C. (p) =Cqg(0)/ Ty, Where T, is the
relaxation time of the observable R(t). In this case the inverse image of Eq. (8) represents an

exponentially decaying autocorrelation function

Crr (1) =Cz (0) exp(—1/ t5) 9)

which according to the Doob theorem [15] is typical for stationary Gaussian Markov processes.

The stochastic differential equation corresponding to the white noise fluctuation force reads

dR(t) = —R(t)dt/ 1, +/< R* > /1, dW (10)

To apply the general results obtained above to stock markets one should define first a

proper observable R(t). Since we are looking for a zero centered (< R >=0) stationary variable

with a constant dispersion < R® >, a reasonable candidate is the market return fluctuation

R(t)=dInM /dt—p (11)



where M is the market prize and p is its mean return rate. In physics, stationary processes are

usually the rates of change of some quantities, e.g. the velocity of a molecule, etc. For this rea-
son the variable in Eq. (11) is not simply proportional to the market prize M but to its relative

rate of change. If the time t is much larger than the relaxation time t; one can neglect the left-

hand-side of Eq. (10) and hence it simplifies to R(t)dt =/<R®>>t,dW . Introducing here Eq.

(11) results in a stochastic differential equation for the market prize

dM = uMdt + /< R? > 1, MdW (12)

Comparing now this equation with Eqg. (1) unveils an expression relating the dispersion < R? >

of the relative rate of market fluctuations and the volatility of the market prize ¢
o’ =<R?*> Tg (13)

If the return fluctuations obey the Poisson law than < R? >=p’ and the correlation time from
Eq. (13) acquires the form 1, = o’ / u?. However, since according to Eq. (12) the return fluctua-
tions R(t) are proportional to the white noise, which is only Gaussian [16], it is necessary to

accept that the return rate fluctuations are Gaussian as well.

The analysis above shows that Eq. (1) is valid only for large times t >t and the lack of

memory effects. A general way to determine the return rate autocorrelation and memory func-
tions is to assume dynamic Brownian self-similarity [10] of the market. According to this model

the autocorrelation functions of the observable and its conjugated Langevin force are the same
Crr (1) / Cor(0) = Crr (1) / Cr (0) (14)

which can be translated in common words as “a market is driven by the market itself”. Strictly

streaking the assumption (14) implies a Hermitian dynamics in an infinite-dimensional hyper-



spherical Hilbert space [12]. Combining Eq. (14) with Eq. (8) results in the following expression

for the Laplace image of the return rate autocorrelation function

éRR(p) =<R? >TR[\/1+(TRp/2)2 —1,P/2] (15)

where the relaxation time equals to t; = \/< R? >/ < F?%>.The inverse Laplace transformation

of Eq. (15) leads straightforward to return rate autocorrelation function
Cor(T) <R*>=J,(2t/ 1)1, /1 (16)

This is a universal oscillatory-decaying function, whose amplitude exhibits a long-time tail falling
asymptotically as (t, /7)¥?. The plot of the autocorrelation from Eq. (16) in Fig. 1 shows the
existence of a sequence of correlations and anti-correlations of the market return. Similar auto-

correlation functions are empirically detected, for instance, in the Dow Jones Industrial Average

index [17].
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Figure 1. The dependence of the return rate autocorrelation function Cp,/ < R? >

from Eq. (16) as a function of the dimensionless time t/ 1,
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According to Eqgs. (14) and (16) the memory function of return rate fluctuations equals
to Cp (1)) < R* >=J,(21/1,) /1,7 and thus Eq. (6) becomes fully specified. Since the Langevin
force F is not a white noise anymore, the return rate fluctuations R(t) are not restricted to be

Gaussian in contrast to Eq. (1). Hence, Eq. (6) describes completely the market stochastic dy-

namics by accounting for the red color of the noise and the corresponding memory effects.
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