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Abstract. We propose new squaring formulae for cyclotomic subgroups of certain finite fields.
Our formulae use a compressed representation of elements having the property that decompres-
sion can be performed at a very low cost. The squaring formulae lead to new exponentiation
algorithms in cyclotomic subgroups which outperform the fastest previously-known exponenti-
ation algorithms when the exponent has low Hamming weight. Our algorithms can be adapted
to accelerate the final exponentiation step of pairing computations.

1. Introduction

One challenge in cryptography is to achieve a desired level of security in the most efficient
way. The efficiency can generally be improved if one can implement a cryptosystem with
more compact parameters. An example in the context of discrete logarithm cryptosystems
is the performance of 256-bit elliptic curve groups defined over 256-bit finite fields versus
256-bit subgroups of 3072-bit finite field groups. Even though both systems are believed to
provide 128-bit security with a careful choice of parameters, the former leads to a more efficient
implementation than the latter mainly because the points in the corresponding elliptic curve
group are represented with fewer bits than the elements in the subgroup of the corresponding
finite field group.

In recent years, there have been several proposals to represent the elements of cyclotomic
subgroups of finite field groups with fewer bits than is required in their natural representation
and to compute with the compressed representation of elements [26, 9, 5, 18, 8, 22, 30, 29,
25, 15, 16, 27, 14]. These methods help close the gap between the efficiency of elliptic curve
cryptosystems and finite field based cryptosystems. A related research objective is to improve
the efficiency of finite field arithmetic using the special structure of cyclotomic subgroups. The
most recent work is by Granger and Scott [12] who improved and extended the results in
[10] and [28]. They showed that if q ≡ 1 (mod 6) then the squaring operation in the order-
(q2− q + 1) cyclotomic subgroup of F∗q6 can be performed at a cost of only 6 multiplications in
Fq (or 3 squarings in Fq2).

We should emphasize that there are squaring algorithms that work with compressed representa-
tions of elements and that are faster than the method proposed in [12] for the order-(q2−q+1)
cyclotomic subgroup G of F∗q6 . For example, if g ∈ G then one can adapt the XTR technique
[18] to compute TrFq6/Fq2

(g2) from TrFq6/Fq2
(g) at a cost dominated by 2 multiplications in Fq.

However, since the trace function is not multiplicative, many cyptographic protocols that re-
quire multiplying more than two elements in G do not seem to benefit from this fast trace-based
squaring method. In particular, given only the traces of elements, the cost of recovering the
full representation of these elements (decompression) and also the cost of multiplication with
the trace representation greatly dominate the cost of multiplying two elements given in their
natural representations in Fq6 . In addition, even though the trace-based methods yield single-
exponentiation and double-exponentiation algorithms that are faster than their conventional
counterparts, it is not known how to use trace-based methods in general multi-exponentiation
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algorithms. Therefore, it is natural to look for squaring formulae that work with compressed
representations and can be effectively incorporated into cryptographic applications.

In Section 2 we classify the known squaring techniques for cyclotomic subgroups in two cat-
egories: those that work with natural representation of elements, and those that work with
compressed representation of elements. We will focus on the order (q2 − q + 1)-cyclotomic
subgroup G of F∗q6 as this seems to be the most interesting case with respect to some potential
applications in pairing-based cryptography. In Section 3, we present a new formula for squaring
elements in G when q ≡ 1 (mod 6). We first describe a function C that compresses elements
g ∈ G by a factor of 3/2, and describe a decompression function D that can be computed
very efficiently and satisfies D(C(g)) = g for all g ∈ G. Our new squaring method works with
this compressed form of elements. Given C(g), the cost of computing C(g2) is dominated by
4 multiplications in Fq (or 2 squarings in Fq2). Note that this is 33% faster than the method
described in [12]. The efficient decompression will permit us to effectively utilize the squaring
formula in exponentiation algorithms, especially when the exponent has low Hamming weight.
In Section 4, we discuss some applications of our squaring formula and provide some compar-
isons based on operation counts. In Section 5, we describe a more general technique to search
for efficient squaring formulae. As a result, we discover other squaring formulae some of which
seem to offer better performance in particular cases. Section 5 also shows that some of the
previously-known squaring formulae can be obtained via our search method. In Section 6,
we compare our new squaring formulae and the squaring formulae in [12]. We conclude in
Section 7.

2. A review of squaring and exponentiation algorithms in cyclotomic
subgroups of F∗q6

Let Fq be a finite field with q elements and characteristic not equal to 2 or 3. For simplicity,
we first assume that q = p is prime. We denote by GΦ6(p) the order-Φ6(p) cyclotomic subgroup
of F∗p6 . Here, Φi(p) denotes the ith cyclotomic polynomial evaluated at p, and |Gs| = s. Note
that |GΦ6(p)| = p2 − p + 1. Since Fp6 is the smallest extension of Fp that contains GΦ6(p),
an element g ∈ GΦ6(p) is naturally represented with 6 Fp-elements. However, exploiting the
algebraic structure of GΦ6(p), one can represent g ∈ GΦ6(p) with 3 or even with 2 Fp-elements
yielding more compact representations by factor 2 or 3. Trace-based compression and torus-
based compression are the two known methods to achieve factor 2 and 3 compression in GΦ6(p)

[26, 18, 22]. We summarize next the fastest previously-known squaring algorithms in GΦ6(p).
These algorithms fall into two categories: those that work with compressed representation of
elements, and those that work with full representation of elements.

2.1. Compressed representations.

2.1.1. Trace-based squaring: Let Trpi,pj denote the trace function TrFpi/F
pj

: Fpi → Fpj .
Elements g ∈ GΦ6(p) can be uniquely represented by their traces Trp6,p3(g) (upto conjugation
over Fp3) [26], or Trp6,p2(g) (upto conjugation over Fp2) [18]. More interestingly, one can com-
pute Trp6,p3(g2) and Trp6,p2(g2) given Trp6,p3(g) and Trp6,p2(g), respectively. The corresponding
squaring algorithms are known as LUC squaring and XTR squaring, respectively.

LUC-squaring: Trp6,p3(g2) = Trp6,p3(g)2 − 2. The cost of LUC-squaring is dominated by 1
squaring in Fp3 .

XTR-squaring: Trp6,p2(g2) = Trp6,p2(g)2 − 2Trp6,p2(g)p. The cost of XTR-squaring is domi-
nated by 1 squaring in Fp2 (since the cost of the Frobenius c 7→ cp is negligible for c ∈ Fp2).

2



2.1.2. Torus-based squaring: Let Fp6 = Fp3(σ) where σ is a root of x2−c for some quadratic
non-residue c ∈ Fp3 . Elements g = g0 + g1σ ∈ GΦ6(p) \ {±1} can be uniquely represented by
α = (g0 + 1)/g1 ∈ Fp3 . In fact, if α ∈ Fp3 is the compact representation of g ∈ GΦ6(p)

then g = (α + σ)/(α − σ) and g2 = (α2 + c + 2ασ)/(α2 + c − 2αc); see [23]. Now, given
g2i

= (x + yσ)/(x − yσ) ∈ GΦ6(p) for some x, y ∈ Fp3 , one can write g2i+1
= (x2 + y2c +

2xyσ)/(x2 + y2c − 2xyσ). In order to avoid the inversion operation in the squaring formula,
one can encode an element g = (x + yσ)/(x − yσ) ∈ GΦ6(p) \ {±1} with P(g) = [x, y] and
compute P(g2) = [x2 + y2c, 2xy], the (unique) representative of g2. This is so-called squaring
with mixed/projective coordinates; see, for example, [11]. We call this the TB2-squaring method
as it uses factor-2 torus-based compression.

TB2-squaring: P(g2) = [x2 + y2c, 2xy], where P(g) = [x, y]. The cost of TB2-squaring is
dominated by 2 multiplications in Fp3 because x2 + y2c = (x + yc)(x + y)− (c + 1)xy and we
can ignore the cost of addition, subtraction, and multiplication by c.

Remark 2.1. Given g = (α + σ)/(α − σ) ∈ GΦ6(p) for some α ∈ Fp3 , one can exploit the
algebraic structure of GΦ6(p) to further compress α to two Fp-elements [22, 11]. One can
then define TB3-squaring analogous to TB2-squaring. However, to the author’s knowledge,
this extra structure hast not yet been exploited to derive efficient TB3-squaring formulae.
For example, it was reported in [11] that the cost of a TB3-squaring that uses the factor-3
torus-based compressed representation of elements in GΦ6(p) is 21 multiplications, 38 additions
and 1 inversion in Fp (when p ≡ 2, 5 (mod 9)). Even though the inversion can be eliminated
by using mixed/projective coordinates as in TB2-squaring, the cost is still dominated by 21
multiplications in Fp, which is more expensive than the above TB2-squaring.

2.2. Full representations. The squaring formulae that work with the natural representation
of g can be summarized as below.

General squaring: Let Fp6 = Fp3(σ), where σ is a root of σ2 − c for some quadratic non-
residue in Fp3 . Let g = g0 + g1σ ∈ F∗p6 . Then g2 = (g2

0 + g2
1c) + 2g0g1σ can be computed at a

cost dominated by 2 multiplications in Fp3 because g2
0 + g2

1c = (g0 + g1c)(g0 + g1)− (c + 1)g0g1

and we may again ignore the cost of addition, subtraction, and multiplication by c.

SL-squaring: Let p ≡ 2, 5 (mod 9) and g ∈ GΦ6(p) ⊂ F∗p6 . Using the algebraic relations

induced by gp3+1 = gp2−p+1 = 1 on the coefficients of the vector representation of g over Fp,
Stam and Lenstra [28] showed that g2 can be computed at a cost dominated by 6 multiplications
in Fp. Moreover, when p ≡ 2 (mod 3) or p ≡ 3 (mod 4), the algebraic relations induced by
gp3+1 = 1 on the coefficients of the vector representation of g over Fp3 were used to compute
g2 at a cost dominated by 2 squarings in Fp3 . We call the Stam-Lenstra methods SL1-squaring
and SL2-squaring, respectively.

GPS-squaring: Let p ≡ 1 (mod 12) and g ∈ GΦ6(p) ⊂ F∗p6 . Using the algebraic relations

induced by gp3+1 = gp2−p+1 = 1 on the coefficients of the vector representation of g over
Fp, Granger, Page and Stam [10] showed that g2 can be computed at a cost dominated by 3
multiplications and 6 squarings in Fp.

GS-squaring: Let q ≡ 1 (mod 6) be a prime power and g ∈ GΦ6(q) ⊂ F∗q6 . Granger and Scott

[12], using the algebraic relations induced by gq3+1 = gq2−q+1 = 1 on the coefficients of the
vector representation of g over Fq2 , showed that g2 can be computed at a cost dominated by 3
squarings in Fq2 .

Table 1 summarizes the dominating costs of the above-mentioned squaring algorithms. We let
Mi and Si denote multiplication and squaring costs in Fpi . We may assume a) M3i = 6Mi using
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Karatsuba’s technique; b) S2i = 2Mi using general squaring as above; and c) S3i = Mi + 4Si

using Chung and Hasan’s generalized Tom-Cook squaring formulae SQR3 [6].

Table 1. A summary of squaring algorithms in GΦ6(p).

Algorithms Cost Restriction

Compressed representation

LUC 1S3 = 1M1 + 4S1 decompression

XTR 1S2 = 2M1 decompression

TB2 2M3 = 12M1

Full representation

General 2M3 = 12M1

SL1 6M1 p ≡ 2, 5 (mod 9)

SL2 2S3 = 2M1 + 8S1 p ≡ 2 (mod 3), p ≡ 3 (mod 4)

GPS 3M1 + 6S1 p ≡ 1 (mod 12)

GS 3S2 = 6M1 p ≡ 1 (mod 6)

We should note that the squaring algorithms described above for GΦ6(p) can be generalized to
obtain squaring algorithms for GΦ6i(p) ⊂ F∗

p6i when all prime divisors of i divide 6. Indeed,
one can replace p by q = pi in the arguments and note that GΦ6i(p) = GΦ6(q) ⊂ F∗q6 .1 The
dominating costs of the corresponding squaring algorithms may be obtained by replacing each
Mj and Sj in Table 1 by Mj·i and Sj·i, respectively (and the restrictions on p in Table 1 should
then be read as restrictions on q).

Even though XTR-squaring seems to be the fastest squaring algorithm for GΦ6i(p) ⊂ F∗
p6i (or,

GΦ6(q) ⊂ F∗q6 with q = pi) for i ∈ {1, 2, 3, 4}, it suffers from the non-multiplicative property
of the trace function as mentioned in Section 1. Consequently, GS-squaring and SL1-squaring
seem to be the best squaring algorithms that can be easily deployed in cryptographic algorithms.
In addition, GS-squaring has the extra advantage that it allows the use of pairing-friendly
or towering-friendly fields for more efficient implementation of pairing-based cryptographic
protocols; see [17, 3].

3. A new squaring formula in cyclotomic subgroups

Let q = pi ≡ 1 (mod 6) be a prime power and GΦ6(q) ⊂ F∗q6 . We let Fq2 = Fq(w) where w2 = c

for some sextic non-residue c ∈ Fq; and Fq6 = Fq2(σ) where σ3 = w. Then it is easy to show
that

wq = −w,(3.1)
σq = mσ,(3.2)

where m ∈ Fq is some primitive sixth root of unity.

If g ∈ Fq6 then we write

g = (g0 + g1w) + (g2 + g3w)σ + (g4 + g5w)σ2,

where gi ∈ Fq. In particular, if g ∈ GΦ6(q) then

gq3+1 = gq2−q+1 = 1(3.3)

and using (3.3) together with (3.1) and (3.2) we obtain the following nine relations for gi’s:

P1 : 2g0g4 − g2
2 − (2g1g5 − g2

3)c = 0,

P2 : −2g1g2 + g2
4 + 2g0g3 − g2

5c = 0,

1Under this generalization the GPS-squaring algorithm seems to scale better than the one described in [10]
for i = 2, 3 and 4.
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P3 : g2
0 − 1− (g2

1 + 2g2g5 − 2g3g4)c = 0,

P4 : (1− g0)g5 + 2g2g3 − g1g4 = 0,

P5 : (−1− g0)g4 + g2
2 + (g2

3 − g1g5)c = 0,

P6 : (g0 + 1)g3 + g1g2 − g2
4 − g2

5c = 0,

P7 : (g0 − 1)g2 + (g3g1 − 2g5g4)c = 0,

P8 : (1 + 2g0)g1 − g2g4 − g3g5c = 0,

P9 : g0(g0 − 1) + (g2
1 − g2g5 − g3g4)c = 0.

Note that each relation Pi is independent of the choice of the primitive sixth root of unity m.
Therefore, without loss of generality, we associate a 7-variate polynomial Pi(X) = Pi(x0, . . . , x5, y)
to each relation Pi above. That is, if g = (g0 + g1w) + (g2 + g3w)σ + (g4 + g5w)σ2 ∈ GΦ6(q)

then Pi(g0, . . . , g5, c) = 0 for all i = 1, . . . , 9. Thus, every element in GΦ6(q) corresponds to an
Fq-point in the variety defined by the ideal 〈P1(X), . . . , P9(X)〉.

In fact, we may think of each Pi(X) as a 7-variate polynomial defined over the field of rational
numbers Q, and define an ideal I = 〈P1(X), . . . , P9(X)〉 over Q. Next, we compute a Groebner
basis over Q of I with respect to some fixed ordering on the set of monomials, which in turn
yields a factor-3/2 compression function C for elements g ∈ GΦ6(q) with the property that given
C(g), g can be recovered uniquely at a cost dominated by an inversion in Fq. We describe the
compression and decompression functions in the following theorem.

Theorem 3.1. Let q ≡ 1 (mod 6) be a prime power. Let Fq2 = Fq(w) where w2 = c for
some sextic non-residue c ∈ Fq, and let Fq6 = Fq2(σ) where σ3 = w. Let g = (g0 + g1w) +
(g2 + g3w)σ + (g4 + g5w)σ2 ∈ GΦ6(q) \ {1} ⊂ F∗q6. Define the compression function C and the
decompression function D as follows

C(g) = [g2, g3, g4, g5],
D([g̃2, g̃3, g̃4, g̃5]) = (g̃0 + g̃1w) + (g̃2 + g̃3w)σ + (g̃4 + g̃5w)σ2,

where {
g̃1 = g̃2

5c+3g̃2
4−2g̃3

4g̃2
, g̃0 = (2g̃2

1 + g̃2g̃5 − 3g̃3g̃4)c + 1, if g̃2 6= 0;
g̃1 = 2g̃4g̃5

g̃3
, g̃0 = (2g̃2

1 − 3g̃3g̃4)c + 1, if g̃2 = 0.

Then D is well-defined for all C(g) with g ∈ GΦ6(q)\{1}, and D(C(g)) = g for all g ∈ GΦ6(q)\{1}.

Proof. Let g = (g0 + g1w) + (g2 + g3w)σ + (g4 + g5w)σ2 ∈ GΦ6(q) \ {1}. If g2 = 0 and g3 = 0
then one can verify using the relations Pi that g1 = g4 = g5 = 0 and g0 = 1. Therefore, g2 and
g3 cannot both be zero proving that D is well-defined for all C(g) with g ∈ GΦ6(q) \ {1}.

To show that D(C(g)) = g for all g ∈ GΦ6(q) \ {1}, we compute a Groebner basis over Q of
the ideal I = 〈P1(X), . . . P9(X)〉 with respect to the lexicographical ordering of the monomials
with x0 > x1 > x5 > x4 > x3 > x2 > y. It can be verified using Magma with the commands

R < x0, x1, x5, x4, x3, x2, y >:= PolynomialRing(RationalField(), 7);
B1 := [R!P1,R!P2,R!P3,R!P4,R!P5,R!P6,R!P7,R!P8,R!P9];
I1 := ideal < R|B1 >;
GB1 := GroebnerBasis(I1);
B2 := [R!P1,R!P2,R!P3,R!P4,R!P5,R!P6,R!P7,R!P8,R!P9,R!x2];
I2 := ideal < R|B2 >;
GB2 := GroebnerBasis(I2);

that

x0 − (2x2
1 + x2x5 − 3x3x4)y − 1,
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x1x2 +
x3

2
− 3x2

4

4
− x2

5y

4
are two polynomials in the basis GB1; and

x1x3 − 2x4x5

is a polynomial in the basis GB2. �

By Theorem 3.1, we know that if g = (g0 + g1w) + (g2 + g3w)σ + (g4 + g5w)σ2 ∈ GΦ6(q) then
C(g) = [g2, g3, g4, g5] determines g uniquely. This suggests a squaring formula that uses the
compressed representation of elements in GΦ6(q) which we present in Theorem 3.2.

Theorem 3.2. Let q ≡ 1 (mod 6) be a prime power. Let Fq2 = Fq(w) where w2 = c for
some sextic non-residue c ∈ Fq, and let Fq6 = Fq2(σ) where σ3 = w. Let g = (g0 + g1w) +
(g2 + g3w)σ + (g4 + g5w)σ2 ∈ GΦ6(q) ⊂ F∗q6. Let C be the compression function defined in the
statement of Theorem 3.1. Let h = g2, where h = (h0 + h1w) + (h2 + h3w)σ + (h4 + h5w)σ2.
Then

C(g2) = [h2, h3, h4, h5],

where

h2 = 2(g2 + 3cB4,5),
h3 = 3(A4,5 − (c + 1)B4,5)− 2g3,

h4 = 3(A2,3 − (c + 1)B2,3)− 2g4,

h5 = 2(g5 + 3B2,3),
Ai,j = (gi + gj)(gi + cgj),
Bi,j = gigj .

Proof. Using w2 = c and σ3 = w, we find that

h0 = g2
0 + (g2

1 + 2g3g4 + 2g2g5)c,
h1 = 2(g0g1 + g2g4 + g3g5c),
h2 = 2(g0g2 + (g4g5 + g1g3)c),
h3 = 2(g0g3 + g1g2) + g2

4 + g2
5c,

h4 = g2
2 + 2g0g4 + (g2

3 + 2g1g5)c,
h5 = 2(g0g5 + g2g3 + g1g4).

Under the correspondence xi ↔ gi and y ↔ c, we define the 7-variate polynomials hi(X).
Next, we compute representatives of hi(X)’s for i ∈ {2, 3, 4, 5} in the quotient ring R/I,
where R = Q[x0, . . . , x5, y] with respect to the lexicographical ordering of monomials with
x0 > x1 > x5 > x4 > x3 > x2 > y, and where I = 〈P1(X), . . . , P9(X)〉 is the ideal over Q
defined earlier. It can be verified using Magma with the commands

R < x0, x1, x5, x4, x3, x2, y >:= PolynomialRing(RationalField(), 7);
B := [R!P1,R!P2,R!P3,R!P4,R!P5,R!P6,R!P7,R!P8,R!P9];
I := ideal < R|B >;
R2 := R/I;
R2!h2; R2!h3; R2!h4; R2!h5;

that

h2 = 2(g2 + 3g4g5c) = 2(g2 + 3cB4,5),

h3 = 3(g2
4 + g2

5c)− 2g3 = 3(A4,5 − (c + 1)B4,5)− 2g3,
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h4 = 3(g2
2 + g2

3c)− 2g4 = 3(A2,3 − (c + 1)B2,3)− 2g4,

h5 = 2(g5 + 3g2g3) = 2(g5 + 3B2,3)

in the quotient ring R/I.

�

Corollary 3.3. Let q ≡ 1 (mod 6) and g ∈ GΦ6(q) ⊂ F∗q6. Then C(g2) can be computed at a
cost dominated by 4 multiplications in Fq.

4. Applications

The squaring formula in Theorem 3.2 works with a compressed representation of elements in
GΦ6(q). The decompression cost for this representation is far less than that of other compressed-
squaring algorithms such as XTR-squaring (LUC-squaring) where decompression is performed
by finding a root of a third (second) degree irreducible polynomial defined over Fq2 (Fq3).
When the full representation of a compressed element C(g) is needed (for example, in the
multiplication step of square-and-multiply type exponentiation algorithms), the decompression
function D can recover g uniquely at a cost dominated by an inversion in Fq. Consequently,
comparing Corollary 3.3 with Table 1, our compressed-squaring algorithm together with the
decompression function yields an exponentiation algorithm which is especially fast when the
exponent has low Hamming weight.

4.1. Exponentiation in GΦ6(q). Let q = pi ≡ 1 (mod 6) and g ∈ GΦ6(q) ⊂ F∗q6 . We present
an exponentiation algorithm that uses the squaring formula in Theorem 3.2.

Let e be an `-bit exponent with binary representation

e = e`−1e`−2 . . . e2e1e0,

where e`−1 = 1. Let He = {i : 1 ≤ i ≤ `− 1 and ei = 1}. Then

ge =
`−1∏
i=0

g2i
= ge0

∏
i∈He

D(C(g2i
)).

Now, if
g2i

= (gi,0 + gi,1w) + (gi,2 + gi,3w)σ + (gi,4 + gi,5w)σ2

then by Theorem 3.1
C(g2i

) = [gi,2, gi,3, gi,4, gi,5]

and, assuming without loss of generality that gi,2 6= 0,

D(C(g2i
)) = (xi +

yi

zi
w) + (gi,2 + gi,3w)σ + (gi,4 + gi,5w)σ2,

where

xi = (2g2
i,1 + gi,2gi,5 − 3gi,3gi,4)c + 1, yi = g2

i,5c + 3g2
i,4 − 2gi,3, and zi = 4gi,2.

Hence, ge can be computed as follows.

(1) Compute C(g2i
) for 1 ≤ i ≤ `− 1 with (`− 1) successive squarings using Theorem 3.2

and store C(g2i
) for each i ∈ He.

(2) Compute and store (xi, yi, zi) for each i ∈ He.
(3) Compute yi/zi for each i ∈ He.
(4) Compute ge = ge0

∏
i∈He

D(C(g2i
)).

7



Now, let |He| = N , and let Mi, Si and Ii denote multiplication, squaring and inversion costs in
Fq = Fpi , respectively. By Corollary 3.3, step (1) in the above algorithm has cost dominated
by (4(` − 1))Mi and requires storage of 4N Fq-elements. Using Montgomery’s simultaneous
inversion trick [20, 13], steps (2) and (3) have cost dominated by N((1Si +2Mi)+2Si)+3(N −
1)Mi + 1Ii + (N)Mi and storage of 3N + 1 Fq-elements. Finally, step (4) can be computed at
a cost of (N)M6i.

Corollary 4.1. Let q = pi ≡ 1 (mod 6) and g ∈ GΦ6(q) ⊂ F∗q6. Let e be an `-bit exponent. Let
He = {i : 1 ≤ i ≤ ` − 1 and ei = 1}, and let |He| = N . Then, ge can be computed at a cost
dominated by

(4(`− 1))Mi + (6N − 3)Mi + (N)M6i + (3N)Si + 1Ii,

with a storage of 7N + 1 Fq-elements.

Note that the cost of exponentiation using GS-squaring (see [12] or Section 2) in the same
setting as in Corollary 4.1 would be dominated by

6(`− 1)Mi + (N)M6i.(4.1)

Hence, by Corollary 4.1, we would expect a 33% speed-up over GS-exponentiation as N/` → 0.

4.2. Speeding up pairing computations. Let E : y2 = x3 + b be a curve in the Barreto-
Naehrig (BN) family of pairing-friendly curves with embedding degree k = 12 [2]. Then E is
defined over Fp with |E(Fp)| = r, where the primes p and r are parametrized as follows

p(u) = 36u4 + 36u3 + 24u2 + 6u + 1,

r(u) = 36u4 + 36u3 + 18u2 + 6u + 1.

In general, a pairing computation on E is performed in two steps: Miller loop and final expo-
nentiation. Scott [24] showed that the final exponentiation in the pairing computation can be
done in two parts. In the first part, an element in F∗p12 is raised to the power (p6 − 1)(p2 + 1).
This is the so-called easy part and requires a small number of multiplications, pth powerings
and a single inversion, and yields an element g ∈ GΦ6(p2) = GΦ12(p) ⊂ F∗p12 . In the second part
of the final exponentiation, the so-called hard part, g is raised to the power

Φ12(p)/r = (p4 − p2 + 1)/r = λ3p
3 + λ2p

2 + λ1p + λ0,

where

λ3(u) = 1,

λ2(u) = 6u2 + 1,

λ1(u) = −36u3 − 18u2 − 12u + 1,

λ0(u) = −36u3 − 30u2 − 18u− 2.

Note that when the BN parameter u is chosen to have low Hamming weight, one can first
compute gu, gu2

= (gu)u and gu3
= (gu2

)u to minimize the number of multiplications in the
hard part of the final exponentiation.

To be more concrete, one can choose u = −(262 +255 +1) to obtain a BN-curve E defined over
a 254-bit prime p with 254-bit prime order group E(Fp) [21]. In our operation counts, we will
assume a) M2 = 3M1 and M12 = 54M1 using Karatsuba’s technique; b) S2 = 2M1 (see general
squaring in Section 2.2); c) I2 = 1I1 + 2M1 + 2S1 [19]; and d) M1 = S1 and I1 = 50M1 (see [4,
Section 3.1]).

GS-exponentiation seems to be the fastest of the previously-known methods to compute the
hard part of the final exponentiation in the pairing computation. Using this method, each of
g−u, g−u2

and g−u3
can be computed at a cost dominated by (see (4.1))

6(`− 1)Mi + (N)M6i = 1224M1,(4.2)
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where ` = 63 and N = 2.

Now, we describe an exponentiation algorithm similar to the one in Section 4.1 but avoiding the
storage requirements. Instead of performing simultaneous inversion, we begin the algorithm
by computing compressed-squarings and perform a one-time inversion (decompression) when
a multiplication is required. Then we switch to GS-squaring. In summary, given g and −u =
262 + 255 + 1, g−u can be computed as follows.

(1) Compute C(g255
) with 55 successive squarings using Theorem 3.2.

(2) Decompress C(g255
) to obtain g255

= D(C(g255
)).

(3) Compute g262
with 7 successive GS-squarings.

(4) Compute g−u = g · g255 · g262
.

The cost of step (2) is dominated by

(3S2 + 2M2) + 1I2 + 1M2 = 6M1 + 6M1 + 54M1 + 3M1 = 69M1.

Similar to our previous analysis, one can verify that the cost of the above hybrid exponentiation
algorithm is dominated by

(55 · 4)M2 + (7 · 6)M2 + 69M1 + 2M12 = 963M1.(4.3)

Comparing (4.2) and (4.3), we would expect around a 21% speed-up for computing gu, gu2
and

gu3
in the hard part of the final exponentiation. According to [4, Section 4.2 and Table 3],

computing gu, gu2
and gu3

take 79% of the time of the final exponentiation, and the final
exponentiation takes 42% of the time of the whole pairing computation. Hence, with our new
exponentiation algorithm, we would expect a 17% speed-up for the final exponentiation, and a
7% speed-up for the pairing computation.

Recently, Aranha et al. proposed and implemented a variant of the squaring algorithm in
Theorem 3.2 for the pairing computation over a BN curve parametrized by u = −(262 +255 +1)
[1]. They reported overall 5%− 7% speed-ups for the pairing computation.

5. Other formulae for squaring

In this section, we describe a general method for finding efficient squaring formulae in cyclo-
tomic subgroups GΦ6(q). While rediscovering some of the previously-known squaring formulae
such as LUC-squaring, XTR-squaring and GS-squaring, our method yields new squaring for-
mulae which might be good alternatives to the one in Section 3.

We use the same notation as in Section 3. In particular, let

g = (g0 + g1w) + (g2 + g3w)σ + (g4 + g5w)σ2 ∈ GΦ6(q)

and
h = g2 = (h0 + h1w) + (h2 + h3w)σ + (h4 + h5w)σ2.

Let I ⊆ {0, 1, . . . , 5}. In order to obtain squaring formulae similar one in Theorem 3.2 we first
need a (compression) function C such that C(g) can be determined as a function of VI(g) = {gi :
i ∈ I}. Second, we need a family SI = {Si : i ∈ I} of formulae to compute each hi ∈ VI(h)
as a function of VI(g), say hi = Si(VI(g)) for each i ∈ I. Consequently, we might represent a
squaring formula F : C(g) 7→ C(g2) = C(h) by a tuple

F = {I, C,SI}.
For example, in Theorem 3.2 we had

I = {2, 3, 4, 5}, C(g) = [g2, g3, g4, g5], SI = {S2, S3, S4, S5},
h2 = S2(VI(g)) = 2(g2 + 3g4g5c),

9



h3 = S3(VI(g)) = 3(g2
4 + g2

5c)− 2g3,

h4 = S4(VI(g)) = 3(g2
2 + g2

3c)− 2g4,

h5 = S5(VI(g)) = 2(g5 + 3g2g3).

Remark 5.1. In the representation of F , it seems necessary to require that the inverse of C
can be efficiently computed in order to get efficient multi-exponentiation algorithms based on
F . However, we will relax this condition for now.

We already know from the proof of Theorem 3.2 that if h = g2 then

h0 = g2
0 + (g2

1 + 2g3g4 + 2g2g5)c,
h1 = 2(g0g1 + g2g4 + g3g5c),
h2 = 2(g0g2 + (g4g5 + g1g3)c),
h3 = 2(g0g3 + g1g2) + g2

4 + g2
5c,

h4 = g2
2 + 2g0g4 + (g2

3 + 2g1g5)c,
h5 = 2(g0g5 + g2g3 + g1g4).

In fact, the squaring formula in Theorem 3.2, or in other words SI = {S2, S3, S4, S5}, was
found by computing representatives of hi(X)’s for i ∈ {2, 3, 4, 5} in the quotient ring R/I,
where R = Q[x0, . . . , x5, y] with respect to the lexicographical ordering of monomials with
x0 > x1 > x5 > x4 > x3 > x2 > y, and where I = 〈P1(X), . . . , P9(X)〉.

In order to capture a wider class of squaring formulae F = {I, C,SI}, we will compute repre-
sentatives of hi(X) for i ∈ {0, . . . , 5} in the quotient ring R/I by varying over all the 7! = 5040
orderings of the variables {x0, . . . , x5, y}. To do so, we let o be some fixed ordering in the set O
of all orderings of the variables {x0, . . . , x5, y} and denote by Ro the ring Q[x0, . . . , x5, y] with
respect to the lexicographical ordering of monomials with ordering o.

We define
Hi = {h̄i,o : h̄i,o = hi ∈ Ro/I, o ∈ O}.

Since each h̄i,o defines a unique Si (on some subset VI(g)), we may replace, without loss of
generality, h̄i,o’s by Si,j ’s in Hi. We list Hi for i = 0, 1, . . . , 5 in Appendix A.

Note that for any I ⊆ {0, 1, 2 . . . , 5}, there is a squaring formula F = {I, C,SI} only if for each
i ∈ I there is some Si,j ∈ Hi that is defined on VI(g). From Appendix A, we deduce that
S0,j ∈ H0 is well defined on a domain VI(g) only if VI(g) contains one of the subsets in the
minimal domain set D0 of H0, where

D0 = {{g0, g1}, {g0, g2, g5}, {g0, g3, g4}, {g1, g2, g5}, {g0, g1, g2, g3},
{g0, g1, g3, g4}, {g0, g1, g4, g5}, {g0, g2, g3, g4, g5}}

Similarly, we have

D1 = {{g0, g1}, {g1, g2, g5}, {g1, g2, g3, g4}, {g1, g2, g3, g5},
{g1, g2, g4, g5}, {g1, g3, g4, g5}, {g0, g1, g2, g3, g5},
{g0, g1, g2, g4, g5}, {g1, g2, g3, g4, g5}},

D2 = {{g2, g4, g5}, {g0, g1, g2, g3}, {g1, g2, g3, g5}, {g1, g2, g3, g4, g5}},
D3 = {{g0, g3, g4}, {g0, g3, g5}, {g1, g2, g5}, {g3, g4, g5},

{g0, g1, g2, g3}, {g1, g2, g3, g4}, {g1, g2, g3, g5}},
D4 = {{g0, g2, g4}, {g0, g3, g4}, {g1, g2, g5}, {g2, g3, g4},

{g0, g1, g4, g5}, {g1, g2, g4, g5}, {g1, g3, g4, g5}},
D5 = {{g2, g3, g5}, {g0, g1, g4, g5}, {g1, g2, g4, g5}, {g1, g2, g3, g4, g5}}.
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Now, from the minimal domain sets Di’s and Hi’s in Appendix A we can write other squaring
formulae F = {I, C,SI} as follows.

5.1. SQR01: F = {I, C,SI} with |I| = 2.

I = {0, 1}, C(g) = [g0, g1], SI = {S0,3, S1,1}
h0 = S0,3 = 3g2

0 − 2g0 + 3g2
1c,

h1 = S1,1 = 6g0g1 + 2g1.

This formula is the only one with |I| = 2. Its cost is dominated by 2 multiplications in Fq as
one can write

h0 = 3((g0 + g1)(g0 + g1c)− (c + 1)g0g1)− 2g0.

In fact, this formula is a rediscovery of the XTR-squaring because

TrFq6/Fq2
(g) = 3(g0 + g1w)

can be uniquely determined using VI(g) = {g0, g1}. Note that the compression function C in
this case cannot have an inverse as C(g) = C(gq2

) = C(gq4
).

5.2. SQR034: F = {I, C,SI} with |I| = 3.

I = {0, 3, 4}, C(g) = [g0, g3, g4], SI = {S0,1, S3,2, S4,1}
h0 = S0,1 = 2g2

0 + 4g3g4c− 1,

h3 = S3,2 = 4g0g3 + 2g2
4,

h4 = S4,1 = 4g0g4 + 2g2
3c.

This formula is the only one with |I| = 3, and is a rediscovery of the LUC-squaring because

TrFq6/Fq3
(g) = 2(g0 + g3wσ + g4σ

2)

can be uniquely determined using VI(g) = {g0, g3, g4}. In fact, using

Trq6,q3(g2) = Trq6,q3(g)2 − 2

and the 3-way squaring formula in [6] one can show that

h0 = 2(T0 + T1c)− 1,

h3 = (T1 + T2)− 2(T0 + T4),

h4 = 2(T4c− T3) + (T1 − T2),

where

T0 = g2
0,

T1 = (g0 + g3 + g4)2,

T2 = (g0 + g3 − g4)2,
T3 = 2g3g4,

T4 = g2
3.

Hence, the total cost is dominated by 1 squaring in Fq3 , or by 4 squarings and 1 multiplication in
Fq. Note that the compression function C in this case cannot have an inverse as C(g) = C(gq3

).
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5.3. SQR2345: F = {I, C,SI} with |I| = 4.

I = {2, 3, 4, 5}, C(g) = [g2, g3, g4, g5], SI = {S2,1, S3,4, S4,5, S5,1}
h2 = S2,1 = 2g2 + 6g4g5c,

h3 = S3,4 = 3g2
4 + 3g2

5c− 2g3,

h4 = S4,5 = 3g2
2 + 3g2

3c− 2g4,

h5 = S5,1 = 2g5 + 6g2g3.

The above formula is a rediscovery of the squaring formula in Theorem 3.2, where we show that
C(g2) can be computed at a cost dominated by 4 multiplications in Fq. Next, we observe that
C(g2) can also be computed at a cost dominated by 2 squarings in Fq2 . This follows because,
inspired by GS-squaring [12], we can write

h2 + h3w = S2,1 + S3,4w = 3w(g4 + g5w)2 + 2(g2 − g3w),

h4 + h5w = S4,5 + S5,2w = 3(g2 + g3w)2 − 2(g4 − g5w),

which requires 2 squarings in Fq2 .

5.4. SQR0134: F = {I, C,SI} with |I| = 4.

I = {0, 1, 3, 4}, C(g) = [g0, g1, g3, g4], SI = {S0,1, S1,1, S3,2, S4,1}
h0 = S0,1 = 2g2

0 + 4g3g4c− 1,

h1 = S1,1 = 6g0g1 + 2g1,

h3 = S3,2 = 4g0g3 + 2g2
4,

h4 = S4,1 = 4g0g4 + 2g2
3c.

In this formula, one can compute {h0, h3, h4} at a cost dominated by 4 squarings and 1 multi-
plication in Fq (see Section 5.2). Hence, {h0, h1, h3, h4} can be computed at a cost dominated
by 4 squarings and 2 multiplications in Fq. Similarly as in the proof of Theorem 3.1, we can
show that an inverse to the compression function C can be given as follows.

D([g̃0, g̃1, g̃3, g̃4]) = (g̃0 + g̃1w) + (g̃2 + g̃3w)σ + (g̃4 + g̃5w)σ2,

where

g̃2 =
g̃3(g̃0 − 1) + 2g̃2

4

3g̃1
,

g̃5 =
g̃4(g̃0 − 1) + 2g̃2

2c

3g̃1c
.

If g ∈ GΦ6(q) \ {1} then g1 can never equal zero because

TrFq6/Fq2
(g2) = g0 + g1w ∈ Fq2 \ Fq.

Hence, the decompression function D is well defined and D(C(g)) = g for all g ∈ GΦ6(q) \ {1}.
The decompression can be performed at a cost dominated by 4 multiplications, 2 squarings
and 1 inversion in Fq.

5.5. Other formulae F = {I, C,SI} with |I| = 4. There are 4 more classes of squaring
formulae with |I| = 4 and we list one from each class that seems to be the most efficient one
in its class.

I = {0, 1, 2, 3}, C(g) = [g0, g1, g2, g3], SI = {S0,3, S1,1, S2,2, S3,3}
h0 = S0,3 = 3g2

0 − 2g0 + 3g2
1c,

h1 = S1,1 = 6g0g1 + 2g1,

h2 = S2,2 = 3g0g2 + 3g1g3c− g2,

12



h3 = S3,3 = 3g0g3 + 3g1g2 + g3.

I = {0, 1, 4, 5}, C(g) = [g0, g1, g4, g5], SI = {S0,3, S1,1, S4,3, S5,2}
h0 = S0,3 = 3g2

0 + 3g2
1c− 2g0,

h1 = S1,1 = 6g0g1 + 2g1,

h4 = S4,3 = 3g0g4 + 3g1g5c + g4,

h5 = S5,2 = 3g0g5 + 3g1g4 − g5.

I = {1, 2, 3, 5}, C(g) = [g1, g2, g3, g5], SI = {S1,5, S2,1, S3,1, S5,1}
h1 = S1,5 = 12g3

5c
2 + (12g3

1 + 12g1g2g5 − 36g2g
2
3 − 24g3g5)c + 8g1,

h2 = S2,1 = 2g2 + 6g4g5c,

h3 = S3,1 = 4g1g2 + 2g2
5c,

h5 = S5,1 = 6g2g3 + 2g5.

I = {1, 2, 4, 5}, C(g) = [g1, g2, g4, g5], SI = {S1,3, S2,1, S4,2, S5,3}
h1 = S1,3 = (12g1g2g5 + 12g3

1 − 36g2
4g5)c− 24g2g4 + 8g1 + 12g3

2,

h2 = S2,1 = 2g2 + 6g4g5c,

h4 = S4,2 = 4g1g5c + 2g2
2,

h5 = S5,3 = −12g1g
2
2 + 9g2g

2
4 + 3g2g

2
5c + 2g5.

For each of the above 4 formulae, one can write a decompression function D such that D is well
defined and D(C(g)) = g for all g ∈ GΦ6(q). Our analysis shows that in the first two squaring
formulae, the decompression functions require 1 inversion in Fq, and computing C(g2) requires
more than 4 multiplications in Fq. Therefore, they do not seem to yield better algorithms than
the squaring formula in Theorem 3.2. In the latter two squaring formulae, the decompression
functions do not require an inversion, and they can be given as follows:

D([g1, g2, g3, g5]) = (g0 + g1w) + (g2 + g3w)σ + (g4 + g5w)σ2,

where

g4 = 1/2(g2
2 + 3g2

3c)− 2g1g5c,

g0 = (2g2
1 + g2g5 − 3g3g4)c + 1,

and

D([g1, g2, g4, g5]) = (g0 + g1w) + (g2 + g3w)σ + (g4 + g5w)σ2,

where

g3 = 1/2(g2
5c + 3g2

4)− 2g1g2,

g0 = (2g2
1 + g2g5 − 3g3g4)c + 1,

respectively. The above formulae yield factor-3/2 compression for elements g ∈ GΦ6(q) with
the property that decompression can be performed at a cost dominated by 3 multiplications
and 3 squarings in Fq. However, computing C(g2) requires more than 6 multiplications in Fq.
Therefore, they do not seem to yield better algorithms than GS-squaring.
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5.6. Squaring formulae F = {I, C,SI} with |I| = 5. There are 6 classes of squaring formu-
lae with |I| = 5. Our analysis shows in all of these formulae, computing C(g2) requires more
than 4 multiplications in Fq. Therefore, there is no hope that they would yield better expo-
nentiation algorithms than the formula in Theorem 3.2 unless decompression can be achieved
without doing an inversion in Fq (recall that the decompression function of the squaring for-
mula in Theorem 3.2 requires an inversion in Fq). We found one such formula, where C(g2)
can be computed at a cost dominated by 5 multiplications in Fq, and the decompression can
be performed at a cost dominated by 2 multiplications and 1 squaring in Fq.

The formula can be seen as an extension of the squaring formula in Theorem 3.2 and it is given
as follows.

I = {1, 2, 3, 4, 5}, C(g) = [g0, g2, g3, g4, g5],

SI = {S1,2, S2,1, S3,4, S4,5, S5,1},
h1 = −g1 + 3(C2,3,4,5 −B4,5 −B2,3c),

h2 = 2(g2 + 3cB4,5),

h3 = 3(A4,5 − (c + 1)B4,5)− 2g3,

h4 = 3(A2,3 − (c + 1)B2,3)− 2g4,

h5 = 2(g5 + 3B2,3),

where

Ai,j = (gi + gj)(gi + cgj),
Bi,j = gigj ,

C2,3,4,5 = (g2 + g5)(g3c + g4).

It is clear from Theorem 3.1 that an inverse to the compression function C can be given as
follows.

g̃0 = (2g̃2
1 + g̃2g̃5 − 3g̃3g̃4)c + 1.

There is one class of squaring formulae with |I| = 6 and we list below two formulae that
are the most efficient ones according to our analysis; the first can be seen as an extension of
the squaring formula in Theorem 3.2, and the second one can be seen as an extension of the
squaring formula in Section 5.4.

5.7. A squaring formula F = {I, C,SI} with |I| = 6.

I = {0, 1, 2, 3, 4, 5}, C(g) = [g0, g1, g2, g3, g4, g5],

SI = {S0,3, S1,1, S2,1, S3,4, S4,5, S5,1},
h0 = S0,3 = 3g2

0 − 2g0 + 3g2
1 = 3(A0,1 − (c + 1)B0,1)− 2g0,

h1 = S1,1 = 6g0g1 + 2g1 = 2(g1 + 3B0,1),

h2 = S2,1 = 2g2 + 6g4g5 = 2(g2 + 3cB4,5),

h3 = S3,4 = 3g2
4 + 3g2

5c− 2g3 = 3(A4,5 − (c + 1)B4,5)− 2g3,

h4 = S4,5 = 3g2
2 + 3g2

3c− 2g4 = 3(A2,3 − (c + 1)B2,3)− 2g4,

h5 = S5,1 = 2g5 + 6g2g3 = 2(g5 + 3B2,3),

where

Ai,j = (gi + gj)(gi + cgj),
Bi,j = gigj .
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Note that C(g2) can be computed at a cost dominated by 6 multiplications in Fq, and there is
no need of a decompression function. In fact, a closer look at the formulae [12] shows that the
above formula is a rediscovery of GS-squaring.

5.8. SQR012345 : F = {I, C,SI} with |I| = 6.

I = {0, 1, 2, 3, 4, 5}, C(g) = [g0, g1, g2, g3, g4, g5],

SI = {S0,1, S1,1, S2,1, S3,2, S4,1, S5,1},
h0 = S0,1 = 2g2

0 + 4g3g4c− 1 = 2(T0 + T1c)− 1,

h1 = S1,1 = 6g0g1 + 2g1 = 2(g1 + 3B0,1),

h2 = S2,1 = 2g2 + 6g4g5c = 2(g2 + 3cB4,5),

h3 = S3,2 = 4g0g3 + 2g2
4 = (T1 + T2)− 2(T0 + T4),

h4 = S4,1 = 4g0g4 + 2g2
3c = 2(T4c− T3) + (T1 − T2),

h5 = S5,1 = 2g5 + 6g2g3 = 2(g5 + 3B2,3),

where

T0 = g2
0,

T1 = (g0 + g3 + g4)2,

T2 = (g0 + g3 − g4)2,
T3 = 2g3g4,

T4 = g2
3,

Bi,j = gigj .

Using the above formula, C(g2) can be computed at a cost dominated by 4 multiplications and
4 squarings in Fq, and and there is no need of a decompression function.

6. Comparisons

In Tables 2, 3 and 4, we compare the most efficient squaring formulae in this paper with
the squaring formula in [12] which is the fastest previously-known squaring formula that can
be easily adapted for multi-exponentiation algorithms. We denote our squaring formula in
Theorem 3.2 by SQR2345 (also see Section 5.3) as it can be written as a function of g2, g3, g4, g5.
Similarly, we denote the squaring formulae in Sections 5.4, 5.6 and 5.8 by SQR0134, SQR12345

and SQR012345, respectively.

As before, we let Mi and Si denote multiplication and squaring costs in Fpi , and assume
a) M2i = 3Mi, M3i = 6Mi; and b) S1 = M1, S2i = 2Mi, S3i = Mi + 4Si.

Table 2. A comparison of squaring algorithms in GΦ6(q) ⊂ F∗q6 , where q = pi ≡
1 (mod 6) and i = 2a3b with a > 0.

Algorithm Squaring cost Decompression cost

SQR2345 (6b · 3a · 4)M1 1Ii + (6b · 3a · 5)M1

SQR0134 (6b · 3a · 14/3)M1 1Ii + (6b · 3a · 16/3)M1

SQR12345 (6b · 3a · 5)M1 (6b · 3a · 8/3)M1

SQR012345 (6b · 3a · 20/3)M1 0

GS-squaring [12] (6b · 3a · 6)M1 0

According to Table 2, SQR2345 is the fastest squaring algorithm. In particular, SQR2345 is
33% faster than GS-squaring. When evaluating the costs of squaring algorithms in Table 2, we
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assumed that M2a3b = (6b · 3a)M1 and S2a3b = 2M2a−13b = (6b · 3a · 2/3)M1. In particular, the
costs of SQR2345 and GS-squaring are computed as 2S2a+13b = 4M2a3b = (6b · 3a · 4)M1 and
3S2a+13b = 6M2a3b = (6b · 3a · 6)M1, respectively.

It is possible to obtain better (asymptotic) running time estimates for the algorithms listed in
Table 2 because using S3i = Mi + 4Si repetitively, we can show that

S2a3b = 6b · 3a · 1/2 · (1 + (2b/3b+1))M1 for a, b > 0.

Note that (M2a3b/S2a3b) → 2 as b → ∞. Then, for example, the costs of SQR2345 and GS-
squaring can be estimated as 2S2a+13b = (6b · 3a · 3)M1 and 3S2a+13b = (6b · 3a · 9/2)M1,
respectively. We present an asymptotic comparison of the squaring algorithms in Table 3.
According to Table 3, SQR2345 is the fastest squaring algorithm, and is 33% faster than GS-
squaring.

Table 3. An asymptotic comparison of squaring algorithms in GΦ6(q) ⊂ F∗q6 ,
where q = pi ≡ 1 (mod 6) and i = 2a3b with a > 0 and b →∞.

Algorithm Squaring cost Decompression cost

SQR2345 (6b · 3a · 3)M1 1Ii + (6b · 3a · 9/2)M1

SQR0134 (6b · 3a · 4)M1 1Ii + (6b · 3a · 5)M1

SQR12345 (6b · 3a · 5)M1 (6b · 3a · 5/2)M1

SQR012345 (6b · 3a · 6)M1 0

GS-squaring [12] (6b · 3a · 9/2)M1 0

As we noted in Section 4, the decompression costs must be considered when adapting our
squaring formulae in exponentiation algorithms. However, this does not seem to be a big issue
when the exponent has low Hamming weight. For example, in Section 4.1 we discuss how
SQR2345 can be used to improve the efficiency of exponentiation in GΦ12(p) ⊂ F∗p12 and the BN
pairing computations. Similarly, from Table 4 we see that SQR2345 can be used to improve the
efficiency of exponentiation in GΦk(p) ⊂ F∗

pk and pairing computations that use elliptic curves
with embedding degree k, for k = 18, 24.2

Table 4. A comparison of squaring algorithms in GΦ6(q) ⊂ F∗q6 , q ≡ 1 (mod 6).

q = pi Squaring cost Decompression cost Squaring cost Decompression cost

SQR2345 SQR0134

i min(4Mi, 2S2i) 1Ii + 3Mi + 3Si 2Mi + 4Si 1Ii + 4Mi + 2Si

i = 1 4M1 1I1 + 6M1 6M1 1I1 + 6M1

i = 2 12M1 1I2 + 15M1 14M1 1I2 + 16M1

i = 3 22M1 1I3 + 33M1 32M1 1I3 + 34M1

i = 4 36M1 1I4 + 45M1 42M1 1I4 + 48M1

SQR12345 SQR012345

i 5Mi 2Mi + 1Si 4Mi + 4Si 0

i = 1 5M1 3M1 8M1 0

i = 2 15M1 8M1 20M1 0

i = 3 30M1 17M1 44M1 0

i = 4 45M1 24M1 60M1 0
GS-squaring [12]

i min(6Mi, 3S2i) 0
i = 1 6M1 0
i = 2 18M1 0
i = 3 33M1 0
i = 4 54M1 0

2Families of elliptic curves with embedding degree 18 and 24 are given in [7].
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When the exponent is chosen at random in an exponentiation algorithm, it seems more ad-
vantageous to use one of SQR12345 or GS-squaring because decompression is a relatively cheap
operation. Let e be an exponent with `-bits. The width-w NAF representation of e contains on
average `/(w +1) nonzero digits which determines the number of multiplications and the num-
ber of decompression operations in the exponentiation algorithm. Then, the cost of computing
ge ∈ GΦ6(pi) ⊂ F∗

p6i using SQR12345 and GS-squaring would be dominated by

EXP12345(i, w, `) = (5`)Mi +
`

w + 1
(M6i) +

`

w + 1
(2Mi + 1Si),

EXPGS(i, w, `) = (3`)(S2i) +
`

w + 1
M6i,

respectively. Table 5 compares the exponentiation costs per bit of ` for particular cases of i
and w.

Table 5. A comparison of exponentiation costs in GΦ6(q) ⊂ F∗q6 . exp12345 and
expGS are the exponentiation costs per bit of exponent, where the exponen-
tiation is performed based on SQR12345 and GS-squaring, respectively. The
exponent is represented in width-w NAF and q = pi ≡ 1 (mod 6).

(i, w) (2, 2) (3, 2) (4, 2) (2, 3) (3, 3) (4, 3)

exp12345 35.6 71.6 107 30.5 60.75 91.5

expGS 36 69 108 31.5 60 94.5

7. Concluding remarks

We proposed new squaring formulae for cyclotomic subgroups GΦ6(p) ⊂ F∗q6 , where q ≡ 1
(mod 6), and demonstrated that the formulae can be used to speed up cryptographic protocols.
Our operation counts ignored the cost of addition, subtraction and the cost of multiplying a
finite field element by a small integer. Therefore, it would be desirable to implement the
algorithms to verify their relative efficiency.
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Appendix A

A.1. H0 = {S0,j : j = 1, 2, . . . , 13}.

S0,1 = 2g2
0 + 4g3g4c− 1

S0,2 = −6g2
0 + 4g0 + 12g2g5c + 3

S0,3 = 3g2
0 − 2g0 + 3g2

1c
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S0,4 = 1 + (2g2
1 + 4g2g5)c

S0,5 = (3g2g5 + 3g3g4)c + g0

S0,6 = (−6g2
1 + 12g3g4)c− 3 + 4g0

S0,7 = 27g2
1g

3
3c

3 + ((−27g1g2g
2
3 − 72g4

1)g0 + 81g2
1g

2
2g3 − 48g4

1

+27g1g2g
2
3 + 18g3

3)c
2 + ((−9g1g

3
2 − 42g2

1)g0 − 36g2
1

+6g2
2g3 + 21g1g

3
2)c− 3 + 4g0

S0,8 = −3/2g1g
3
5c

3 + (−9/2g0g4g
2
5 − 12g4

1 + 21/2g4g
2
5 + 63/2g1g

2
4g5)c2

+((12g2
1 − 27/2g3

4)g0 + 27/2g3
4 − 9g2

1)c− 3 + 4g0

S0,9 = (63/2g1g2g
2
3 − 12g4

1 + 27/2g3
3 − 27/2g0g

3
3)c

2

+((−9/2g2
2g3 + 12g2

1)g0 − 3/2g1g
3
2 + 21/2g2

2g3 − 9g2
1)c

−3 + 4g0

S0,10 = −729/4g2
1g

6
3c

5 + (324g4
1g

3
3 + 243/4g1g2g

5
3 − 243/2g2

1g
2
2g

4
3

+486g0g
4
1g

3
3 + 243/16g6

3 − 162g5
1g2g

2
3)c

4

+(81g0g
2
1g

3
3 + 144g6

1 + 54g4
1g

2
2g3 − 513g3

1g2g
2
3

+(−81/4g4
2g

2
3 − 297/2g3

3)g
2
1 + 81/2g1g

3
2g

3
3 + 81/8g2

2g
4
3)c

3

+((−144g4
1 + 27/8g3
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1g
3
2 − 225/2g2
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2
2g3
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2g3 + 207/8g2g

2
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2
3 + 117/8g3

3)c
2
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4
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+81/4g1g
3
4g

3
5)c

4 + ((−9/4g1g
3
5 − 1080g6

1)g0 − 1080g6
1 + 486g4

1g
3
4

−243g3
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4g5 − 54g2

1g4g
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5 + (243/8g5
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A.2. H1 = {S1,j : j = 1, 2, . . . , 14}.
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2g

2
3 − 54g2

3g4 + 57/2g4
2g3g4 − 15/2g6

2g3)c
+3/2g4

2 − 6g2
2g4 + 12g1g2 + 4g3

A.5. H4 = {S4,j : j = 1, 2, . . . , 10}.

S4,1 = 4g0g4 + 2g2
3c

S4,2 = 4g1g5c + 2g2
2

S4,3 = 3g0g4 + 3g1g5c + g4

S4,4 = 12g0g4 − 6g2
2 + 4g4

S4,5 = 3g2
2 + 3g2

3c− 2g4

S4,6 = (12g1g5 − 6g2
3)c + 4g4

S4,7 = −9/2g2
4g

2
5c

2 + (6g2
1g4 + (3g5 + 18g2g

2
4)g1
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+3g2g4g5 − 27/2g4
4)c + 4g4

S4,8 = 3/2g4
5c

3 + (−18g1g3g4g5 + 12g3
1g5 − 6g3g

2
5 + 9/2g2

4g
2
5)c

2

+(−9g3g
2
4 + 6g2

1g4 + 12g1g5)c + 4g4

S4,9 = (−9/2g1g4g
3
5 + 3/2g4

5)c
3

+(−36g4
1g4 − 27/2g1g

3
4g5 + 12g3

1g5

+54g2
1g3g

2
4 − 6g3g

2
5 + 27/4g2

4g
2
5)c

2

+(27/4g4
4 + 12g1g5 − 21g2

1g4 − 27/2g3g
2
4)c + 4g4

S4,10 = (−9/2g2
1g4g

6
5 − 27/4g3g

2
4g

6
5 + 3/2g1g

7
5)c

6

+(−36g5
1g4g

3
5 + 12g4

1g
4
5 + 351/4g2

1g
3
4g

4
5

+(−6g3g
5
5 + 225/4g2

4g
5
5)g1 − 567/8g3g

4
4g

4
5 − 15/2g4g

6
5)c

5

+(−162g5
1g

3
4g5 + 72g4

1g
2
4g

2
5 − 81g3

1g4g
3
5

+(9g4
5 + 1053/2g5

4g
2
5)g

2
1 + 999/4g1g

4
4g

3
5

+(57/2g4g
4
5 − 243g6

4g
2
5)g3 − 459/8g3

4g
4
5)c

4

+(81g4
1g

4
4 − 567/2g3

1g
3
4g5 + (729/4g7

4 + 27g2
4g

2
5)g

2
1

+(−45g4g
3
5 + 243/2g6

4g5)g1 + (−2187/8g8
4 + 603/4g3

4g
2
5)g3

+3/2g4
5 − 513/4g5

4g
2
5)c

3 + (−36g4
1g4 + 12g3

1g5

−81/4g2
1g

4
4 − 27g1g

3
4g5 + (−6g2

5 + 891/4g5
4)g3

+27g2
4g

2
5 − 243/8g7

4)c
2 + (12g1g5 + 27/2g4

4 − 21g2
1g4 − 54g3g

2
4)c

+4g4

A.6. H5 = {S5,j : j = 1, 2, . . . , 7}.

S5,1 = 6g2g3 + 2g5

S5,2 = 3g0g5 + 3g1g4 − g5

S5,3 = −12g1g
2
2 + 9g2g

2
4 + 3g2g

2
5c + 2g5

S5,4 = (3g2g
2
5 − 9g3g4g5 + 6g2

1g5)c + 2g5 + 3g1g4

S5,5 = −9/2g4g
3
5c

2 + (6g2
1g5 + 18g1g2g4g5 + 3g2g

2
5 − 27/2g3

4g5)c
+2g5 + 3g1g4

S5,6 = (27/2g1g
2
4g

2
5 − 9/4g4g

3
5)c

2

+(−18g3
1g4 + (−54g2g

2
4 + 6g5)g2

1 + 81/2g1g
4
4 + 3g2g

2
5 − 27/4g3

4g5)c
−21/2g1g4 + 9/2g2g

2
4 + 2g5

S5,7 = (27/4g2g
2
4g

6
5 + 27g2

1g
2
4g

5
5 − 3/4g7

5 − 9/4g1g4g
6
5)c

5

+(108g5
1g

2
4g

2
5 − 18g4

1g4g
3
5 + 6g3

1g
4
5 − 243/2g2

1g
4
4g

3
5

+(−1593/8g3
4g

4
5 + 6g2g

5
5)g1 + 27/8g2

4g
5
5 + 567/8g2g

4
4g

4
5)c

4

+(486g5
1g

4
4 − 81g4

1g
3
4g5 + 198g3

1g
2
4g

2
5

+(−2187/2g6
4g5 − 189/2g4g

3
5)g

2
1 + (9/2g4

5 − 4293/4g5
4g

2
5)g1

+(−57/2g4g
4
5 + 243g6

4g
2
5)g2 + 54g4

4g
3
5)c

3

+(−216g5
1g4 + 1539/2g3

1g
4
4 + 1377/4g2

1g
3
4g5

+(2241/4g2
4g

2
5 − 8019/8g7

4)g1 + (−603/4g3
4g

2
5 + 2187/8g8

4)g2

+18g4g
3
5 + 1215/8g6

4g5)c2 + (−342g3
1g4 + 6g2

1g5 + 2997/4g1g
4
4

+(3g2
5 − 891/4g5

4)g2 − 54g3
4g5)c + 2g5 − 132g1g4 + 45g2g

2
4
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