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Local Persistence and Blocking in the Two-Dimensional
Blume–Capel Model
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In this paper we study the local persistence of the two–dimensional Blume–Capel Model by extending the
concept of Glauber dynamics. We verify that for any value of the ratioα = D/J between anisotropyD and
exchangeJ the persistence shows a power law behavior. In particular forα < 0 we find a persistence exponent
θl = 0.2096(13), i.e. in the Ising universality class. Forα > 0 (α 6= 1) we observe the occurrence of blocking.

Among the many relevant quantities of interest in the
modelling of nonequilibrium dynamics of spin systems such
as first time passage[1], which has been extensively dis-
cussed in the literature due to the appearance of non–trivial
exponents in the power law behavior of the first return pro-
bability as function of time, another quantity of interest is
that ofpersistence, i.e. the characterization of the time it ta-
kes for a particular spinnot to change its state from its given
t = 0 configuration. DefiningP (t) as the probability that a
particular spin will not flip up to timet, at zero temperature
temperature and for the Ising and Potts models this quantity
was shown to behave as [2, 3]

P (t) ∼ t−θl , (1)

where the persistenceexponent θl describes the non-
equilibrium relaxation of the system. This has been determi-
ned throughcoarseningsimulations since one expects that
the fraction of spins which do not change up tot represents
a good estimate ofP (t). As a consequence one may intro-
duced a global version of the concept of persistence through
the quantityPg(t) which represents the probability that the
magnetization does not change its sign from itst = 0 va-
lue, as done in [4]. Recently one of the authors explored
these ideas to determine the associatedθg exponent in the
Blume–Capel Model, in particular its behavior at the criti-
cal and tricritical points [8]. It was found that the exponent
shows an abrupt change as one goes from the critical points
(θg ' 0.23, Ising universality class) to the tricritical one.

The purpose of this letter is to extend Glauber’s dyna-
mics to the Blume–Capel Model and to study the influence
of the anisotropy on the exponentθl. For the sake of clarity,
we start with a brief overview of the Ising model.

At T = 0 the dynamics can be greatly affected by local

blockingconfigurations. Blocking is a phenomenon where
a fraction of spins remains unchanged aftert Monte-Carlo
simulation steps. The energy necessary to overcome them
might be so high as to render the system static. On the other
hand, forT 6= 0 it becomes difficult to define domains be-
cause one might not be able to distinguish between true do-
mains and spin flips due to thermal fluctuations. Nonethe-
less for the Ising Model these difficulties can be overcome
and a power law decay for the fraction of persistent spins
was found out in the whole low temperature phase [5]. The
values found for the exponent wereθl = 0.22, 0.22 and0.29
for T = 0, T = Tc/3 andT = 2Tc/3 respectively. Further-
more forT > Tc an exponential cutoff was verified. Indeed,
using a natural definition of persistence, the effects of bloc-
king are sensitive to any temperature value, and power law
happens only atT = 0. The dynamics is implemented as
follows: define the excitation energy∆E associated to the
transitionσi → −σi as∆E = −2JσiSi, with Si equal to
the sum of nearest neighbors toσi. If ∆E < 0 then the tran-
sition occurs with probability 1. For∆E = 0 it occurs with
probability1/2 and the transition does not occur if∆E > 0.

All transition rules forT = 0 are derived from the Glau-
ber dynamics function atT > 0, defined for 2-states models
(i.e. S = 1/2) as:

w(σi → −σi) =
1
2

[
1− tanh

(
∆E

2kBT

)]
(2)

wherekB is the Boltzmann constant. We note that in the
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limit T → 0

w(σi → −σi)
T→0→





1 if ∆E < 0

1/2 if ∆E = 0

0 if ∆E > 0

.

One of most important questions in nonequibrium dyna-
mics is however whether theT > 0 extension of the dyna-
mics from theT = 0 case satisfies detailed balance:

w(σi → −σi)/w(−σi → σi) = exp(− ∆E

kBT
).

This condition is fulfilled by the Glauber dynamics ofq–
state spin models.

To extend these ideas to the Blume–Capel Model we
start out with the Hamiltonian

H = −J
∑

i

σiσi+1 + D
∑

i

σ2
i (3)

whereσi ∈ {−1, 0, 1}, J > 0 andD represents an ani-
sotropy. As we shall see the behavior of the persistence
exponent is strongly dependent on the value ofα = D/J
yielding a nontrivial extension of the Ising Model. To imple-
ment the Glauber dynamics in the ground state at (T = 0)
we consider the excitation energy (in units ofJ ) for the
transitionσi → σf as follows:

∆E/J = (σf − σi) [α(σf + σi)− Si] (4)

with Si ∈ [−4, 4] ∩ Z. To go from theT = 0 single spin
Glauber dynamics of a 2–state system to a 3–state model is
not straightforward and some rules have to be introduced.
Let the energy differences in the transition fromσi to any
other two spin statesσ1

f or σ2
f be represented by∆E1 and

∆E2 respectively.
A simple dynamics that in the zero temperature li-

mit of a Glauber dynamics satisfies detailed balance is the
following: Choose betweenσ1

f andσ2
f with probability1/2,

for exampleσ1
f , then use theT → 0 limit of (2) to accept or

to reject the flipσi → σ1
f .

In our opinion however this is not the best choice, since
it is biased in the sense that it does not make any distinction
between situations as the following ones:

1. If ∆E1 < 0 and∆E2 < 0, a the transition to the state
with the smallest energy (the greater absolute energy
gradient) will occur with probability 1, contrary to the
rules of the simpler dynamics, where one chooses a
state with probability1/2 and apply theT = 0 dyna-
mics as defined;

2. If ∆E1 = ∆E2 = 0, the transition must occur to any
state (σi, σ1

f or σ2
f ) with the same probability (1/3).

TABLE 1. Transition rules at T= 0 adoted for Blume–Capel
Model

if ∆E1 < 0 :





∆E1 < ∆E2 : w(σi → σ1
f ) = 1

∆E1 = ∆E2 : w(σi → σ1
f ) = 1

2

∆E1 = ∆E2 : w(σi → σ1
f ) = 0

if ∆E1 = 0 :





∆E1 < ∆E2 : w(σi → σ1
f ) = 1

2

∆E1 = ∆E2 : w(σi → σ1
f ) = 1

3

∆E1 = ∆E2 : w(σi → σ1
f ) = 0

if ∆E1 > 0 :
{
w(σi → σ1

f ) = 0

Thus more convenient rules should be defined in order
to establish probability transitions that mimic the Blume–
Capel Model atT = 0. We propose the following rule

w(σi → σ1
f ) = δξ(∆E1),−1

(
1
2δ∆E1,∆E2 + δ1,ξ(∆E2−∆E1)

)

+ δ0,ξ(∆E1)

(
1
3δ∆E1,∆E2 + 1

2δ1,ξ(∆E2)

)
(5)

where

ξ(x) =





1 if x > 0

0 if x = 0

−1 if x < 0

andδx,y is Kronecker’s delta function.
For the sake of clarity all transitions envisaged by this

rule are given in the table 1.
Do these probabilities arise from a function that satisfies

detailed balance forT > 0? Otherwise one may have the
impression that our dynamics is somewhat arbitrary and that
our results do not reflect a fundamental property of Blume–
Capel Model.

For T > 0 we propose a dynamics we call Metropolis–
Gibbs sampling approach1:

w(σi → σ1,2
f ) =

exp(−∆E1,2
kBT )

1 + exp(−∆E1,2
kBT ) + exp(−∆E2,1

kBT )
(6)

as a equivalent alternative to Glauber dynamics for the
Blume–Capel Model atT > 0

In the limit T → 0 all rules described in (table 1) can be
obtained from this equation. Detailed balance is also gua-
ranteed since

w(σi → σ1
f ) =

exp(−∆E1
kBT )

1+exp(−∆E1
kBT )+exp(−∆E2

kBT )

and

w(σ1
f → σi) =

exp(
∆E1
kBT )

1+exp(
∆E1
kBT )+exp(

∆E1−∆E2
kBT )

,

1The name has its origin in two known dynamics, Metropolis and Heat Bath, this last also known as Gibbs Sampling. Our aproach mixes ideas from both.
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once that

w(σi → σ1
f )

w(σ1
f → σi)

= exp
(
−∆E1

kBT

)
.

Finally with rules (table 1) Monte Carlo simulations
were performed atT = 0 on a square latticeL × L (L =
160) to measure the fraction of spins that do not flip during
t simulation steps. Since the sample numberNs does not
play an important role due to the absence of significant sta-
tistical fluctuations (seee.g. [6]) we usedNs = 200 with
1000 MC steps. After some exploratory simulations a total
of 60 different values ofα within α ∈ [−3, 3] where chosen.

After the 300th MC step convergence to power laws are
found, as can be seen in Fig. 1. Forα < 0 we obtained the
exponentθl = 0.214(3) by measuring directly the slope in
the interval[300, 1000], with error bars obtained using 5 dif-
ferent bins. A more precise estimate can be obtained using
the definition of the effective exponent (local slope):

θl(t) =
1

ln r
ln

Pl(t)
Pl(t/r)

(7)
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Figure 1. The numerical estimate of the probabilityP (t) in (1) as
described in the text.

For r = 10 andt = 1000 we obtainθl = 0.2096(13).
The same power law behavior was observed forα = 0 and
α = 1, however with slightly different exponents, as can be
seen in table 2.

TABLE 2. Local persistence exponent values of Blume–Capel Mo-
del.

α < 0 α = 0 α = 1

θl 0.2096(13) 0.1964(34) 0.1993(21)

For positive values ofα (6= 1) the system shows bloc-
king, i.e., the fraction of spins that remain no changed aftert
Monte Carlo steps, as can seen in Fig. 2. However a distinc-
tion must be made: inα ∈ ]0, 1[ the persistence has a fast
decay and reaches a constant valueP (t → ∞) ' 0.322,

while for α ∈ ]1, 2] the value isP (t → ∞) ' 0.246. For
α = 2, P (t → ∞) ' 0.287) and whenα > 2 there is full
blocking withP (t → ∞) frozen to the value' 0.333 (ini-
tial mean fraction of spins is null). Ind = 2 andT = 0 this
is due to the fact that forα > 2 the predominant phase is a
configuration with all spins zero.
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Figure 2. Blocking effects for positive values ofα( 6= 1).

Our values forα < 0 are in agreement with more recent
results for the Ising Model, namely [7]

θl = 0.209(2) (8)

The pointα = 0 separates two distinct regions: a power law
behavior for negative values ofα and a blocking phase for
positive values of this ratio. Atα = 0 we have a power law
behavior but with a different exponent.

Another interesting behavior is observed forα = 1,
where a robust power law separates two different blocking
”phases”. The pointα = 2 also divides two regions of dis-
tinct blocking behavior: the1 < α < 2 region and the full–
blocking regionα > 2.

To conclude, our results show that a nontrivial behavior
in stochastic persistence can appear as one extends the Ising
Model to allow for higher ”spins” and anisotropy effects as
measured by our parameterα. In particular forα < 0 one
has a pure 2–state Ising behavior; the same is not observed
for different values ofα, as discussed in the text. It would be
interesting to test these ideas in other stochastic systems in
order to see whether some sort of nontrivial behavior might
be found.
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