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1 Introduction

During the last decade, the considerable advance in the rigorous derivation of quantum kinetic
equations, in particular the nonlinear Schrödinger equation and the Gross-Pitaevskii equation
[1–7] and the quantum Boltzmann equation [8, 9], is observed.

It is well known that a description of quantum many-particle systems is formulated in terms
of two sets of objects: observables and states. The functional of the mean value of observables
defines a duality between observables and states and as a consequence there exist two approaches
to the description of evolution. Usually the evolution of many-particle systems is described in
the framework of the evolution of states by the quantum BBGKY hierarchy for marginal density
operators. An equivalent approach of the description of the evolution of quantum systems is
given in terms of marginal observables by the dual quantum BBGKY hierarchy (the Heisenberg
picture of evolution) [10, 11].

The conventional philosophy of the description of kinetic evolution consists in the following.
The evolution of states can be effectively described by a one-particle marginal density operator
governed by the kinetic equation as a result of some approximations [12] or in suitable scaling
limits [13]. In the paper we develop an approach to the description of kinetic evolution of
quantum many-particle systems in framework of the evolution of marginal observables. For this
purpose we investigate the mean-field asymptotics of a solution of the initial-value problem of
the quantum dual BBGKY hierarchy. In addition links between the evolution of observables
and the kinetic evolution of states described in terms of a one-particle marginal density operator
are discussed in the general case.
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We now outline the structure of the paper and the main results. In Section 2 we introduce
some preliminary definitions and construct a solution of the Cauchy problem of the dual quan-
tum BBGKY hierarchy for marginal observables as an expansion over particle clusters which
evolution is governed by the corresponding-order cumulant (semi-invariant) of the groups of
operators of the Heisenberg equations of finitely many particles. In Section 3 the main result
is proved, namely, the mean-field asymptotic behavior of stated above solution of the dual
quantum BBGKY hierarchy is established. The constructed asymptotics is governed by the
recurrence evolution equations set (the dual quantum Vlasov hierarchy). In Section 4 typical
properties of the dual kinetic dynamics are formulated, in particular the relation of the dual
quantum Vlasov hierarchy with the nonlinear Schrödinger equation is considered. Moreover,
the relation of the dual quantum BBGKY hierarchy and the generalized quantum kinetic equa-
tion is established. Finally we conclude with some observations and perspectives for future
research.

2 The evolution of observables of quantummany-particle

systems

In order to construct the asymptotic form of the marginal (s-particle) observables of quantum
many-particle systems we describe the evolution by means of the dual quantum BBGKY hier-
archy. We introduce such a hierarchy of evolution equations and formulate necessary properties
of a solution of the Cauchy problem of this hierarchy.

2.1 Preliminary facts

We consider a quantum system of a non-fixed, i.e. arbitrary but finite, number of identi-
cal spinless particles obeying Maxwell-Boltzmann statistics in the space Rν , ν ≥ 1. We
will use units where h = 2π~ = 1 is a Planck constant, and m = 1 is the mass of par-
ticles. The Hamiltonian H =

⊕∞
n=0Hn of such system is a self-adjoint operator with the

domain D(H) = {ψ = ⊕ψn ∈ FH | ψn ∈ D(Hn) ∈ Hn,
∑

n‖Hnψn‖2 < ∞} ⊂ FH, where
FH =

⊕∞
n=0H

⊗n is the Fock space over the Hilbert space H. We adopt the usual conven-
tion that H⊗0 = C. Assume H = L2(Rν) then an element ψ ∈ FH =

⊕∞
n=0L

2(Rνn) is
a sequence of functions ψ =

(
ψ0, ψ1(q1), . . . , ψn(q1, . . . , qn), . . .

)
such that ‖ψ‖2 = |ψ0|2 +∑∞

n=1

∫
dq1 . . . dqn|ψn(q1, . . . , qn)|

2 < +∞. On the subspace of infinitely differentiable functions
with compact supports ψn ∈ L2

0(R
νn) ⊂ L2(Rνn) the Hamiltonian Hn of n ≥ 1 particles acts

according to the formula

Hnψn =

n∑

i=1

K(i)ψn + ǫ

n∑

i<j=1

Φ(i, j)ψn. (1)

where K(i)ψn = −1
2
∆qiψn is the operator of the kinetic energy, Φ(i, j)ψn = Φ(|qi−qj |)ψn is the

operator of a two-body interaction potential Φ and ǫ > 0 is a scaling parameter. Hereinafter
we shall consider the bounded interaction potentials.

Let a sequence g = (g0, g1, . . . , gn, . . .) be an infinite sequence of self-adjoint bounded op-
erators gn defined on the Fock space FH. An operator gn defined on the n-particle Hilbert
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space Hn = H⊗n will be denoted by gn(1, . . . , n). Let the space L(FH) be the space of se-
quences g = (g0, g1, . . . , gn, . . .) of bounded operators gn defined on the Hilbert space Hn that
satisfy symmetry condition: gn(1, . . . , n) = gn(i1, . . . , in), for arbitrary (i1, . . . , in) ∈ (1, . . . , n),
equipped with the operator norm ‖.‖L(Hn) [15]. We will also consider a more general space
Lγ(FH) with a norm

∥∥g
∥∥
Lγ(FH)

.
= max

n≥0

γn

n!

∥∥gn
∥∥
L(Hn)

,

where 0 < γ < 1. We denote by L
γ ,0(FH) ⊂ Lγ(FH) the everywhere dense set in of finite

sequences of degenerate operators with infinitely differentiable kernels with compact supports.
Observables of finitely many quantum particles are sequences of self-adjoint operators from

the space Lγ(FH). The case of unbounded operators of observables can be reduced to the case
under consideration [15].

Let L1(FH) =
⊕∞

n=0L
1(Hn) be the space of sequences f = (I, f1, . . . , fn, . . .) of trace class

operators fn = fn(1, . . . , n) ∈ L1(Hn), satisfying the mentioned above symmetry condition,
equipped with the trace norm

∥∥f
∥∥
L1(FH)

=

∞∑

n=0

∥∥fn
∥∥
L1(Hn)

.
=

∞∑

n=0

Tr1,...,n|fn(1, . . . , n)|,

where Tr1,...,n is the partial trace over 1, . . . , n particles. The everywhere dense set of finite
sequences of degenerate operators with infinitely differentiable kernels with compact supports
in the space L1(FH) we denote by L1

0(FH).
The sequences of operators fn ∈ L1(Hn), n ≥ 1, which kernels are known as density matrices

defined on the n-particle Hilbert space Hn = L2(Rνn), describe the states of a quantum system
of non-fixed number of particles.

The space L(FH) is dual to the space L1(FH) with respect to the bilinear form

〈g|f〉
.
=

∞∑

n=0

1

n!
Tr1,...,n gnfn, (2)

where gn ∈ L(Hn) and fn ∈ L1(Hn). The mean value of observables are given by the positive
continuous linear functional (2) on the space of observables Lγ(FH).

2.2 The dual quantum BBGKY hierarchy

The evolution of marginal observables is described by the initial-value problem of the dual
quantum BBGKY hierarchy

d

dt
Gs(t, Y ) =

( s∑

i=1

N0(i) + ǫ

s∑

i<j=1

Nint(i, j)
)
Gs(t, Y )

+ ǫ

s∑

j1 6=j2=1

Nint(j1, j2)Gs−1(t, Y \(j1)),

(3)

Gs(t) |t=0= G0
s, s ≥ 1, (4)
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where on L0(Hn) ⊂ L(Hn) the operators N0 and Nint are consequently defined by formulas

N0(j)gn
.
= −i

[
gn, K(i)

]
,

Nint(i, j)gn
.
= −i

[
gn,Φ(i, j)

]
,

(5)

where
[
·, ·

]
is a commutator of operators. We refer to equations (3) as the dual quantum

BBGKY hierarchy since the canonical quantum BBGKY hierarchy [16–18] for the marginal
density operators is the dual hierarchy of evolution equations with respect to bilinear form (2)
to evolution equations (3). In case of the space H = L2(Rν), evolution equations (3) for kernels
of the operators Gs(t), s ≥ 1, are given by

i
∂

∂t
Gs(t, q1, . . . , qs; q

′
1, . . . , q

′
s) =

(
−

1

2

s∑

i=1

(−∆qi +∆q′i
)

+ ǫ

s∑

1=i<j

(
Φ(q′i − q′j)− Φ(qi − qj)

))
Gs(t, q1, . . . , qs; q

′
1, . . . , q

′
s)

+ ǫ

s∑

1=i 6=j

(
Φ(q′i − q′j)− Φ(qi − qj)

)
Gs−1(t, q1, . . . , qj−1, qj+1, . . . , qs;

q′1, . . . , q
′
j−1, q

′
j+1, . . . , q

′
s), s ≥ 1.

To construct a solution of abstract initial-value problem (3) we formulate some necessary
facts. For gn ∈ L(Hn) it is defined the one-parameter mapping

R
1 ∋ t 7→ Gn(t)gn

.
= eitHngne

−itHn . (6)

On the space L(Hn) one-parameter mapping (6) is an isometric ∗-weak continuous group of
operators, i.e. it is a C∗

0 -group. The infinitesimal generator Nn of this group of operators is a
closed operator for the ∗-weak topology and on its domain of the definition D(Nn) ⊂ L(Hn) it
is defined in the sense of the ∗-weak convergence of the space L(Hn) by the operator [19]

w∗− lim
t→0

1

t

(
Gn(t)gn − gn

)
= −i(gnHn −Hngn)

.
= Nngn, (7)

where Hn is the Hamiltonian (1) and the operator: Nngn = −i(gnHn −Hngn) is defined on the
domain D(Hn) ⊂ Hn.

Let us introduce some abridged notations: Y ≡ (1, . . . , s), X ≡ (j1, . . . , jn) ⊂ Y , and {Y \X}
is the set consisting of one element X = (j1, . . . , jn), i.e. the set (j1, . . . , jn) is a connected subset
of the partition P such that |P| = 1 (|P| denotes the number of partitions of a set).

We define the n-order cumulant of group of operators (6) as follows [20, 21]

A1+n

(
t, {Y \X}, X

) .
=

∑

P: ({Y \X},X)=
⋃

iXi

(−1)|P|−1(|P| − 1)!
∏

Xi⊂P

G|Xi|(t, Xi), n ≥ 0, (8)

where
∑

P is the sum over all possible partitions P of the set ({Y \X}, j1, . . . , jn) into |P|
nonempty mutually disjoint subsets Xi ⊂ ({Y \X}, X).
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Let us indicate some properties of cumulants (8). If n = 1, for g1 ∈ L0(H) ⊂ L(H) in the
sense of the ∗-weak convergence of the space L(H) the generator of the first-order cumulant is
given by the operator

lim
t→0

1

t
(A1(t, 1)− I)g1(1) = N0(1)g1(1).

In the case n = 2 for g2 ∈ L0(H2) ⊂ L(H2) we have in the sense of the ∗-weak convergence of
the space L(H2)

lim
t→0

1

t
A2(t, 1, 2)g2(1, 2) = ǫNint(1, 2)g2(1, 2),

and for n > 2 as a consequence of the fact that we consider a system of particles interacting by
a two-body potential, it holds

lim
t→0

1

t
An(t, 1, . . . , n)gn(1, . . . , n) = 0.

On the space Lγ(FH) for abstract initial-value problem (3)-(4) the following statement holds
[10].

The solution G(t) = (G0, G1(t, 1), . . . , Gs(t, Y ), . . .) of the Cauchy problem (3)-(4) of the
dual quantum BBGKY hierarchy is defined provided that γ < e−1 by the expansions

Gs(t, Y ) =
s∑

n=0

1

n!

s∑

j1 6=...6=jn=1

A1+n

(
t, {Y \X}, X

)
Gs−n(0, Y \X), s ≥ 1, (9)

where the (1 + n)-order cumulant A1+n

(
t, {Y \X}, X

)
is determined by formula (8) and the

estimate holds ∥∥G(t)
∥∥
Lγ (FH)

≤ e2(1− γe)−1
∥∥G(0)

∥∥
Lγ(FH)

. (10)

For G(0) ∈ L0
γ(FH) ⊂ Lγ(FH) it is a classical solution and for arbitrary initial data G(0) ∈

Lγ(FH) it is a generalized solution.
We note that expansion (9) can be represented in the form of the perturbation (iteration)

series as a result of applying of analogs of the Duhamel equation to cumulants (8) of groups of
operators (6) from solution expansion (9) [18].

As stated above (see formula (2)) the mean value of the marginal observable G(t) ∈ Lγ(FH)
at t ∈ R in the initial marginal state F (0) = (I, F1(0, 1), . . . , Fs(0, Y ), . . .) ∈ L1(FH) is defined
by the functional

〈
G(t)

∣∣F (0)
〉
=

∞∑

s=0

1

s!
Tr1,...,sGs(t, 1, . . . , s)Fs(0, 1, . . . , s). (11)

According to estimate (10), functional (11) exists under the condition that γ < e−1.

3 The dual quantum Vlasov hierarchy

We consider the problem of the rigorous description of the quantum kinetic evolution on the
basis of many-particle dynamics of observables by way of example of the mean-field asymptotic
behavior of stated above solution of the dual quantum BBGKY hierarchy.
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3.1 A mean-field limit of the dual quantum BBGKY hierarchy

Consider the mean-field scaling limit of a solution of initial-value problem (3)-(4) of the dual
quantum BBGKY hierarchy.

Theorem 1. If for initial data Gs(0) ∈ L(Hs) there exists the limit gs(0) ∈ L(Hs)

w∗− lim
ǫ→0

(
ǫ−sGs(0)− gs(0)

)
= 0, (12)

then for arbitrary finite time interval there exists the mean-field limit of solution (9) of the
Cauchy problem (3)-(4) of the dual quantum BBGKY hierarchy in the sense of the ∗-weak
convergence of the space L(Hs)

w∗− lim
ǫ→0

(
ǫ−sGs(t)− gs(t)

)
= 0, (13)

and it is defined by the expansion

gs(t, Y ) =

s−1∑

n=0

t∫

0

dt1 . . .

tn−1∫

0

dtn G
0
s (t− t1)

s∑

i1 6=j1=1

Nint(i1, j1)G
0
s−1(t1 − t2)

. . . G0
s−n+1(tn−1 − tn)

s∑

in 6= jn = 1,
in, jn 6= (j1, . . . , jn−1)

Nint(in, jn)

× G0
s−n(tn)gs−n(0, Y \(j1, . . . , jn)), s ≥ 1,

(14)

where the following notation of the group of operators (6) of noninteracting particles is used

G0
s−n+1(tn−1 − tn) ≡ G0

s−n+1(tn−1 − tn, Y \(j1, . . . , jn−1))

=
∏

j∈Y \(j1,...,jn−1)

G1(tn−1 − tn, j).

Before to prove this statement we give some comments. If g(0) ∈ L(FH), the sequence
g(t) = (g0, g1(t), . . . , gs(t), . . .) of limit marginal observables (14) is a generalized global solution
of the initial-value problem of the dual quantum Vlasov hierarchy

d

dt
gs(t, Y ) =

s∑

i=1

N0(i) gs(t, Y ) +
s∑

j1 6=j2=1

Nint(j1, j2) gs−1(t, Y \(j1)), (15)

gs(t) |t=0= g0s , s ≥ 1. (16)

This fact is proved similar to the case of an iteration series of the dual quantum BBGKY
hierarchy [10]. It should be noted that equations set (15) has the structure of recurrence
evolution equations. We make a few examples of the dual quantum Vlasov hierarchy (15) in
terms of operator kernels of the limit marginal observables

i
∂

∂t
g1(t, q1; q

′
1) = −

1

2
(−∆q1 +∆q′

1
)g1(t, q1; q

′
1),

i
∂

∂t
g2(t, q1, q2; q

′
1, q

′
2) =

(
−

1

2

2∑

i=1

(−∆qi +∆q′i
) + (Φ(q′1 − q′2)− Φ(q1 − q2))

)

× g2(t, q1, q2; q
′
1, q

′
2) +

(
Φ(q′1 − q′2)− Φ(q1 − q2)

)(
g1(t, q1; q

′
1) + g1(t, q2; q

′
2)
)
.
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Let us consider a particular case of observables, namely the mean-field limit of the additive-
type marginal observables2: G(1)(0) = (0, G

(1)
1 (0, 1), 0, . . .). In this case solution (9) of the dual

BBGKY hierarchy (3) has the form

G(1)
s (t, Y ) = As(t)

s∑

j=1

G
(1)
1 (0, j), (17)

where As(t) is the s-order cumulant (8) of groups of operators (6). If for the additive-type
observables G(1)(0) condition (12) is satisfied, i.e. it holds

w∗− lim
ǫ→0

(
ǫ−1G

(1)
1 (0)− g

(1)
1 (0)

)
= 0,

then according to statement (13), we have

w∗− lim
ǫ→0

(
ǫ−sG(1)

s (t)− g(1)s (t)
)
= 0,

where the limit operator g
(1)
s (t) is defined by the expression

g(1)s (t, Y ) =

t∫

0

dt1 . . .

ts−2∫

0

dts−1 G
0
s (t− t1)

s∑

i1 6=j1=1

Nint(i1, j1)G
0
s−1(t1 − t2)

. . . G0
2(ts−2 − ts−1)

s∑

is−1 6= js−1 = 1,
is−1, js−1 6= (j1, . . . , js−2)

Nint(is−1, js−1)

× G0
1(ts−1) g

(1)
1 (0, Y \(j1, . . . , js−1)), s ≥ 1,

(18)

as a special case of expansion (14). We give examples of expressions (18)

g
(1)
1 (t, 1) = G1(t, 1) g

(1)
1 (0, 1),

g
(1)
2 (t, 1, 2) =

t∫

0

dτ

2∏

i=1

G1(t− τ, i)Nint(1, 2)
2∑

j=1

G1(τ, j) g
(1)
1 (0, j).

3.2 Proof of Theorem 1

In case of bounded interaction potential (1) for the group of operators (6) the analog of the
Duhamel equation is valid

(
Gs(t, Y )− Gs−1(t, Y \j1)G1(t, j1)

)
gs

= ǫ

t∫

0

dτ Gs(t− τ, 1, . . . , s)

s∑

i1 = 1,
i1 6= j1

Nint(i1, j1)Gs−1(τ, Y \j1)G1(τ, j1)gs

= ǫ

t∫

0

dτ Gs−1(t− τ, Y \j1)G1(t− τ, j1)
s∑

i1 = 1,
i1 6= j1

Nint(i1, j1)Gs(τ, 1, . . . , s)gs,

2The k-ary marginal observable is the sequence G(k)(0) =
(
0, . . . , 0, G

(k)
k

(0, 1, . . . , k), 0, . . .
)
[11].
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where the operatorNint(i, j) is defined by formula (5) and Y ≡ (1, . . . , s). Then for (1+n)-order
cumulant of groups of operators (6) the analog of the Duhamel equation holds

A1+n

(
t, {Y \(j1, . . . , jn)}, j1, . . . , jn

)
Gs−n(0, Y \(j1, . . . , jn))

= ǫn n!

t∫

0

dt1 . . .

tn−1∫

0

dtn Gs(t− t1)

s∑

i1 = 1,
i1 6= j1

Nint(i1, j1)Gs−1(t1 − t2)

. . . Gs−n+1(tn−1 − tn)
s∑

in = 1,
in 6= (j1, . . . , jn)

Nint(in, jn)Gs−n(tn)Gs−n(0, Y \(j1, . . . , jn)),

(19)

where accepted above notations are used, Gs−n(tn) ≡ Gs−n(tn, Y \(j1, . . . , jn)) and we take into
consideration the identity: Gn(t, X)Gs−n(0, Y \X) = Gs−n(0, Y \X).

For arbitrary finite time interval ∗-weak continuous group of operators (6) has the following
scaling limit in the sense of the ∗-weak convergence of the space L(Hs) [19]

w∗− lim
ǫ→0

(
Gs(t)gs −

s∏

j=1

G1(t, j)gs
)
= 0. (20)

Taking into account assumption (12) and an analog of the Duhamel equation (19), in view
of formula (20) of an asymptotic perturbation of group (6) for the n term of expansion (9) we
have

w∗− lim
ǫ→0

(
ǫ−n

A1+n

(
t, {Y \X}, j1, . . . , jn

)
ǫ−(s−n)Gs−n(0, Y \X)

− n!

t∫

0

dt1 . . .

tn−1∫

0

dtn G
0
s (t− t1)

s∑

i1 = 1,
i1 6= j1

Nint(i1, j1)Gs−1(t1 − t2)

. . . G0
s−n+1(tn−1 − tn)

s∑

in = 1,
in 6= (j1, . . . , jn)

Nint(in, jn)G
0
s−n(tn) gs−n(0, Y \X)

)
= 0,

(21)

where it is used the following notations: X ≡ (j1, . . . , jn) and G0
s−n+1(tn−1−tn) ≡

∏
j∈Y \X

G1(tn−1−

tn, j).
As a result of equality (21) we establish the validity of statement (13) for solution (9) of the

dual quantum BBGKY hierarchy (3).
To construct the evolution equations which satisfy limit expression (14) we differentiate over

the time variable expansion (14) in the sense of pointwise convergence of the space L(Hs). In
view equality (7) it holds

d

dt
gs(t, Y ) =

s∑

i=1

N0(i) gs(t, Y ) +

s∑

j1 6=j2=1

Nint(j1, j2)

s−2∑

n=0

t∫

0

dt2 . . .

tn+1∫

0

dtn+1 G
0
s−1(t− t2)
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×
s∑

i2 6= j2 = 1,
i2, j2 6= j1

Nint(i2, j2)G
0
s−2(t2 − t3) . . . G

0
s−n(tn − tn+1)

×
s∑

in+1 6= jn+1 = 1,
in+1, jn+1 6= (j1, . . . , jn)

Nint(in+1, jn+1)G
0
s−n−1(tn+1)gs−n−1(0, Y \(j1, . . . , jn+1)).

According to definition (14), the second summand in the right-hand side of this equality is
expressed in terms of the limit marginal observable gs−1(t, Y \j1) and consequently, we get the
dual quantum Vlasov hierarchy (15).

4 Some properties of the dual kinetic dynamics

The links of constructed mean-field asymptotic behavior of marginal observables with the non-
linear Schrödinger equation are considered. Furthermore the relation between the evolution
of observables and the generalized description of the kinetic evolution of states in terms of a
one-particle marginal density operator is discussed.

4.1 The propagation of a chaos

Hereinafter we shall consider initial data satisfying the factorization property or a ”chaos”
property [17], which means the lack of correlations at initial time. For a system of identical
particles, obeying the Maxwell-Boltzmann statistics, we have

F (t)|t=0 = F (c) ≡
(
F 0
1 (1), . . . ,

s∏

i=1

F 0
1 (i), . . .

)
. (22)

The assumption about initial data is intrinsic for the kinetic description of a gas, because in
this case all possible states are characterized only by a one-particle marginal density operator.
Let

lim
ǫ→0

∥∥ ǫ F 0
1 − f 0

1

∥∥
L1(H)

= 0, (23)

then the limit of the initial state F (c) satisfies a chaos property too

f (c) ≡
(
f 0
1 (1), . . . ,

s∏

i=1

f 0
1 (i), . . .

)
. (24)

If g(t) ∈ Lγ(FH) and f 0
1 ∈ L1(H), then under the condition ‖f 0

1‖L1(H) < γ, there exists the
mean-field limit of mean value functional (11) which is determined by the expansion

〈
g(t)

∣∣f (c)
〉
=

∞∑

s=0

1

s!
Tr1,...,s gs(t, 1, . . . , s)

s∏

i=1

f 0
1 (i).
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In consequence of the following equality for the limit additive-type marginal observables (18)
(it is proved below in more general case)

〈
g(1)(t)

∣∣f (c)
〉
=

∞∑

s=0

1

s!
Tr1,...,s g

(1)
s (t, 1, . . . , s)

s∏

i=1

f 0
1 (i)

= Tr1 g
(1)
1 (0, 1)f1(t, 1),

(25)

where operator g
(1)
s (t) is given by (18) and f1(t, 1) is the solution

f1(t, 1) =
∞∑

n=0

t∫

0

dt1 . . .

tn−1∫

0

dtnTr2,...,n+1

1∏

i1=1

G1(−t + t1, i1)

×
(
−Nint(1, 2)

) 2∏

j1=1

G1(−t1 + t2, j1) . . .
n∏

in=1

G1(−tn + tn, in)

×
n∑

kn=1

(
−Nint(kn, n+ 1)

) n+1∏

jn=1

G1(−tn, jn)
n+1∏

i=1

f 0
1 (i)

(26)

of the initial-value problem of the Vlasov quantum kinetic equation

d

dt
f1(t, 1) = −N0(1)f1(t, 1) + Tr2

(
−Nint(1, 2)

)
f1(t, 1)f1(t, 2), (27)

f1(t)|t=0 = f 0
1 , (28)

we establish that hierarchy (15) for additive-type marginal observables and initial state (23)
describe the evolution of quantum many-particle systems as by the Vlasov quantum kinetic
equation (27).

Indeed for bounded interaction potential (1) series (26) is norm convergent on the space
L1(H) under the condition

t < t0 ≡
(
2 ‖Φ‖L(H2)‖f

0
1‖L1(H)

)−1
,

and hence the functional in right-hand side of equality (25) exists. Taking into account the
validity for fn ∈ L1

0(Hn) in the sense of the norm convergence of the equality

lim
t→0

1

t
(Gn(−t)fn − fn) = −Nnfn,

where the operator (−Nn) is defined by formulas (5), we differentiate over the time variable
expression (26) in the sense of pointwise convergence of the space L1(H)

d

dt
f1(t, 1) =−N0(1)f1(t, 1) + Tr2

(
−Nint(1, 2)

)

×
∞∑

n=0

t∫

0

dt1 . . .

tn−1∫

0

dtn Tr3,...,n+2

2∏

i1=1

G1(−t + t1, i1)
(29)
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×
2∑

k1=1

(
−Nint(k1, 3)

) 3∏

j1=1

G1(−t1 + t2, j1) . . .

n+1∏

in=1

G1(−tn + tn, in)

×
n+1∑

kn=1

(
−Nint(kn, n+ 2)

) n+2∏

jn=1

G1(−tn, jn)
n+2∏

i=1

f 0
1 (i).

Using the product formula for the one-particle marginal density operator f1(t, i) defined by
expansion (26) for initial data (24)

k∏

i=1

f1(t, i) =

∞∑

n=0

t∫

0

dt1 . . .

tn−1∫

0

dtnTrk+1,...,k+n

k∏

i1=1

G1(−t + t1, i1)

×
k∑

k1=1

(
−Nint(k1, k + 1)

) k+1∏

j1=1

G1(−t1 + t2, j1) . . .
k+n−1∏

in=1

G1(−tn−1 + tn, in)

×
k+n−1∑

kn=1

(
−Nint(kn, k + n)

) k+n∏

jn=1

G1(−tn, jn)
k+n∏

i=1

f 0
1 (i),

(30)

where the group property of one-parameter mapping (6) is applied, we express the second
summand in the right-hand side of equality (29) in terms of

∏2
i=1f1(t, i) and consequently, we

get equation (27).
Correspondingly, a chaos property in the Heisenberg picture of evolution of quantum many-

particle systems is fulfil. It follows from the equality for the limit k-ary marginal observables,
i.e. g(k)(0) = (0, . . . , g

(k)
k (0, 1, . . . , k), 0, . . .),

〈
g(k)(t)

∣∣f (c)
〉
=

∞∑

s=0

1

s!
Tr1,...,s g

(k)
s (t, 1, . . . , s)

s∏

i=1

f 0
1 (i)

=
1

k!
Tr1,...,k g

(k)
k (0, 1, . . . , k)

k∏

i=1

f1(t, i), k ≥ 2,

(31)

where the limit one-particle marginal density operator f1(t, i) is defined by expansion (26) and
therefore it is governed by the Cauchy problem (27)-(28).

Really, taking into account the validity of the following equality for the expression g
(k)
s (t)

defined by formula (14)

∞∑

s=0

1

s!
Tr1,...,s g

(k)
s (t)

s∏

i=1

f 0
1 (i) =

1

k!
Tr1,...,k g

(k)
k (0)

∞∑

n=0

t∫

0

dt1 . . .

tn−1∫

0

dtn

× Trk+1,...,k+n

k∏

i1=1

G1(−t + t1, i1)

k∑

k1=1

(
−Nint(k1, k + 1)

) k+1∏

j1=1

G1(−t1 + t2, j1)

. . .

k+n−1∏

in=1

G1(−tn−1 + tn, in)
k+n−1∑

kn=1

(
−Nint(kn, k + n)

) k+n∏

jn=1

G1(−tn, jn)
k+n∏

i=1

f 0
1 (i)
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and product formula (30) for f1(t, i) defined by series (26), we finally get equality (31).
Thus, in the mean-field scaling limit an equivalent approach to the description of the kinetic

evolution of quantum many-particle systems in terms of the Cauchy problem (27)-(28) of the
Vlasov kinetic equation is given by the Cauchy problem (15)-(16) of the dual quantum Vlasov
hierarchy for the additive-type marginal observables. In case of the k-ary marginal observables
a solution of the dual quantum Vlasov hierarchy (15) is equivalent in the sense of equality (31)
to preserving of a chaos property for k-particle marginal density operators.

4.2 The dual mean-field dynamics and the nonlinear Schrödinger

equation

If the initial state is a pure state, i.e. f 0
1 = |ψ0〉〈ψ0|, the Heisenberg picture of evolution of

quantum many-particle systems described by the dual quantum Vlasov hierarchy (15) is an
equivalent to the Schrödinger picture of evolution governed by the Hartree equation.

Indeed, for a system in the pure state, i.e. f1(t) = |ψt〉〈ψt| or in terms of the kernel
f1(t, q, q

′) = ψ(t, q)ψ(t, q′) of the marginal operator f1(t), Vlasov kinetic equation (27) is trans-
formed to the Hartree equation

i
∂

∂t
ψ(t, q) = −

1

2
∆qψ(t, q) +

∫
dq′Φ(q − q′)|ψ(t, q′)|2ψ(t, q).

If the kernel of the interaction potential Φ(q) = δ(q) is the Dirac measure we derive the cubic
nonlinear Schrödinger equation

i
∂

∂t
ψ(t, q) = −

1

2
∆qψ(t, q) + |ψ(t, q)|2ψ(t, q).

4.3 On the generalized quantum kinetic equation

We consider the relations of the evolution of observables and the evolution of quantum states
described in terms of a one-particle marginal density operator in the general case. In case of
initial states specified by a one-particle marginal density operator, the dual BBGKY hierarchy
describes the dual picture of evolution to the picture of the evolution of states governed by the
generalized quantum kinetic equation and an infinite sequence of explicitly defined functionals
of the solution of such evolution equation.

In fact, the following equality is true

〈
G(t)

∣∣F c
〉
=

〈
G(0)

∣∣F (t | F1(t))
〉
, (32)

where the initial state F c is defined by (22) and F (t | F1(t)) = (F1(t), F2(t | F1(t)), . . . ,
Fs(t; 1, . . . , s | F1(t)) is a sequence of marginal functionals of the state. The functionals
Fs

(
t, 1, . . . , s | F1(t)

)
, s ≥ 2, are represented by the expansions over products of the one-particle

density operator F1(t)

Fs

(
t, Y | F1(t)

) .
=

∞∑

n=0

1

n!
Trs+1,...,s+nV1+n

(
t, {Y }, s+ 1, . . . , s+ n

) s+n∏

i=1

F1(t, i), (33)
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where the (n+ 1)-order evolution operator V1+n(t), n ≥ 0, are defined as follows

V1+n(t, {Y }, X \ Y )

.
=

n∑

k=0

(−1)k
n∑

n1=1

. . .

n−n1−...−nk−1∑

nk=1

n!

(n− n1 − . . .− nk)!
Â1+n−n1−...−nk

(t, {Y },

s+ 1, . . . , s+ n− n1 − . . .− nk)

k∏

j=1

∑

Dj : Zj =
⋃

lj
Xlj

,

|Dj | ≤ s+ n− n1 − · · · − nj

1

|Dj|!

×

s+n−n1−...−nj∑

i1 6=...6=i|Dj |
=1

∏

Xlj
⊂Dj

1

|Xlj |!
Â1+|Xlj

|(t, ilj , Xlj),

(34)

and
∑

Dj :Zj=
⋃

lj
Xlj

is the sum over all possible dissections Dj of the linearly ordered set Zj ≡

(s+n−n1− . . .−nj+1, . . . , s+n−n1− . . .−nj−1) on no more than s+n−n1− . . .−nj linearly

ordered subsets [22]. In expression (34) it is denoted by Â1+n(t) the (1 + n)-order cumulant

Â1+n(t, {Y }, s+ 1, . . . , s+ n)
.
=

∑

P: ({Y },s+1,...,s+n)=
⋃

iXi

(−1)|P|−1(|P| − 1)!
∏

Xi⊂P

Ĝ|Xi|(t, Xi), (35)

of the groups of scattering operators

Ĝ|Xi|(t) ≡ G|Xi|(−t, Xi)
∏

i∈Xi

G1(t, i),

where
∑

P is the sum over all possible partitions of the set ({Y }, s + 1, . . . , s + n) into |P|
nonempty mutually disjoint subsets Xi ⊂ ({Y }, s + 1, . . . , s + n) and the group of operators
G|Xi|(−t) is adjoint to the group G|Xi|(t) in the sense of functional (11).

The one-particle density operator F1(t) is determined by the following series

F1(t, 1) =

∞∑

n=0

1

n!
Tr2,...,1+n A1+n(−t, 1, . . . , n+ 1)

n+1∏

i=1

F 0
1 (i), (36)

where the cumulants A1+n(−t), n ≥ 0, are defined by the formula similar to (8)

A1+n(−t, 1, . . . , n+ 1)
.
=

∑

P: (1,...,n+1)=
⋃

iXi

(−1)|P|−1(|P| − 1)!
∏

Xi⊂P

G|Xi|(−t, Xi),

where
∑

P is the sum over all possible partitions of the set (1, . . . , n + 1) into |P| nonempty
mutually disjoint subsets Xi ⊂ (1, . . . , n+ 1).

The one-particle density operator (36) is a solution of the following initial-value problem

d

dt
F1(t, 1) =−N0(1)F1(t, 1) + Tr2

(
−Nint(1, 2)

)

×
∞∑

n=0

1

n!
Tr3,...,n+2V1+n

(
t, {1, 2}, 3, . . . , n+ 2

) n+2∏

i=1

F1(t, i),
(37)
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F1(t, 1)|t=0 = F 0
1 (1), (38)

where the evolution operator V1+n(t) is defined by formula (34). We refer to evolution equa-
tion (37) as the generalized quantum kinetic equation. For systems of classical particles such
equation was formulated in [17] and for quantum many-particle systems in [22].

To verify equality (32) we transform functional 〈G(t)|F c〉 as follows

〈
G(t)

∣∣F c
〉
=

∞∑

s=0

1

s!
Tr1,...,sGs(0, 1, . . . , s)

×
∞∑

n=0

1

n!
Trs+1,...,s+nA1+n(−t, {Y }, s+ 1, . . . , s+ n)

s∏

i=1

F 0
1 (i),

(39)

where the (1 + n)-order cumulant A1+n(−t, {Y }, s+ 1, . . . , s+ n) is defined by (35). For F 0
1 ∈

L1(H) and Gs(0) ∈ L(Hs) obtained functional (39) exists under the condition ‖F 0
1 ‖L1(H) < e−1.

Then we expand the cumulants A1+n(−t) over the new evolution operators V1+n(t), n ≥ 0,
into the kinetic cluster expansion [22]

A1+n(−t, {Y }, s+ 1, . . . , s+ n) =
n∑

n1=0

n!

(n− n1)!
V1+n−n1

(
t, {Y }, s+ 1, . . . , s+ n− n1

)

×
∑

D : Z =
⋃

k Xk,

|D| ≤ s+ n− n1

1

|D|!

s+n−n1∑

i1 6=...6=i|D|=1

∏

Xk⊂D

1

|Xk|!
A1+|Xk |(−t, ik, Xk)

s+n−n1∏

m = 1,
m 6= i1, . . . , i|D|

A1(−t,m),

where
∑

D:Z=
⋃

l Xl, |D|≤s+n−n1
is the sum over all possible dissections D of the linearly ordered set

Z ≡ (s+n−n1+1, . . . , s+n) on no more than s+n−n1 linearly ordered subsets. Representing
series over the summation index n and the sum over the summation index n1 in functional (39)
as the two-fold series and identifying the series over the summation index n1 with the products
of one-particle density operators similar to formula (30)

∞∑

n1=0

Trs+n+1,...,s+n+n1

∑

D : Z =
⋃

k Xk,

|D| ≤ s+ n

s+n∑

i1<...<i|D|=1

∏

Xk⊂D

1

|Xk|!

× A1+|Xk |(−t, ik, Xk)

s+n∏

l = 1,
l 6= i1, . . . , i|D|

A1(−t, l)
n+s+n1∏

j=1

F 0
1 (j) =

s+n∏

i=1

F1(t, i),

we transform functional (39) to the form in terms of marginal functionals of the state (33).
Thus, equality (32) holds.

In a particular case of the additive-type marginal observables G(1)(0) equality (32) is reduced
to the form 〈

G(1)(t)
∣∣F c

〉
= Tr1G

(1)(0, 1)F1(t, 1),

where the one-particle marginal density operator F1(t) is a solution of the Cauchy problem (37)-
(38). Hence for additive-type marginal observables the generalized quantum kinetic equation
(37) is dual to the dual quantum BBGKY hierarchy (3) with respect to bilinear form (11).
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Thus, in case of initial data (22) which is completely characterized by the one-particle
marginal density operator F 0

1 , solution (9) of the Cauchy problem (3)-(4) of the dual quan-
tum BBGKY hierarchy for marginal observables and a solution of the Cauchy problem of the
generalized kinetic equation (37)-(38) together with marginal functionals of the state (33) give
two equivalent approaches to the description of the evolution of quantum many-particle systems.

5 Conclusions

We develop an approach of the description of kinetic evolution of quantum many-particle sys-
tems in terms of the evolution of marginal observables. One of the advantage of such approach
is the possibility to construct the kinetic equations in scaling limits if there are correlations
of particle states at initial time [17], for instance, correlations characterizing the condensate
states [12].

In the case of quantum systems of particles obeying Fermi or Bose statistics [23] quantum
kinetic equations have the different structure from formulated above. The analysis of these
cases will be given in a separate paper.

Finally we point out the relation of the generalized quantum kinetic equation (37) and the
specific quantum kinetic equations. The last can be derived from the generalized quantum
kinetic equation in the appropriate scaling limits [13] or as a result of certain approximations.
For example, in the mean-field limit we derive the quantum Vlasov kinetic equation [22]. Ob-
serving that in the kinetic (macroscopic) scale of the variation of variables [24] the groups of
operators (6) of finitely many particles depend on microscopic time variable ε−1t, where ε ≥ 0
is a scale parameter, the dimensionless marginal functionals of the state are represented in the
form: Fs

(
ε−1t, Y | F1(t)

)
. Then in the limit ε → 0 the first two terms of the dimensionless

marginal functional expansions (33)

Ĝs(ε
−1t, Y )

s∏

i=1

F1(t, i)

+

∫ ε−1t

0

dτ Gs(−τ, Y )Trs+1

( s∑

i1=1

(−Nint(i1, s+ 1))Ĝs+1(ε
−1t, Y, s+ 1)

− Ĝs(ε
−1t, Y )

s∑

i1=1

(−Nint(i1, s+ 1))Ĝ2(ε
−1t, i1, s+ 1)

) s+1∏

i2=1

G1(τ, i2)F1(t, i2)

coincide with corresponding terms constructed by the perturbation method with the use of the
weakening of correlation condition by Bogolyubov [17] Thus, in the kinetic scale the collision
integral of the generalized kinetic equation (37) takes the form of Bogolyubov’s collision in-
tegral [17], [25] which enables to control correlations of infinite-particle systems. In a space
homogeneous case the collision integral of the first approximation has a more general form than
the quantum Boltzmann collision integral.
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