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We solve the problem of a resistive toroid carrying a steady azimuthal current. We use standard toroidal coor-
dinates, in which case Laplace’s equation is R-separable. We obtain the electric potential inside and outside the
toroid, in two separate cases: 1) the toroid is solid; 2) the toroid is hollow (a toroidal shell). Considering these
two cases, there is a difference in the potential inside the hollow and solid toroids. We also present the electric
field and the surface charge distribution in the conductor due to this steady current. These surface charges gene-
rate not only the electric field that maintains the current flowing, but generate also the electric field outside the
conductor. The problem of a toroid is interesting because it is a problem with finite geometry, with the whole
system (including the battery) contained within a finite region of space. The problem is solved in an exact
analytical form. We compare our theoretical results with an experimental figure demonstrating the existence of
the electric field outside the conductor carrying steady current.

1 Toroidal Ring

The electric field outside conductors with steady currents
has been studied in a number of cases. These cases, howe-
ver, consider infinitely long conductors: coaxial cable, [1,
pp. 125-130], [2, pp. 318 and 509-511], [3], [4, pp. 336-
337] and [5]; solenoid with azimuthal current, [2, p. 318]
and [6]; transmission line, [7, p. 262] and [8]; straight wire,
[9]; and conductor plates, [10]. The only cases solved in the
literature where the geometry of the conductor is finite are
those of a finite coaxial cable considered by Jackson, [11],
and that of a toroidal conducting ring, [12].

Here we consider the case of the conducting toroid with Figure 1. A toroidal ohmic conductor with symmetry axissmal-
a steady current. Our goal is to find the electric potential |€r radiusro (m) and greater radiug (m). A thin battery is loca-
inside and outside the toroid, and from the potential we €d aty = « rad maintaining constant potentials (represented as

- g . the “+” and “-” signs) in its extremities. A steady current flows

can find _the electric f|eld_ and surf.ace Charges' More d(':'t""'lsazimuthally in this circuit loop in the clockwise direction, from
about this problem and its analytical solution can be found ,, — 7 rad top = — rad.
in[12].

Consider a toroidal conductor with uniform resistivity. )
It has greater radiu®, and smaller radius, and carries  Here,a is a constant such that when— oo we have the
a steady currenf in the azimuthal direction, flowing along ~ Circle z = acos¢, y = asingp andz = 0. The toroi-
the circular loop. The toroid has rotational symmetry around dal coordinates can have the possible valies: 7 < oo,

the z-axis and is centered in the plane= 0. The battery —7fad < ¢ < wrad and—nrad < ¢ < wrad. We take
that maintains the current is locatedat= 7 rad, see Fig. 1. o @s & constant that described the toroid surface in toroidal
Air or vacuum surrounds the conductor. coordinates. The internal (external) region of the toroid is
The electric potentiap can be calculated using toroidal ~ characterized by > 1o (1 < 10). o
coordinatesn, £, ©) [13, p. 112], defined by: The potential along the surface of the toroid is linear in
©, d(no, &, ) = A+ Bey. This potential can be expanded
_ sinhncosgp _ sinhpsing in Fourier series inp:
coshn — cos &’ ~ “coshn —cos¢’ . (_qya-1
—1)7— .
oo, &) =A+Bp=A+ ZBZ ———sin(qy).
sin & (1) q=1 q
Z=aq——.
coshn — cos ¢ 2
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Figure 2. Equipotentials for a resistive full solid toroidal conductor
in the planez = 0. The bold circles represent the borders of the to-
roid. The current runs in the azimuthal direction, fram= +7 rad

to ¢ = —m rad. The thin battery is on the lefp(= = rad). We
have used), = 2.187.

1739

z/a

y/a

Figure 3. Equipotentials in the plane= 0 for a resistive full solid
toroidal conductor carrying a steady azimuthal current, Eq. (7) with
A = 0andB = ¢o/27. The bold circles represent the conductor
surface. We have used Eqg. (22) wiflh = 2.187.

Eqg. (2) can be used as the boundary condition for our parti-
cular solution to this problem.

Laplace’s equation for the electric potenti®P¢ =
0 can be solved in toroidal coordinates with the method
of separation of variables (by a procedure known as R-
separation), leading to a solution of the form, [13, p. 112]:

¢(777 é-a SD) = cosh /v €H(n)X(£)q>(§0)7 (3)

where the functiong/, X, and® satisfy the general equati-
ons (wherey andq are constants):

]
(cosh®n — 1)H" + 2coshnH' — [(p® — 1/4) + ¢*/(cosh®’n — 1)]H = 0, 4
X"+p°X = 0, (5)
(I)N 4 QQ(P (6)

Using the boundary condition (2) and the possible solutions of Egs. (4) to (6) we obtain the potential as given by, [12]:

$(n < 10, €, 0) = Veosh — cos€ | Y Apcos(p)P,_s (coshn) + Y sin(gp) Y Byg cos(pé) P, (coshn)|
p=0

where the coefficientsl, and B, are given by, respecti-
vely:

~ V2A(2 —6,) Qp-12 (coshno)
A= ™ ’ P,_1(coshnp) ®)
_ 2v2B(—1)771(2 — &y,,) @p—1 (coshnp)
Bra = qm P;ﬁ ; (coshng) ©)

whered,,;, is the Kronecker delta, which is zero for # p

and one forw = p. The functionsPI‘j_l(coshn) and

Qf,,; (cosh i) are known as toroidal Legendre polynomials
2

of the first and second kind respectively, [14, p. 173].

For the region inside the hollow toroid (that is;> 1),
the potential is given by:

q=1 p=0

¢(n > 10,&,¢) = A+ +/coshn — cos§
> sin(gp) Y By cos(pé)Q?_, (coshn),  (10)
g=1 p=0 2
where the coefficients,,, are defined by:

B(—=1)471(2 — §y,) @p—1(cosh
B}/)q _ 2\/5 ( l)qﬂ— (2 OP) QZ z(COS TIO). (11)
p—

We plotted the equipotentials of a full solid toroid on the
planez = 0 in Fig. 2 with A = 0 and B = ¢, /2x. Fig. 3
shows a plot of the equipotentials of the full solid toroid in
the planer = 0 (perpendicular to the current).
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2 Electric Field and Surface Charges

The electric field can be calculated By= — V4 in toroidal

coordinates, as given by: |
sinh ny/cosh 7 — cos € 1
E,=- n . n € z;)coS(Pf) {Ap {Qppé (coshn) + (coshn — cos g)prél(cosh 77)}
p:
- 1
+ Z sin(qyp) Bpq {qu (coshn) + (coshn — cos €)P? | ’(cosh 77)] , (12)
| 2 P—3 p—3
V/coshn — cos € o= [si .
Ee=— = Z s Z SIH§C208(p§) — p(coshn — cos &) sin(pf)
p=0
x [ApP, 1 (coshn) + Z sin(qu)quP;tl (cosh n)] , (13)
2
q=1
(coshn — COS§)3/2 o 00
i asinhp ; qcos(qyp) pz:(:) pa €08(p€) p—1 (coshn), (14)

WherePg_l'(cosh n) are the derivatives of thl?[‘j_l (coshn) relative tocosh 7. The electric field inside the full solid toroid
2 2
(n > mo) is given simply by:

hop — B
B,—0, Be—o0, E,—-ohn—cosép B (15)

asinhn /22 + 2

For the full solid toroid, the surface charge distribution that creates the electric field inside (and outside of) the condu
keeping the current flowing, can be obtained with Gauss’ law (by choosing a Gaussian surface involving a small portion o
conductor surface):

= N ~ . £o sinh A+ B
a(no,&,9) = €o [E(n <o) - (=n) + E(n > no) -n]no =2 . 770{ 5 2 4+ (coshng — cos &)/
X Z cos(p€) {Appré’(cosh no) + Z sin(qu)quPg_%’(cosh 770)} } (16)
p=0 q=1
|
3 Thin Toroid Approximation ficients A, andB,,, can be approximated by, [14, p. 164]:

vVl (p+ 3)

1 1
2P+ 3 pl cosh?*2 7

Q-3 (cosho) ~ . oan

Here we treat the case of a thin toroid, such that the ou-Wherel is the gamma function, [15, p. 591].

ter radiusRy = acoshyg/sinhng = a and the inner ra- Because Eq. (17) has a factorckh 7~ 2 o < 1, we
diusrg = a/sinhng are related by < Ry, see Fig. 1.  can neglect all terms with > 0 in Eq. (7) compared with
In this case we haveoshny, > n9 > 1. The function the term withp = 0. The potential outside the thin toroid
Qp,%(cosh 7o) that appears in Egs. (8) and (9) for the coef- (1 > 1):

]
00 q
coshn — cos¢ | P_1(coshn) (—1)a-1 P?, (coshn)
< = A—2 2B 2 . 18
o0 = & 7) m P_%(cosh o) " ; q sin(g) PE%(Cosh 7o) (18)
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We are especially interested in the expressions for the potential and electric field outside but in the vicinity of the conductor
no > n > 1. A series expansion of the functiof¥ , (£) andP?,’(£) around¢ — oo gives as the most relevant terms [14,
2 2

p.173]:

2/m 1 | W2 -v(3-4) -7
[(3—q) &2 2 ’

() ~ V2/m In(28) = (5 —q) —~
I'(3—4q) Ve 7

wherey(z) = T"(z) /T'(2) is the digamma function, angd~ 0.577216 is the Euler gamma. The potential just outside the thin
toroid, Eq. (7), can then be written in this approximation as:

Pq

Pgél(f) ~

(19)

1
2

) _ _ 1 _ _
bin > 0> 1,6, 0) = ALy > D™ in(gp) a2 cosh) — Sl ) jv' (20)
qg=1

In(8 coshnp) q v In(2coshng) — ¢ (5 — q)

This is a new result not presented in [12].
Far from the battery (that is, fop| < 7 rad) the potential (20) can be fitted numerically by trial and error by the following
simpler expression (valid fof, > 103):

In(8 cosh ) In(1.67 coshn)

> 1 =A———~ B 21
0 21> 1,6¢) In(8 cosh 77) s01n(1.67cosh770) (21)
This is a correction from Eq. (35) of [12].
The surface charge distribution in this thin toroid approximation is given by:
eo sinh g A N (—1)9t sin(qep)
> 1,&,0) = 2B . 22
7m0 &%) a lln(S coshng) + qu q¢ In(2coshno) — v (3 —q) —~ (22)

This is another new result not presented in [12]. In Fig. 4 we plotted the density of surface ehagyagunction of the
azimuthal angleo. We can see that is linear withy only close top = 0 rad. Close to the battery diverges to infinity (that
is, 0 — oo wheny — + rad).

Far from the battery Eq. (22) can be fitted numerically by a linear functiop,axamely:

€p sinh ng A By €0 A By
- == +
a In(8coshng) = In(1.67 coshng) ro [In(8a/ro)  In(1.67a/ro)

o(no>1,¢§¢) = ] =oa+opp. (23)
This is a correction from Eq. (37) of [12]. We defined ando g by this last equality.

We can calculate the total chargg of the thin toroid as a function of the constant electric poteialFor this, we
integrate the surface charge densityEq. (22), in¢ andy (in the approximatiomosh ng > 1):

i 4 dn2egAa dn2egAa
= hed hed = = 24
qaA [ﬂ 13 6 . QP 0—(57 90) 111(8 cosh ,,70) 11’1(80,/7“0) ’ ( )
[
a asinhn/(coshn — cos§) are the scale factors in toroidal

coordinates, [16]. Notice that from Eq. (24) we can obtain
the capacitance of the thin toroid, [17, p. 127]:

- qZA _ 47r25(})1a _ 147726()@ ' (25)
—TT T 90 In(8coshng)  In(8a/rp)

It is useful to define a new coordinate system:
2
N = ap, /:\/(\/Z‘Q—F 2—a) + 22, 26
Figure 4. Density of surface chargesas a function of the azi- v P Y (26)
muthal anglep in the case of a thin resistive toroid carrying a ste-

ady current. We usegh = 10. We can interpred’ as a distance along the toroid surface
in the ¢ direction, andy’ as the shortest distance from the
where h,, = he = a/(coshn — cos¢) and h, = circlez? + y* = o located in the plane = 0. Consider a
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certain piece of the toroid between the anglgsand — g, of £ = 2apg. Whenny > n > 1 (thatis,ry < p’ < a) the
with potentials in these extremities givendy = A+ Bypg potential can be written as:
and¢; = A — By, respectively. This piece has a length

]

6= AL0(l/p’) —1n(6/8a) | 2Bypo \,In(¢/p’) — In(¢/1.67a) (¢R +oéL  dr— 9L A’) In(¢/p") @7)

~ In(¢/ro) — In(¢/8a) l In(¢/ro) — In(£/1.67a) ~ 2 + 14 In(¢/ro)’
where in the last approximation we neglected the taifd/a) utilizing the approximationy < p’ < a (so thatl/ro >
¢/p' > £/1.67a > {/8a). The electric field can be expressed in this approximation as:

5 (or+9L  SrR—OL,, U dr — ér In(l/p) .
e ( 2 1 /\> p'In(l/rg) ¢ ln(f/ro)(p' (28)

Egs. (27) and (28) can be compared to Egs. (12) and (13)potential in the region close to the thin toroid coincides with
of Assis, Rodrigues and Mania, [9], respectively. They have the cylindrical solution, as expected.
studied the case of a long straight cylindrical conductor of
radiusry carrying a constant current, in cylindrical coordi- ) .
nates(p'., ¢, 2) (note that the conversions from toroidal to 4 Charged Toroid Without Current

cylindrical coordinates in this approximation afje~ —p’ ) ) ) )
and¢ ~ %). In their case, the cylinder has a lengtland Consider a toroid described lay, without current but char-

radiusry < ¢, with potentialsp;, and¢y, in the extremities ~ 9€d to a constant potentigh. UsingA = ¢o andB = 0in
of the conductor, andil = é; — ér. Our result of the  EAs. (7) we have the potential inside and outside the toroid,
’ respectively:

|
¢(77 > 7707fa 90) = A= ¢07 (29)
61 <m0, &,¢) = /eoshy—cos€ 3 Ay cos(p€)P,_y (coshn), (30)

p=0

where the coefficientd,, are given by Eq. (8). This solution is already known in the literature, [18, p. 239], [19, p. 1304].
It is also possible to obtain the capacitance of the toroid, by comparing the electrostatic potential at a difstafioen
the origin with the potential given by a point charges(r > a) =~ g/4meqr:

av/2 =~ V2¢0(2 — dop) @p— 1 (cosho) q
; N 1 _ ' 31
o(r>a,0,p) r pgo T pré(cosh o) 4dmegr (31)

The capacitance of the toroid with its surface at a cons- obtain the capacitance of a circular ring, Eq. (25).
:ﬁg;g}ggtla@ gag?)bs;a] V\[/gge;. 26713_] %?oi&?r?zgqb%l?)a: Another case of interest is that of a charged circular line
B B B Bl discussed below, which is the particular case of a toroid with
> Q,—1(coshnp) ro — 0. With ny > 1 andcoshny > 1 we haveR ~ a.
C = 8epa 2(2 — dop) 2 (32) Keeping only the term withp = 0 in Egs. (8) and (30),
p=0 expressed in toroidal and spherical coordindte8, ) res-
Utilizing the thin toroid approximationy, > 1, one can  pectively, the potential for the thin toroid becomes:

|
o(r,0,p) = . coshn — cos{P_1 (coshn) (33)

477\/550@

P,_1(coshmng)
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2 2
a4 ! P < rta ) (34)

~ dmeo [(r2 — a?)? + da?r2 cos? O]1/4" 72 \ |\ /(r2 — a2)? + 4a?r2 cos? 0

We can expand Eq. (34) onc /r~., wherer. (r) is the lesser (greater) betweemandr = /x2 + y? + 22. We present
the first three terms:

qa {1 _1—|—300$(29)é 3

,'n4
— s L 2 T4 90.cos(2 s(a0)] = L
- st [9+ 0.cos(26) + 35 cos( 9)] ri} (35)

(1,8, ) = Tneg

Egs. (33) to (35) can be compared with the solution gi- extremities with a battery. By spreading grass seeds on the
ven by Jackson, [23, p. 93]. Jackson gives the exact elecglass plate he was able to map the electric field lines inside
trostatic solution of the problem of a charged circular wire and outside the strip (in analogy with iron fillings mapping
(thatis, a toroid with radiug, = 0), in spherical coordinates  the magnetic field lines). The equipotential lines obtained

(r,0,¢): here are orthogonal to the electric field lines. There is a very
reasonable agreement between our theoretical result and the
experiment.

> 2n n
qa rt (=1)"(2n — 1!
0,p) = Py, 0),

o(r,0,¢) dmeg 2 2T ] an (cos 6)

(36)

wheregq, is the total charge of the wire. Eq. (36) expan-
ded ton = 2 yields exactly Eq. (35). We have checked that
Egs. (34) and (36) are the same for at least 30.

Egs. (33) and (36) yield the same result. It is worthwhile
to note that in spherical coordinates we have an infinite sum,
Eq. (36), while in toroidal coordinates the solution is gi-
ven by a single term, Eqg. (34). The agreement shows that
Egs. (33) and (36) are the same solution only expressed in
different forms.

Figure 5 shows the potential as functionmfin cylin-
drical coordinates) in the plane= 0. Egs. (33) and (36)
give the same result.

Figure 6. Jefimenko’s experiment [24, Fig. 3] in which the lines
¢’/¢(P=0) of electric field were mapped using grass seeds spread over a glass
plate. There is a circular conducting strip carrying a steady cur-
g rent. Fig. 2 has been overlaid on it — the equipotential lines are
orthogonal to the electric field lines.

Our solution inside and along the surface of the full so-
lid toroid yields only an azimuthal electric field, namely,
|E,| = A¢/2mp. But even for a steady current we must

: p/a have a component df pointing away from the: axis, £,
due to the curvature of the wire. Here we are neglecting this
Figure 5. Normalized potential as function @{distance frome- component (_jue to its _extremely small order of magnitude
axgi]s) on the plane = OF.) Egs. (33) and (36)%$ve the same result, compared with the azimuthal componefi. See further
We utilizeno = 38 (coshno = 1.6 x 10'¢) anda = 1. discussion in [12].
The beautiful experimental result of Jefimenko showing
the electric field outside the conductor is complemented
by this present theoretical work, with excellent agreement,
5 Discussion and Conclusion Figs. 6. The electric potential and electric field of the

thin toroid approximation with a steady current, respecti-
Figure 2 can be compared with the experimental result foundvely Eqgs. (27) and (28), agree with the known case of a
by Jefimenko, [24, Fig. 3], reproduced here in Fig. 6 with long straight cylindrical conductor carrying a steady current,
Fig. 2 overlaid on it. Jefimenko painted a circular conduc- Egs. (12) and (13) of [9]. The electric potential of the thin
ting strip on a glass plate utilizing a transparent conducting toroid approximation without current agrees with the known
ink. A steady current flowed in the strip by connecting its result of a charged wire, [23, p. 93].
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Here we have obtained a theoretical solution for the po- [9] A. K. T. Assis, W. A. Rodrigues Jr. and A. J. Mania, Found.

tential due to a steady azimuthal current flowing in a toroidal
resistive conductor which yielded an electric field not only
inside the toroid but also in the space surrounding it. Our

(10]

solution showed a reasonable agreement with Jefimenko’s

experiment which proved the existence of this external elec-[

tric field due to a resistive steady current.
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