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PACS 03.75.Ss — Degenerate Fermi gases
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Abstract. - We study Hubbard models for ultracold bosonic or fermionic atoms loaded into an
optical lattice. The atoms carry a high-spin F' > 1/2, and interact on site via strong repulsive Van
der Waals forces. Making convenient rearrangements of the interaction terms, and exploiting their
symmetry properties, we derive low energy effective models with nearest-neighbor interactions,
and their properties. We apply our method to F = 3/2 fermions on two-dimensional square
lattice at quarter filling, and investigate mean-field equations for repulsive singlet go and quintet
g2 couplings. We find that the plaquette state appearing in the highly symmetric SU(4) case
(go = g2) does not require fine tuning, and is stable in an extended region of the phase diagram.
This phase competes with an SU(2) flux state, that is always suppressed for repulsive interactions
in absence of external magnetic field. The SU(2) flux state has, however, lower energy than the
plaquette phase, and stabilizes in the presence of a weak applied magnetic field. Some preliminary

results for F' = 5/2 fermions are also presented.

Ultracold atoms in optical lattices provide controllable
quantum many body systems that allow to mimic con-
«—] densed matter [1}[2]. They may in particular serve as
— quantum simulators of various Hubbard models [3], includ-
ing those that do not have condensed matter analogues.
Prominent examples include Hubbard models for bosons
or fermions with high spin F. Experimental progress in
= studies of high F' Bose-Eistein condensates |[4] and Fermi
8 gases (cf. [5]) triggered a lot of interest in theoretical
studies of such models. These studies go back to fun-
«— damental questions of large N limit of SU(N) Heisenberg-
. Hubbard model [6]; they have continued more recently in
.Z—the context of ultracold atoms [7H9]. These papers dis-
>< cusses the interplay between the Néel, and valence bond
asolid (VBS), i.e. Peierls or plaquette ordering for antifer-
romagnetic systems. Several other exotic phase should be
possible of earth alkali atoms (cf. [L0H13|), where two or-
bital SU(N) magnetism, and even chiral spin liquid states
were predicted. Several authors predicted also a variety

of novel, exotic phases from effective (generalized Heisen-
berg) spin Hamiltonians, obtained from spinor Hubbard
models (cf. [14,]15]). A lot of effort was devoted to the in-
vestigations of 1D and 1D ladder systems, where quantum
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effects are even stronger [16]. While for F' = 1/2 Hubbard
models quantum fluctuations suppress the conductor-Mott
insulator transition [17], this is not the case for higher F,
where dimer (Peierls) or valence bond crystal (Haldane)
order, and in ladders even plaquette order are possible.

Fermi systems with F' = 3/2 were also intensively stud-
ied |18]: first, because this is the simplest case beyond
F = 1/2, second, because they can be realized with for in-
stance with ultracold '32Cs, °Be, '3°Ba, !*"Ba, and 2°'Hg
(for an excellent review see Ref. [19]; Such systems ex-
hibit a generic SO(5) or isomorphically, Sp(4) symmetry).
In 1D there exist the quartetting phase, a four-fermion
counterpart of the Cooper pairing phase. In some situa-
tions, counter intuitively quantum fluctuations in spin-3,2
magnetic systems are even stronger than those in spin-1,/2
systems.

In this Letter we study the Hubbard model for F' = 3/2
fermions with repulsive singlet gy and quintet g» interac-
tions in 2D. First, by rearranging the interaction terms
and exploiting their symmetry properties, we derive low
energy effective Hamiltonians. In contrast to the stan-
dard approaches (see for instance [14./15]), we do not use
the spin representation, but rather keep the description
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in terms of fermionic operators. This allows us to formu-
late mean field theory, somewhat analogous to slave-boson
method [20], and show that the plaquette VBS state is sta-
ble in an extended region of the phase diagram, in agree-
ment with the predictions of Ref. |18/[19]. In the presence
of a weak applied magnetic field, however, the plaquette
phase can be suppressed by an exotic SU(2) flux state.

Let us consider a system described by a Hamiltonian
with nearest-neighbor hopping Hy;, = —t Z<i,j> c;ﬂaci’(x
and strong on-site repulsive interaction

Hin = Zva Jel jﬁcl 8Ciyy-

[

(1)

¢! . (¢i.) are the usual creator (annihilator) operators of
fermions with spin « at site i, and ¢ is the hoping am-
plitude between the neighboring sites. Here, and in the
following automatic summation over the repeated greek
indices is assumed. The interactions depend on the spin

of the scattering particles:

ng Ps]3

This means that the scattering processes can happen at
different spin channels which are determined by the total
spin S of the scattering particles. Pg projects to the total
spin-S subspace and gg is the coupling constant in the cor-
responding scattering channel. Due to the on-site interac-
tion the only contributing terms are either antisymmetric
(as) or symmetric (s) for the exchange of the spin of the
colliding particles depending on the fermionic or bosonic
nature of the particles. In the following we exploit this
property of the on-site interaction that is preserved for the
effective strong repulsion model with nearest-neighbour in-
teraction, too.

Starting from the fundamental relation between the Pg
projection operator and the product of the F spin opera-
tors: (2F1Fy)" = Y24 [S(S 4 1) — 2F(F + 1)]' P, the Ps
projector can be expressed as a degree of S polynomial of
the F1F5 product:

04,6

(2)

Py =Y ag (FiFy)' (3)

forall ' =0,1,...,S and with (F1F3)" = E. ag/, are the
coefficients of the expansion. Note that for a given value of
S’ the Ps: projector is either symmetric or antisymmetric
in the spin indices of the scattering particles. This expan-
sion is usually applied in order to express the high-spin
two-particle interaction with effective multispin-exchange.
In contrast, we will use the expansion of the projector op-
erator in eqs. and in order to collect and treat ad-
equately the two-particle interaction terms that describe
different spin exchange and spin flip processes. In this case
F denotes the three generators of the SU(2) Lie algebra in
the appropriate representation: for high-spin fermions or

bosons they are the SU(2) generators represented by the
proper even/odd dimensional matrices. In case of pure bo-
son or fermion system all processes take place only in the
symmetric or antisymmetric part of the total spin space,
respectively. Therefore, the following decomposition can
be used:

) = () ()

and the symmetric and antisymmetric projectors can be
expressed as follows:

N(as)—l

ples) — Z bs ((FiF2) )( Y (5a)
. v (#)
PY = Y ey ((Fng)l) . (5b)

=0

Here N(,s) and N,y denotes the number of antisymmetric
and symmetric subspaces of the total spin space. The
antisymmetric and symmetric part of an operator A can
be constructed by the exchange of two spin indeces:

«p

[Aws)}w —A%P —ASP, (6a)
a,B o o

[A<S)L =AY AR, (6b)

It is obvious that the above decomposition leads to the
polynomials eq. having significantly smaller degree
than eq. . Nasy — 1 or N5 — 1, respectively, deter-
mines the minimum degree of the polynomial of the prod-
uct F1F5 which is equivalent to the interaction eq. .

Now let us apply the above procedure to a 2 dimensional
F = 3/2 fermion system. In this case the interaction has
to be antisymmetric therefore the only contributing terms
are the total spin-0 (singlet) and the spin-2 (quintet) scat-
terings:

3

Vﬁf _ Z g5 {Péas)}

S—0 s

aﬁ

90 (P25 + g2 [P . (7)

At quarter filling for strong repulsion the system can be de-
scribed by an effective Hamiltonian with nearest-neighbor
interaction. The effective model based on perturbation
theory up to second (leading) order in the hopping ¢ is the
following:

7[3 ol et
za ]ﬁcj 6Ci,y»

'Lnt— E

<i,j>

(8a)

o,
where Vvof(’;ﬂ = > ¢Gg [Péas’s)} 5 and Gg = —4t?/gs

gives the energy shift due to t};yé weak nearest-neighbor
hopping. Since the effective model preserves the sym-
metry of the on-site model, it remains antisymmetric
for the exchange of two spin indices. Now the compo-
nents of F vector are the well known 4 x 4 matrices and
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eq. has the following form: E(*) = Py + P,, and
(F1F,)*) = —15P,/4 — 3P,/4. The interaction part of
the effective Hamiltonian has the form

Hiw=a, > B +a, Y (FiFy)!%)

<i,j> <i,j>

9)

where a, = (5G2 — Gy)/4, and a5 = (G2 — Go)/3. The
two-particle nearest-neighbor interaction terms are:

(%) =l el yeiocin [E(“”}i’f (10a)
(F1F2) ) =l .l jes50is [(Fle)(“ﬂjﬁ (10b)
and their explicit spin dependence:
[E(“)Ef =00,798,5 — 0a,508,~5 (11a)
[(®12) )" =P, [Pl — [Fil, 5 [Pl

(11b)

After straightforward calculations one arrives to the fol-
lowing form of the effective Hamiltonian:

Hepp=VO 4 Z

[an (nmj + Xj,in,j - nz)
<>

fn)] (12)

o o .
where n; = € oCisas and S; = ¢ oFa,pcip are the usual
particle number and spin operators on site i, and

+ as (SiSj + J;r’j']id' —

(13a)
(13b)

_ .t
Xi,j =Ci oCj,as
. | )
Jij *Cz’,aFa,ﬁCﬂﬁ

are introduced for the U(1), and SU(2) nearest-neighbor
link operators, respectively. Note, that in general the
SU(2) link operators do not satisfy the spin commutation
relations, however, they clearly are related to the bond-
centered spin. The competition between the spin and par-
ticle fluctuations can be controlled by tuning of a, and
as. The effective Hamiltonian can be applied for less
than quarter filled system too, provided the kinetic term is
added to the Hamiltonian . V(©) contains the on-site
energies and shifts the ground state energy only, so we do
not consider it in the following.

We studied the possible phases of the quarter filled sys-
tem with the constraint ) c;acl-}a = 1 — only single
occupied sites are allowed due to the strong on-site re-
pulsion. Due to this local constraint the Hamiltonian is
invariant under the rotation of the phase of the fermions
at each sites. This means that the Lagrangian of the sys-
tem £ = icj_aaTci,g + H is invariant under the U(1)
gauge transformation ¢; , — cweid’i reflecting the local
constraint for the particle number.

a b a b T
[} [ ] [ ()
c d c d 2
(] o (] o
a b a b 1 =z T - ks
e o o o : :
c d c d -3
(] o (] o
-
@ (b)

Fig. 1: (Color online) The lattice was splitted into 4 sublattices
as shown in subfigure (a) and due to this splitting the Brillouin
zone shrinked. (b) The shadow area depicts the reduced Bril-
louin zone.

Considering the Hamiltonian the terms contain-
ing n; do not give contribution at quarter filling and the
remaining 4-fermion terms can be decoupled via a mean-
field treatment by introducing the expectation values of
the link operators (x; ;) and (J; ;), and the spin operator
(S;). Now the mean-field Hamiltonian is:

HME = Z<i,j>Hi,j (14)

with

H; ;= an<<Xj,i> e aCio+ (Xig) cl atin = [ (Xi) |2)
+ as ( (Jj0) el W Fapcip+ (Jig) el JFapcis— | (i)
+(8i) ¢ o Fa g + (8;) ] JFapcis — (Si) <Sj>>~

Note that the mean-field Lagrangian also has to remain in-
variant under the gauge transformation mentioned above.
Thus, the link variables must transform as (4; ;) —
(A, ;) e~ (=),

The expectation values of the spin and link operators
were determined self-consistently. Anticipating the ap-
pearance of a plaquette phase similar to that which is the
ground state of the system for Gy = G, it is reasonable
to split the lattice into 4 sublattices (see Fig. leading
to the shrinking of the area of the Brillouin zone to the
quarter of its original value. We assumed different values
of the order parameters for the different sublattices and
for the alternating links as the only space-dependence of
them.

We found the following gauge non-equivalent states:
Neel order, two plaquette orders, two SU(2) plaquette or
flux states, and SU(2) dimer order. The phase diagram of
the system is shown in fig. If the effective interaction
of the singlet channel is significiantly stronger than that
of the quintet channel, the dominant order is purely anti-
ferromagnetic without any bond order. For a,, > 0 stable
U(1) link order neither can be expected because it would
lead to the increase of the energy. Moreover, we found
that the SU(2) bond-order parameter also remains zero in
this regime. For a,, < 0 and as > 0 the spin and particle

p-3



E. Szirmail,2 M. Lewenstein2,3

-Gy
a4, > 0/a, <0 a;>0
:’aﬂzo ,’Ia’<0
l/ —a, ~ 2.6a
{AFM Pt
g -~ plaquette

—Gy

Fig. 2: (Color online) The phase diagram of 3/2 fermion system
with strong on-site repulsion on 2D square lattice at quarter
filling. The Neel order (AFM) suppress any other order for
dominant antiferromagnetic spin-coupling (as > 0 and as >
1.9|an|). In the plaquette phase the a, coupling is dominant.
Here the zero flux and the n-flux state have the same energy.

order compete with each other. In ref. [18] a magneti-
cally ordered dimer phase was suggested to appear in this
regime, however, such a state was found to be instable
within our calculation. When the antiferromagnetically
ordered Neel phase becomes instable, plaquette order ap-
pears. The phase border is at around Gy = 1.9G5 or equiv-
alently —a,, = 2.6a;. In the plaquette phase the nonzero
U(1) links form “boxes” as shown in fig. [3| In this phase
one can define the U(1) plaquette as IT = x; i Xk Xk,1X1,is
where 4, j, k and [ denote the sites of an elementary pla-
quette of the square lattice, and y is defined for nearest
neighbors only. The U(1) flux ® is defined by the phase of
the plaquette. The plaquette and therefore the flux are in-
variant under the U(1) gauge transformations. We found
two different gauge-non-equivalent states in the plaquette
phase labelled by ® = 0 and & = 7, respectively, and
both states have the same energy. For |Gy| < 1.9]G3| we
did not find any order (in the ground state) controlled by
the as coupling. This is possibly due to the fact that for
repulsive on-site interaction in this part of the parameter
space, the coupling constant a, is always the dominant
one compared to a; — independently on the sign of a,.
While the plaquette order is the ground state of the
system for |Gp| < 1.9|G3|, we found for as # 0 two
other phases having 10-15% higher energy than the ground
state: the SU(2) dimer phase and the SU(2) flux phase,
where the latter corresponds in fact to two gauge-non-
equivalent states, similarly to the two states of the U(1)
plaquette phase. Both the dimer and the flux phases have
the same energy. In the SU(2) dimer state, in addition to
weak ferromagnetic order, both types of the link operators
x and J have nonzero expectation values on every second
link in one direction (see fig. . Here and in the following
we use the term “weak ferromagnetic order” for the case of
(S;) < F. In the SU(2) flux phase the link operators with
nonzero expectation values constitute plaquettes. Both

(b)
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Fig. 3: (Color online) The different configuration that can be
stable in the presence or without magnetic field. (a) In the
Neel order the only nonzero expectation values are of the spin
operators S; and they alternate on the neighbouring sites. (b)
In the plaquette order bond centered density waves form dis-
connected boxes. In the ground state the flux passing through
the plaquettes can be 0 or w. In both the SU(2) dimer (c)
and plaquette (d) phases the site centered ferromagnetic order
coexists with bond centered density wave that also carries spin
— both (x;,;) and (J; ;) are nonzero.

states violate the spin-rotation invariance of the plaque-
tte phase, and the SU(2) dimer state — contrary to the
plaquette phases — preserves the translational invariance
by one lattice site in one spatial dimension. At this point
let us pay some attention of the denomination of these
states. It is clear that J is not a member of the SU(2)
therefore it is reasonable to ask why do we use the terms
SU(2) plaquette, flux or dimer for the states where the ex-
pectation value of J is nonzero? To answer this question
let us consider the mean-field Hamiltonian eq. . The
non-local part of the one-particle excitations appears in
the Hamiltonian as

(an <Xj,i> 6a,ﬁ + as <Ji’j> Fa,g)czacjﬁ + H.c. (15)

From this form it can be read that the excitations consist
two branches with two different symmetries: (x;,;) relates
to the U(1) excitations, while (J; ;) to the SU(2) excita-
tions. In order to define the SU(2) flux let us introduce the
new link parameter according to eq. in the following
way:

Uij=(Ji;) F, (16)

with the usual inner product of the vectors in the 3 dimen-
sional space of the generators F. Uj ; is a member of SU(2)
and a 4 x 4 matrix and the same holds for the plaquette
15U = Ui jU;j Uk, Up ;. The flux ® passing through the
plaquette defined by the form: ISV = ¢'®F  In order
to determine the ground state it is worth to express the
mean-field Hamiltonian with the J; ; operators, while the
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plaquéne+
SU(2) flux -
FM B |

Fig. 4: (Color online) The magnetic field dependence of the
energy of the different states in the unit ¢t = 1. From a critical
value of the magentic field the U(1) plaquette phase becomes
instable and is completely suppressed by the SU(2) flux phase.
For strong magnetic field the ferromagnetic order is the only
one stable order. The lines are only guides of the eyes.

excitations and the SU(2) flux can be expressed with U; ;.
Note that the SU(2) plaquette ITV(?) is also invariant un-
der the U(1) gauge transformation defined above:
Ci,o — Ci,aeid)ia
(Xig) = (xig) @79,
Uij — Ui,jei(%‘*(ﬁi).

Considering the definition of U;;, the last relation
is obviously equivalent to the transformation J;; —
Ji,j@i(¢j_¢i)~

The SU(2) phases can patently claim to great interest,
but they are suppressed by the U(1) plaquette state. Nev-
ertheless, since the SU(2) flux, as well as the SU(2) dimer
order coexist with ferromagnetic order, it can be expected
that weak magnetic field does not destroy the SU(2) or-
ders, but it can stabilize that. To check this let us investi-
gate the changes of these states in the presence of external
magnetic field h, and include it as a Zeeman term in the
Hamiltonian:

H'=HM" + 1S, (17)

The magnetic field dependence of the energy of the SU(2)
flux state compared to the U(1) plaquette state and the
ferromaggxnetic order is shown in fig. [ for a typical value
of the couplings in the unit of the nearest-neighbor hop-
ping. The U(1) plaquette phase remains the ground state
for nonzero, but only very small magnetic fields. The
SU(2) plaquette state, as well as SU(2) dimer order, be-
come stable as the applied magnetic field A is increased,
and remain the ground states of the system in an extended
region of the phase diagram. However, although both the
dimer and the flux states have the same energy, starting
from the U(1) plaquette state by increasing the applied
magnetic field, the evolving state is always the SU(2) flux.
The flux passing through the plaquette is determined by

AFM

plaquette T

gﬁl plaquette 11

eN

Fig. 5: (Color online) The expected phase diagram of the
F = 5/2 fermion system with strong on-site repulsion on 2D
square lattice at 1/6 filling. Similarly to the spin-3/2 system,
the Neel order (AFM) is the dominant one over any other order
for sufficiently strong antiferromagnetic spin-coupling. In the
plaquette 1. phase there is no any spin order while in the pla-
quette II. phase the SU(2) link oprators also form plaquettes
and the bond orders coexist with a ferromagnetic order.

the flux of the initial U(1) flux. Further increasing the
magnetic field, as it is expected — the strong ferromag-
netic order destroys the SU(2) plaquettes, and suppresses
any other order in the system.

Similar analysis can be easily made for FF = 5/2
fermions for the special values of the coupling constants
Gy = (—=7Gy + 10G3)/3. G4 is the coupling of the in-
teraction with 9-fold spin multiplicity that appears in the
Hamiltonian for spin-5/2 system in addition to the singlet
(Go) and quintet (Gs) scatterings. In the plane of the
parameter space that defined by G4 = (—=7G + 10G2)/3,
the structure of the Hamiltonian is exactly the same as
eq. , there is no term containing higher order of
the product F1F5, and the couplings take the values:
an = (—23Go + 35G2)/12 and as = (—Go + G2)/3. The
possible phases in the ground state of this system based
on our preliminary calculations are shown in fig. The
phase diagram is clearly reacher than that of the FF = 3/2
system, even though that our analysis for the spin-5/2
fermions is confined to the fixed value of Go/t = —0.2.
In case of dominant singlet scatterings the ground state is
purely antiferromagnetic, at least while a,, > 0. A weak
negative a,, seems to lead to an instability in the system,
but we could not find any stable order in this narrow re-
gion. Further decreasing |Gy, a quasi-plaquette phase ap-
pears. In this phase the expectation value of the U(1) link
operator (x; ;) is non-zero at every links, but stronger and
weaker links alternate forming a weak plaquette structure.
The flux passing through the plaquette is zero and there
is no any spin order in this phase. For very weak singlet
coupling (increasing the value of |as|) weak ferromagnetic
order appears in addition to the plaquette order. Here the
plaquettes are formed by not only the alternating zero and
non-zero U(1) link operators (x; ;), but by the SU(2) oper-
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ators (J; ;), too. The flux passing through the plaquettes
remains zero. Note, that in the same regime (|Go| < |Ga])
we found another stable plaquette phase with 7 flux and
with stronger ferromagnetic order, however (S;) remains
smaller than 5/2. In this state along the links of the pla-
quettes the SU(2) order parameter is the dominant one,
the value of (J; ;) is twice that of the corresponding (x;,;)-
The energy of this spin ordered plaquette state is higher
by about 5% than the zero flux spin ordered plaquette
state.

To summarize, we used a decomposition of the total
spin space into its symmetric and antisymmetric part with
respect to the exchange of two spin indices of the high-
spin scattering particles. This decomposition was used for
strongly repulsive system to derive the effective low energy
Hamiltonian. This task was achieved remaining within
the two-particle representation. The main advantage of
the treatment is that it does not require to introduce com-
plicated effective multiparticle/multispin interactions, but
relies only on rearrangements of the usual two-particle in-
teractions. The effectiveness of the treatment does not
depend on the statistics of the considered particles, and it
allows to identify the different processes in the spin chan-
nel within the concept of site and bond spin. Applying this
method to F' = 3/2 fermions, we determined the ground
state phase diagram of the system on mean-field level to
complete the earlier results known for some regimes of the
couplings. We found that the VBS state, which is stable in
an extended region of the phase diagram, becomes insta-
ble in the presence of weak magnetic field. Instead, there
appears an exotic SU(2) flux state. We made also some
preliminary calculations for F' = 5/2 fermions in the plane
determined by the condition G4 = (—7Go+10G2)/3 in the
3-dimensional parameter space of coupling constants. Also
in this case we have predicted apearance of novel, exotic
phases.
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