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We give a complete classification of basis states with unitérygd( — 1), U(3)) and permutationaf{(A))
symmetries. These states are suitable as basis functiotig ferf)—nuclei (41 < A < 80) with minimal
configuration energy. We also give a brief survey of the way in which they are obtained.

1 Introduction interacting through one- and two-body forces. The bound
states of such a system are described by totally antisymmet-

In the tradicional nonrelativistic treatment, the nucleus is ric wave functions.

considered as a system df fermions, the nucleons, with

spin and isospin 1/2, and three spatial degrees of freedom  The introduction of Jacobi vectors

]
7 o= m(Z? i?iH);z‘:Lz,...,A—l, €))
1
Ta = ﬁ;?j )

allows us to remove the center of mass and pay attention only to the relative motion described by the translationally invar

Jacoby vectorsd |, B, ..., B a—1.
To describe the bound states of such system, we will use as basis the basis functiong bflifreP] of U(7(4 — 1)) D

UM(3(A - 1)) x U™ (4(A — 1)). The spin-isospin part is described using the chain

U4(A-1)) D U®4) x UA-1)
U U
US)(2) x UM (2) OB (A-1) (3)
U
S()(A)

while the space part is described by
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UBMA-1) D UEB) x UMU-1)
U U
ot (3) oMNA—-1) (4
U
S (A)

The labelling of basis functions in the spin-isospin chain
of subgroups, Eq.(3), is given by the Wigner Supermultiplet
Theory.

We will focus our attention on the problem of labelling
the basis functions for the space chain of subgroups, Eq(4).

Since the basis functions of irrgph\} of U(3(A4 — 1))
are functions only of the coordinates of the first— 1 Ja-
cobi vectors, they have to be symmetric. We then write
{A} = {E}. Since the wave functions of tpe-dimensional
harmonic oscillator carry the irrepE} of U(p), it is usual
to associatdy with the configuration energy of the nuclear

states whose space part is described by wave functions la-

belled by the chain (4).

This association allows us to stablish a link with the har-
monic oscillator shell model. The basis functions of the ir-
rep{E} could alternatively be labelled by the chain of sub-
groups

UBA-1)>UM3)x U (3) x ... x UA(3) (5)

in which each link7 () (3) acts only in the 3 coordinates of
the Jacoby vecto/;. In this case the irreps associated to
thesel/ (¥) (3) would be all symmetri¢Z ()] and their basis
functions would be eigenstates of harmonic oscillators with
energy€ () = (E) 4 3/2)Mw and it would result

A—1
E=> EY.
i=1

The number of linearly independent wave functions of
the 3-dimensional harmonic oscillator with enerdy =
(E + 3/2)hw is equal to the dimension of the irref}
of U(3) given by

(6)

In this way, by the Pauli principle, in th& shell one
can put at mostdimy gy = 2(E + 1)(E + 2) nucleons. The
minimal configuration energy is obtained by filling the shells
E =0(s),E=1(p),E =2(s —d),..., E; — 1 and putting
the remaining nucleons in the first partially filled sh&l.

In this way, it follows that

Eo—l
Emin = Y 4Edimgg; + Eyno
E=0

(8)

whereng is the number of nucleons in the partially filled
shell Ey.

1
= BoA - 2 Fo(Bo +1)(Bo + 2)(Ey +3).

99

Our aim is to label the states of a system4ohucleons
with minimal configuration energy with the labels given by
the unitary chain (4).

In [1], Elliott gives the labelling forp— and (s —
d)—nuclei in a different, but equivalent, organization than
the one used here. In his paper, Elliott only mentions that
the classification was obtained by the plethysm technique.

In a recent paper [2], which we will refer to as (1), we
review the plethysm technique, propose a general algorithm
to compute all plethysms of two Schur functions of degrees
n andm using as input the plethysim} ® {m} of sym-
metric Schur functions [3] and show how the plethysm tech-
nique can be applied to our problem. Ultimately, one has to
find the reductiol/(A — 1) D O(4 — 1) > S(A4). [We
refer the readers to (I) for definitions and notations.] An al-
ternative method for obtaining the reductiof4 — 1) D
S(A), exploiting the complementarity betweéh A — 1)
andSp(3, R) was proposed in [7].

According to the plethysm technique exposed in (1), the
groupsl/(3) andU (") (A — 1) in Eq.(4) must share the same
irrep

{El,EQ,E3}With Ei+E,+FE;=F (9)

and the irrep$\] of S("(A) andS(*) (4) must be conjugate
to each other.

The branching rules for irreps in the restrictibiin) —
O(n) have definite rules [4, 5, 6, 2]. According to them, for
states of minimal configuration energy, the irregiifn) in
this restriction is the same as the oneldfn). This then
fixes theO(A — 1) irrep. Then we must concern ourselves
only with the restrictiorl/ ") (A — 1) D S(A)("),

Besides, the Pauli principle imposes an additional re-
striction. The treatment of the spin-isospin part by the
Wigner supermultiplet model implies that t1§¢™) (A) irrep
[A] must have at most 4 lines, that is,

[A] = [A1, A2, Az, A4 (10)

Therefore{ A}, being its conjugate, must have at most 4

columns.

2 ReductionU(A—1) D S(A)

The reductionlU(4 — 1) D S(A) is given by the inner
plethysm{A —1,1} ® {\'} of U(A— 1) irreps expanded in
terms ofS(A) irreps

{A-L1 o V) = 3 Vi [A = XN X
AH

(11)

whereVy \» are numerical coefficient§ A\, A, ..., N4 _;}

areU(A — 1) irreps and” = 32" M/ are their degrees.
The numerical coefficients and tlig A — 1) irreps are

obtained by the following procedure.
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One first defines the operatﬁr({A}) by its action on an From the properties of the outer product of Schur func-
U(A—1)irrep{u}: tions, it follows that the operatof® satisfy the relations:
DN n} =Y a((AHp} = Whin} 12 DUNDDHNY) = DENHANY,  (13)

) DNVD+DANY) = DUN}+ (X)) . (14
wherea({A\}{p} — {u'}) is the multiplicity of irrep{u'} ~
in the outer producfA}{u}. Next one defines an operatbr by

D = IS TS N aid ) (DU2} @ {A}s,)

ta=0 Ay, t3=0 Xy j2=03=0

(D({3} @ (M )--(DU2} © (D (D({3} ® {3s})-.. - (15)
|

where {j2},{js},... are symmetric Schur functions and givenU(A — 1) irrep{\'} representing a nuclear state with
the {A}+,, {A}4s, ... are general Schur functions of degrees configuration energ¥ > E iy - Thesel, andjj, are ob-

ta,ts, ... . [ Note that the only plethysms needed are those tained following 2 steps:
with a symmetric Schur function in the left. An algorithm to 1) take a nonnegative integein the range
compute them is presented in (1).]
The action ofD over anU(A — 1) irrep {\'} , by use [E + 1] C6<i<E—A+4 (18)
of (13) and (14) is transformed in a sum of irreps’ } with 2 - ’

multiplicities Vs xr :
P AA 2) for eachi in this range, find the nonnegative integers

ﬁ{X} _ Z Var v {') . (16) Jjr andty that satisfy
Iz . .

This expression provides the numerical coefficients o+ 2y blliss +32) = 4, (19)
Va a» and theU (A — 1) irreps{\"} that appear in (11). S Kt + k) = o
To eachU (A — 1) irrep {\"} corresponds on&(A) irrep h=2
Al =[A—r", X, A5, Nh_y] wherery, must be in the range

This is the mathematical framework. When applied
to the classification of nuclear states new ingredients ap- E—-12<rw <2 (20)
pear. First, thd/(A — 1) irrep {\'} in which D acts has, , L, .
by (9), at most 3 rows. Second, tifA) irreps [\] = Once theset; 's and j; ’'s are obtained, one re-

places them in (15) applied tp\'}, computes the result-
ing plethysms and outer products, linearizes the resulting
expression with respect t® using (13) and (14) ending
with an expression of type (16). From tiA) irreps
[A] = [4Fe 32 2k2 1M with 4ky + 3k3 4 2k2 + k1 = A. A = [A =" XA, .., M ,] produced by each\"}
a7 one keeps only the ones that satisfy (17).
Thek; are interpreted[8] as the number of space levels For E = Epin, Which we are interested in, the solu-

[A—r" AN AL, ., A ;] with physical meaning, by (10),
are only the ones with at most 4 columns, that is,

occupyied by 1,1,3,4 nucleons, respectively. tionis of steps 1) and 2) for nuclei with < 80 are given
These conditions restrict thg andjy in (15) that may  below.
give meaningfulS(A) irreps [\] when D is applied to a Forp—nuclei(5 < A < 16), Epjn = A — 4,
|

and the reductio/ (4 — 1) D S(A4) is
Y, =14, A0, A2, As] With Ay + Ay + A3 = A — 4 and); < 4. (22)
[here and in the following the symbél means that on the RHS only the terms which may produce physically acceptabl

S(A) irreps are considered.]
For (s — d)-nuclei(17 < A < 40), Eynip = 24 - 20,
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tg = A- 16, t3 = t4 == ... = 0, j2 = j3 = e = 0, (23)
~ A . .
DI = S {48 I aista(2) 0N 416} = (Magaie) =
{A}a-1s
{A} - {4°}). (24)

[The symbol® denotes a reduced plethysm, that is, a plethysm expansion in which only the terms with up to 3 rows are

considered.]

The Schur functiof4?, {\} 416} will produce, by Eq.(11)S(A) irreps[44, {\}a_15].

For(p — f)—nuclei(41 < A < 80), Epjn = 34 — 60,

24;

)

ty =
faN A
DN 6o

t3:A—40;

[lo

{A}a—a0

{A}3(4—10) = {A}sa-60 — {20°}) .

The Schur functiong4°, {\} 440} will produce, by
Eq.(11),S(A) irreps[41?, {\} 4—ao]-

Analogous to the case pf- and(s—d)—nuclei, Eq.(26)
allows us to read the reductidn(A — 1) > S(A) for nu-
clei in the ground configuration of this shell directly from
the table of multiplicities of Schur functions\} 3(4_4¢) in
the reduced plethysm@} @{A} 4_40. The column associ-
ated to a given Schur functiof\} 5(4_40) corresponds to
theU (A —1)irrep{20} + {A}3(4_40) - Its entries, in each
line labelled by{ A} 440 give the multiplicity of S(A) irrep
[41% {\}4_40] in the reduction.

TheU(A — 1) D S(A) reductions fop— and(s — d)—
nuclei in minimal energy configuration are given in (I) and
in [1] in a different organization.

For(p — f)—nuclei the reductions are given in the tables

]

A & A

For A = 80 one has
{607} = [4*°]. (28)
In the tables are listed only the first 5 irreps

{E1, Es, Es} more symmetric inU(3) labels, i.e., those
with greatest values df (3) Casimir invariant.
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TABLES
A=41
{23,202} = [41°,1]
A =42
{26,202} = [410,2]; {25, 21,20} = [410,12]; {24, 22,20} = [41°, 2]; {232,20} = [410,12]
A =143

{29,202} = [41°,3]; {28,21,20} = [410,2,1]; {27,22,20} = [4!0,3] 4 [410,2,1];
{27,212} = [41°,13]; {26,23,20} = [410, 3] + [41°,2,1] + [410,13]; ...

A=44

{32,202} = [4'1]; {31,21,20} = [410,3,1]; {30, 22,20} = [411] + [410, 3, 1] 4 [410,22;
{30,212} = [410,2,12]; {29,23,20} = [411] + 2[410,3,1] + [40,2,12]; ...

A=45

{34,21,20} = [4'1,1]; {33,22,20} = [411,1] + [41°,3,2]; {33,212} = [410,3,12];
{32,23,20} = 2[4'1 1] 4 [410,3,2] + [410,3,12]; {32,22,21} = [411 1] + [410,3,2] + [4103,12] + [410 22 1]; ...

A =46

{36,22,20} = [4'1,2]; {36,212} = [4'! 12]; {35,23,20} = [41,2] + [4!1,12] + [41°, 3?;
{35,22,21} = [4'1,2] + [4",17] + [41°,3,2,1]; {34,24,20} = 3[4'", 2] + [4'1,1%] + [410,3,2,1]; ...

A =47

{38,23,20} = [4'!3]; {38,22,21} = [4'1,2,1]; {37,24,20} = [4!1,3] + [4'!,2,1];
{37,23,21} = [411 3] + 2[4112, 1] + [4'1, 1%] + [41°, 32, 1]; {37,222} = [4!,3] + [411,2,1] + [41°,3,2%]; ...

A =48

{40,24,20} = [412]; {40,23,21} = [411, 3, 1]; {40,222} = [411,2?]; {39, 25,20} = [411,3,1];
{39,24, 21} = [4"2] + 2[4'1, 3, 1] + [4'1,2%] + [411, 2,17 ...

A =149
{42,24,21} = [412 1]; {42, 23,22} = [4'1,3,2]; {41,26,20} = [4'2,1];

[4
{41,25,21} = [412,1] + [411,3,2] + 41, 3, 12];
{41,24,22} = 2[412 1] + 2411, 3,2] + [411,3,12] + [41,22,1]; ...

A =50

{44,24,22) = [412 2]; {44,232} = [411,32]; {43,26,21} = [412,2] + [4!2,12];
{43,25,22) = [4'2 2] + [4'2,12] + [4'1,32] + [411,3,2,1];

{43,24,23) = 20412 2] 4 [412,12] + [41,3%] + [411,3,2,1]; ...

A=51

{46,24,23} = [412,3]; {45,26,22} = [412, 3] + [412,2,1]; {45,25,23} = [4!2,3] + [4!2,2,1] + [4!1,3%,1];
{45,242} = [4'2 3] + [412,2,1]; {44,28,21} = [412,3] + [412,2,1]; ...

A =52

{48,247} = [413]; {47,26,23} = [413] + [412,3,1]; {47,25,24} = [4!2,3,1];
{46, 28,22} = [413] + [412,3 1] + [412,22]; {46, 27,23} = [4'3] + 3[42,3, 1] + [4!2,22] 4 [4'2,2,12] 4 [4'*,32,2]; ...
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A =753

{49,26,24} = [4'3 1]; {48,28,23} = [413, 1] + [4!2,3,2]; {48,27,24} = 2[4'3, 1] + [4!2,3,2] + [4'2,3,1%];
{48,26,25} = [413 1] + [412,3,2] + [4!2,3,12]; {47, 30,22} = [41%,1] + [4!2,3,2]; ...

A=54

{50, 28,24} = [413,2]; {50,27,25} = [4'%,12]; {50,267} = [413,2];
{49, 30,23} = [413 2] 4 [412,32]; {49,209, 24} = 2413 2] + 2[41% 12] + [41232] 4 [412,3,2,1]; ...

A=55

{51,30,24} = [4'3_3]; {51,29,25} = [4'3,2,1]; {51, 28,26} = [4'3,3] + [4!3,2,1];
{51,272} = [4'3 1%]; {50, 32,23} = [4'3,3]; ...

A =56
{52,32,24} = [4']; {52,31,25} = [4'3,3,1]; { 52,30,26} = [414] + [413,3,1] + [4'3,22];
{52,29,27} = [43,3,1] + [413 2,1%); {52 282 }é[ 4+ [413,27);

A =57

{53,33,25} = [414,1]; {53,32,26} = [414, 1] + [41%,3,2]; {52, 35,24} = [414,1];
(53.31,27} = [414. 1] + [413,3,2] + [413,3,12]; {53, 30,28} = [414, 1] + [413.3,2] + 413,22, 1]; ...

A =758

{54,34,26} = [4'4 2]; {54,33,27}
}

[414,2] + [414,12] + [413, 321;{53,36,25}%[414,21+[414,121;
{52,38,24} = [4',2]; {54, 32,28} = 2|

=9[4 2] + [413,3,2,1]; .

A=759

{55,35,27} = [4'4,3]; {55, 34,28} = [4'4,3] + [4!,2,1]; {50, 44,23} = [4! 3];
{54,37,26} = [4™,3] + [4'4,2,1]; {52,41,24} = [414,3]; ...

A =60

{56,36,28} = [41°]; {52, 44,24} = [4°]; {56,35,20} = [4'*,3,1];
{51,45,24} = [4'4 3, 1]; {55,38,27} = [4'5] + [44,3,1]; ...



