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We give a complete classification of basis states with unitary (U(A � 1); U(3)) and permutational(S(A))
symmetries. These states are suitable as basis functions for(p � f)�nuclei (41 � A � 80) with minimal
configuration energy. We also give a brief survey of the way in which they are obtained.

1 Introduction

In the tradicional nonrelativistic treatment, the nucleus is
considered as a system ofA fermions, the nucleons, with
spin and isospin 1/2, and three spatial degrees of freedom

interacting through one- and two-body forces. The bound
states of such a system are described by totally antisymmet-
ric wave functions.

The introduction of Jacobi vectors

c

�!� i =
1p

i(i+ 1)

0
@ iX

j=1

�!r j � i�!r i+1

1
A ; i = 1; 2; :::; A� 1 , (1)

�!� A =
1p
A

AX
j=1

�!r j (2)

allows us to remove the center of mass and pay attention only to the relative motion described by the translationally invariant
Jacoby vectors�!� 1;

�!� 2; :::;
�!� A�1.

To describe the bound states of such system, we will use as basis the basis functions of irrep[1 7(A�1)] of U(7(A� 1)) �
U (r)(3(A� 1))� U (s)(4(A� 1)). The spin-isospin part is described using the chain

U (4(A� 1)) � U(4) � U(A� 1)
[ [
U (S)(2)� U (T )(2) O(s)(A� 1)

[
S(s)(A)

(3)

while the space part is described by
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U(3(A-1) � U(3) � U(r)(A� 1)
[ [
O+(3) O(r)(A� 1)

[
S(r)(A) :

(4)

The labelling of basis functions in the spin-isospin chain
of subgroups, Eq.(3), is given by the Wigner Supermultiplet
Theory.

We will focus our attention on the problem of labelling
the basis functions for the space chain of subgroups, Eq(4).

Since the basis functions of irrepf�g of U(3(A � 1))
are functions only of the coordinates of the firstA � 1 Ja-
cobi vectors, they have to be symmetric. We then write
f�g = fEg. Since the wave functions of thep�dimensional
harmonic oscillator carry the irrepfEg of U(p), it is usual
to associateE with the configuration energy of the nuclear
states whose space part is described by wave functions la-
belled by the chain (4).

This association allows us to stablish a link with the har-
monic oscillator shell model. The basis functions of the ir-
repfEg could alternatively be labelled by the chain of sub-
groups

U(3(A� 1)) � U (1)(3)�U (2)(3)� :::�U (A�1)(3) (5)

in which each linkU (i)(3) acts only in the 3 coordinates of
the Jacoby vector�!� i. In this case the irreps associated to
theseU (i)(3) would be all symmetric[E (i)] and their basis
functions would be eigenstates of harmonic oscillators with
energyE (i) = (E(i) + 3=2)~! and it would result

E =

A�1X
i=1

E(i): (6)

The number of linearly independent wave functions of
the 3-dimensional harmonic oscillator with energyE =
(E + 3=2)~! is equal to the dimension of the irrepfEg
of U(3) given by

dimfEg =
1

2
(E + 1)(E + 2) . (7)

In this way, by the Pauli principle, in theE shell one
can put at most4dimfEg = 2(E+1)(E+2) nucleons. The
minimal configuration energy is obtained by filling the shells
E = 0(s); E = 1(p); E = 2(s� d); :::; E0 � 1 and putting
the remaining nucleons in the first partially filled shellE0.
In this way, it follows that

Emin =

E0�1X
E=0

4EdimfEg +E0n0

= E0A� 1

6
E0(E0 + 1)(E0 + 2)(E0 + 3) , (8)

wheren0 is the number of nucleons in the partially filled
shellE0.

Our aim is to label the states of a system ofA nucleons
with minimal configuration energy with the labels given by
the unitary chain (4).

In [1], Elliott gives the labelling forp� and (s �
d)�nuclei in a different, but equivalent, organization than
the one used here. In his paper, Elliott only mentions that
the classification was obtained by the plethysm technique.

In a recent paper [2], which we will refer to as (I), we
review the plethysm technique, propose a general algorithm
to compute all plethysms of two Schur functions of degrees
n andm using as input the plethysmfng 
 fmg of sym-
metric Schur functions [3] and show how the plethysm tech-
nique can be applied to our problem. Ultimately, one has to
find the reductionU(A � 1) � O(A � 1) � S(A). [We
refer the readers to (I) for definitions and notations.] An al-
ternative method for obtaining the reductionO(A � 1) �
S(A), exploiting the complementarity betweenO(A � 1)
andSp(3; R) was proposed in [7].

According to the plethysm technique exposed in (I), the
groupsU(3) andU (r)(A�1) in Eq.(4) must share the same
irrep

fE1; E2; E3g with E1 +E2 +E3 = E (9)

and the irreps[�] of S (r)(A) andS(s)(A) must be conjugate
to each other.

The branching rules for irreps in the restrictionU(n)!
O(n) have definite rules [4, 5, 6, 2]. According to them, for
states of minimal configuration energy, the irrep ofO(n) in
this restriction is the same as the one ofU(n). This then
fixes theO(A � 1) irrep. Then we must concern ourselves
only with the restrictionU (r)(A� 1) � S(A)(r).

Besides, the Pauli principle imposes an additional re-
striction. The treatment of the spin-isospin part by the
Wigner supermultiplet model implies that theS (r)(A) irrep
[e�] must have at most 4 lines, that is,

[~�] = [~�1; ~�2; ~�3; ~�4] : (10)

Thereforef�g, being its conjugate, must have at most 4
columns.

2 Reduction U(A� 1) � S(A)

The reductionU(A � 1) � S(A) is given by the inner
plethysmfA� 1; 1g�f�0g of U(A� 1) irreps expanded in
terms ofS(A) irreps

fA� 1; 1g � f�0g =
X
�00

V�0�00 [A� r00; �001 ; �
00
2 ; :::; �

00
A�1]

(11)
whereV�0�00 are numerical coefficients,f�001 ; �002 ; :::; �00A�1g
areU(A� 1) irreps andr00 =

PA�1
i=1 �00i are their degrees.

The numerical coefficients and theU(A � 1) irreps are
obtained by the following procedure.
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One first defines the operatorbD(f�g) by its action on an
U(A� 1) irrepf�g:

bD(f�g)f�g =
X
�0

�(f�gf�g ! f�0g)f�0g (12)

where�(f�gf�g ! f�0g) is the multiplicity of irrepf�0g
in the outer productf�gf�g.

From the properties of the outer product of Schur func-
tions, it follows that the operatorsbD satisfy the relations:

bD(f�0g) bD(f�00g) = bD(f�0gf�00g) , (13)bD(f�0g) + bD(f�00g) = bD(f�0g+ f�00g) . (14)

Next one defines an operatorbD by

c

bD =

1X
t2=0

X
�t2

1X
t3=0

X
�t3

:::

1X
j2=0

1X
j3=0

:::(f�gt2f�gt3 :::)( bD(f2g 
 f�gt2) �

�( bD(f3g 
 f�t3g):::( bD(f2g 
 fj2g)( bD(f3g 
 fj3g)::: . (15)

d

where fj2g; fj3g; ::: are symmetric Schur functions and
thef�gt2 ; f�gt3 ; ::: are general Schur functions of degrees
t2; t3; ::: . [ Note that the only plethysms needed are those
with a symmetric Schur function in the left. An algorithm to
compute them is presented in (I).]

The action ofbD over anU(A � 1) irrep f�0g , by use
of (13) and (14) is transformed in a sum of irrepsf� 00g with
multiplicitiesV�0 �00 :

bDf�0g =
X
�00

V�0 �00f�00g . (16)

This expression provides the numerical coefficients
V�0 �00 and theU(A � 1) irrepsf�00g that appear in (11).
To eachU(A � 1) irrep f�00g corresponds oneS(A) irrep
[�] = [A� r00; �001 ; �

00
2 ; �

00
A�1] .

This is the mathematical framework. When applied
to the classification of nuclear states new ingredients ap-
pear. First, theU(A � 1) irrep f�0g in which bD acts has,
by (9), at most 3 rows. Second, theS(A) irreps [�] =
[A � r00; �0 01 ; �

00
2 ; :::; �

00
A�1] with physical meaning, by (10),

are only the ones with at most 4 columns, that is,

[�] = [4k4 ; 3k3 ; 2k2 ; 1k1 ]; with 4k4 +3k3 +2k2 + k1 = A:
(17)

Theki are interpreted[8] as the number of space levels
occupyied by 1,1,3,4 nucleons, respectively.

These conditions restrict thetk andjk in (15) that may
give meaningfulS(A) irreps [�] when bD is applied to a

givenU(A� 1) irrepf�0g representing a nuclear state with
configuration energyE � Emin . Thesetk andjk are ob-
tained following 2 steps:

1) take a nonnegative integeri in the range�
E + 1

2

�
� 6 � i � E �A+ 4; (18)

2) for eachi in this range, find the nonnegative integers
jk andtk that satisfy

t2 +
P

k=2 k(tk+1 + jk) = i ,

P
k=2 k(tk + jk) = r�00 ,

(19)

wherer�00 must be in the range

E � 12 � r�00 � 2i (20)

Once thesetk ’s and jk ’s are obtained, one re-
places them in (15) applied tof�0g, computes the result-
ing plethysms and outer products, linearizes the resulting
expression with respect tobD using (13) and (14) ending
with an expression of type (16). From theS(A) irreps
[�] = [A � r00; �001 ; �

00
2 ; :::; �

00
A�1] produced by eachf�00g

one keeps only the ones that satisfy (17).
For E = Emin, which we are interested in, the solu-

tionis of steps 1) and 2) for nuclei withA � 80 are given
below.

Forp�nuclei(5 � A � 16), Emin = A� 4,

c
t2 = t3 = ::: = 0; j2 = j3 = ::: = 0; bDf�g(A)A�4 $ f�g(A)A�4 (21)

and the reductionU(A� 1) � S(A) is

f�g(A)A�4 $ [4; �1; �2; �3] with �1 + �2 + �3 = A� 4 and�i � 4: (22)

[here and in the following the symbol$ means that on the RHS only the terms which may produce physically acceptable
S(A) irreps are considered.]

For (s� d)-nuclei(17 � A � 40),Emin = 2A� 20 ,
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t2 = A� 16; t3 = t4 = ::: = 0; j2 = j3 = :::: = 0; (23)bDf�g(A)2A�20 $

X
f�gA�16

f43; f�gA�16g�(f2g _
f�gA�16g ! f�g2(A�16) =

f�g � f43g): (24)

[The symbol _
 denotes a reduced plethysm, that is, a plethysm expansion in which only the terms with up to 3 rows are
considered.]

The Schur functionf43; f�gA�16g will produce, by Eq.(11),S(A) irreps[44; f�gA�16].
For (p� f)�nuclei(41 � A � 80), Emin = 3A� 60,

t2 = 24; t3 = A� 40; t4 = t5 = 0; j2 = j3 = ::: = 0 , (25)bDf�g(A)3A�60 $

X
f�gA�40

f49; f�gA�40g�(f3g _
f�gA�40 !

f�g3(A�40) = f�g3A�60 � f203g) . (26)

d

The Schur functionsf49; f�gA�40g will produce, by
Eq.(11),S(A) irreps[410; f�gA�40].

Analogous to the case ofp� and(s�d)�nuclei, Eq.(26)
allows us to read the reductionU(A � 1) � S(A) for nu-
clei in the ground configuration of this shell directly from
the table of multiplicities of Schur functionsf�g3(A�40) in
the reduced plethysmsf3g _
f�gA�40. The column associ-
ated to a given Schur functionf�g3(A�40) corresponds to
theU(A�1) irrepf203g+f�g3(A�40) . Its entries, in each
line labelled byf�gA�40 give the multiplicity ofS(A) irrep
[410; f�gA�40] in the reduction.

TheU(A� 1) � S(A) reductions forp� and(s� d)�
nuclei in minimal energy configuration are given in (I) and
in [1] in a different organization.

For(p�f)�nuclei the reductions are given in the tables

below.

3 Explanation of tables

The equations in the tables give the reduction ofU(A � 1)
irrep fE1; E2; E3g into S(A) irreps[�]. On their RHS are
listed only theS(A) irreps physically acceptable, that is,
those satisfying (17) as the symbol$ indicates.

For a givenA and minimal configuration energy, only
theU(A� 1) irreps that have at least one physically accept-
able irrep in its reduction toS(A) are listed.

Only the first half of the shell(41 � A � 60) is listed in
the tables. The second half,(61 � A � 79), is obtained by
the use of particle-hole symmetry in the open shell. For this
shell this symmetry reads as

c

A $ �A;

(27)

� � [410; �
(0)
1 ; �

(0)
2 ; :::; �

(0)
10 ]$ [410; 4� �

(0)
10 ; 4� �

(0)
9 ; :::; 4� �

(0)
1 ]:

d

ForA = 80 one has

f603g $ [420]: (28)

In the tables are listed only the first 5 irreps
fE1; E2; E3g more symmetric inU(3) labels, i.e., those
with greatest values ofU(3) Casimir invariant.
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TABLES

A = 41

f23; 202g $ [410; 1]

A = 42

f26; 202g $ [410; 2]; f25; 21; 20g$ [410; 12]; f24; 22; 20g$ [410; 2]; f232; 20g $ [410; 12]

A = 43

f29; 202g $ [410; 3]; f28; 21; 20g$ [410; 2; 1]; f27; 22; 20g$ [410; 3] + [410; 2; 1];
f27; 212g $ [410; 13]; f26; 23; 20g$ [410; 3] + [410; 2; 1] + [410; 13]; ...

A = 44

f32; 202g $ [411]; f31; 21; 20g$ [410; 3; 1]; f30; 22; 20g$ [411] + [410; 3; 1] + [410; 22];
f30; 212g $ [410; 2; 12]; f29; 23; 20g$ [411] + 2[410; 3; 1] + [410; 2; 12]; ...

A = 45

f34; 21; 20g$ [411; 1]; f33; 22; 20g$ [411; 1] + [410; 3; 2]; f33; 212g $ [410; 3; 12];
f32; 23; 20g$ 2[411; 1] + [410; 3; 2] + [410; 3; 12]; f32; 22; 21g$ [411; 1] + [410; 3; 2] + [410; 3; 12] + [410; 22; 1]; ...

A = 46

f36; 22; 20g$ [411; 2]; f36; 212g $ [411; 12]; f35; 23; 20g$ [411; 2] + [411; 12] + [410; 32];
f35; 22; 21g$ [411; 2] + [411; 12] + [410; 3; 2; 1]; f34; 24; 20g$ 3[411; 2] + [411; 12] + [410; 3; 2; 1]; ...

A = 47

f38; 23; 20g$ [411; 3]; f38; 22; 21g$ [411; 2; 1]; f37; 24; 20g$ [411; 3] + [411; 2; 1];
f37; 23; 21g$ [411; 3] + 2[411; 2; 1] + [411; 13] + [410; 32; 1]; f37; 222g $ [411; 3] + [411; 2; 1] + [410; 3; 22]; ...

A = 48

f40; 24; 20g$ [412]; f40; 23; 21g$ [411; 3; 1]; f40; 222g $ [411; 22]; f39; 25; 20g$ [411; 3; 1];
f39; 24; 21g$ [412] + 2[411; 3; 1] + [411; 22] + [411; 2; 12]; ...

A = 49

f42; 24; 21g$ [412; 1]; f42; 23; 22g$ [411; 3; 2]; f41; 26; 20g$ [412; 1];
f41; 25; 21g$ [412; 1] + [411; 3; 2] + [411; 3; 12];
f41; 24; 22g$ 2[412; 1] + 2[411; 3; 2] + [411; 3; 12] + [411; 22; 1]; ...

A = 50

f44; 24; 22g$ [412; 2]; f44; 232g $ [411; 32]; f43; 26; 21g$ [412; 2] + [412; 12];
f43; 25; 22g$ [412; 2] + [412; 12] + [411; 32] + [411; 3; 2; 1];
f43; 24; 23g$ 2[412; 2] + [412; 12] + [411; 32] + [411; 3; 2; 1]; ...

A = 51

f46; 24; 23g$ [412; 3]; f45; 26; 22g$ [412; 3] + [412; 2; 1]; f45; 25; 23g$ [412; 3] + [412; 2; 1] + [411; 32; 1];
f45; 242g $ [412; 3] + [412; 2; 1]; f44; 28; 21g$ [412; 3] + [412; 2; 1]; ...

A = 52

f48; 242g $ [413]; f47; 26; 23g$ [413] + [412; 3; 1]; f47; 25; 24g$ [412; 3; 1];
f46; 28; 22g$ [413] + [412; 3; 1] + [412; 22]; f46; 27; 23g$ [413] + 3[412; 3; 1] + [412; 22] + [412; 2; 12] + [411; 32; 2]; ...
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A = 53

f49; 26; 24g$ [413; 1]; f48; 28; 23g$ [413; 1] + [412; 3; 2]; f48; 27; 24g$ 2[413; 1] + [412; 3; 2] + [412; 3; 12];
f48; 26; 25g$ [413; 1] + [412; 3; 2] + [412; 3; 12]; f47; 30; 22g$ [413; 1] + [412; 3; 2]; ...

A = 54

f50; 28; 24g$ [413; 2]; f50; 27; 25g$ [413; 12]; f50; 262g $ [413; 2];
f49; 30; 23g$ [413; 2] + [412; 32]; f49; 29; 24g$ 2[413; 2] + 2[413; 12] + [412; 32] + [412; 3; 2; 1]; ...

A = 55

f51; 30; 24g$ [413; 3]; f51; 29; 25g$ [413; 2; 1]; f51; 28; 26g$ [413; 3] + [413; 2; 1];
f51; 272g $ [413; 13]; f50; 32; 23g$ [413; 3]; ...

A = 56

f52; 32; 24g$ [414]; f52; 31; 25g$ [413; 3; 1]; f52; 30; 26g$ [414] + [413; 3; 1] + [413; 22];
f52; 29; 27g$ [413; 3; 1] + [413; 2; 12]; f52; 282g $ [414] + [413; 22]; ...

A = 57

f53; 33; 25g$ [414; 1]; f53; 32; 26g$ [414; 1] + [413; 3; 2]; f52; 35; 24g$ [414; 1];
f53; 31; 27g$ [414; 1] + [413; 3; 2] + [413; 3; 12]; f53; 30; 28g$ [414; 1] + [413; 3; 2] + [413; 22; 1]; ...

A = 58

f54; 34; 26g$ [414; 2]; f54; 33; 27g$ [414; 2] + [414; 12] + [413; 32]; f53; 36; 25g$ [414; 2] + [414; 12];
f52; 38; 24g$ [414; 2]; f54; 32; 28g$ 2[414; 2] + [413; 3; 2; 1]; ...

A = 59

f55; 35; 27g$ [414; 3]; f55; 34; 28g$ [414; 3] + [414; 2; 1]; f50; 44; 23g$ [414; 3];
f54; 37; 26g$ [414; 3] + [414; 2; 1]; f52; 41; 24g$ [414; 3]; ...

A = 60

f56; 36; 28g$ [415]; f52; 44; 24g$ [415]; f56; 35; 29g$ [414; 3; 1];
f51; 45; 24g$ [414; 3; 1]; f55; 38; 27g$ [415] + [414; 3; 1]; ...


