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Abstract. For von Neumann algebras M, A/ without type I> summands, we show that for an order-
isomorphism f : AbSub M — AbSub N between the posets of abelian von Neumann-subalgebras
of M and N, there is a unique Jordan *-isomorphism g : M — N with the image g[S] equal to
f(S) for each abelian von Neumann-subalgebra S of M. This shows the Jordan structure of a von
Neumann algebra without type I5 summand is determined by the poset of its abelian subalgebras,

and has implications in recent approaches to foundational issues in quantum mechanics.
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1 Introduction

We consider the question: given a von Neumann algebra M, how much information
about M is encoded in the order structure of its collection of unital abelian von
Neumann subalgebras? The set AbSub M of such subalgebras, partially ordered by
set inclusion, becomes a complete meet semilattice in which every subset that is closed
under finite joins has a join. The task is to reconstruct algebraic information about
the algebra M from the order-theoretic structure of AbSub M. More generally, we
are interested in the interplay between these two levels of algebraic structure.

When M is abelian, the projection lattice Proj M forms a complete Boolean
algebra, and one can show that the poset AbSub M is isomorphic to the lattice of
complete Boolean subalgebras of Proj M. Modifying a result of Sachs [16] that every
Boolean algebra is determined by its lattice of all subalgebras, to show each complete
Boolean algebra is determined by its lattice of complete subalgebras, one can then
obtain that Proj M is determined by AbSub M. That M is determined by Proj M
is a consequence of the spectral theorem.
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For a non-abelian von Neumann algebra, the situation is more complicated.
Reconstruction of the non-commutative product in M will not generally be possible
as there are non-isomorphic von Neumann algebras having the same Jordan product,
hence exactly the same posets of unital abelian subalgebras. However, we will show
that the order structure of AbSub M does determine M as a Jordan algebra up to
(Jordan) isomorphism. This means that the poset AbSub M encodes a substantial
amount of algebraic information about M. The proof goes along the same lines as
the abelian case, using a result of [0] that an orthomodular lattice is determined by

its poset of Boolean subalgebras. In fact, our result is somewhat stronger than we
described.

Theorem Suppose M, N are von Neumann algebras without type I, summands and
f: AbSub M — AbSub N is an order-isomorphism. Then there is a unique Jordan
isomorphism F : M — N with f(S) equal to the image F[S] for each S.

This result is particularly interesting with respect to the so-called topos approach
to the formulation of physical theories [3, [ [ [6], where a mathematical reformula-
tion of algebraic quantum theory is suggested. For a von Neumann algebra M, one
considers the poset AbSub M of its abelian subalgebras and the topos of presheaves
over this poset. The idea is that each abelian subalgebra represents a ‘classical per-
spective’ on the quantum system. By taking all classical perspectives together, one
obtains a complete picture of the quantum system. Mathematically, this corresponds
to considering the poset AbSub M and presheaves over it. It becomes clear that, from
the perspective of the topos approach, it is very relevant to see how much information
about the algebra M can be extracted from the poset AbSub M.

2 Preliminaries

For a complex Hilbert space H, let B(H) be the C*-algebra of all bounded operators
on H. For a subset S C B(H), the commutant &’ is the set of all elements of
B(H) that commute with each member of S. A von Neumann algebra is a subset
M C B(H) with M = M"”. For a von Neumann algebra M, we use Proj M for
the set of projections in M. The following well-known result [12 pg. 69] will be used
repeatedly.

Proposition 2.1 For M a von Neumann algebra, M = (Proj M)".

For any von Neumann algebra M the projections Proj M form a complete
orthomodular lattice (abbreviated: OML). Our primary interest lies in subalgebras
of von Neumann algebras, subalgebras of their projection lattices, and relationships
between these and the original von Neumann algebra. We require several definitions.

Definition 2.2 A von Neumann subalgebra of a von Neumann algebra M is a subset
S C M that is itself a von Neumann algebra.



We will only consider von Neumann subalgebras & C M such that the unit
elements in § and N coincide. (In particular, we will not consider subalgebras of
the form PMP for a non-trivial projection P € M.) We remark that being a von
Neumann subalgebra is equivalent to being a unital C*-subalgebra that is closed
in the o-weak topology, equivalent to being a unital C*-subalgebra that is closed
under monotone joins, and equivalent to being the image of a unital one-one normal
s-homomorphism [I, pg. 101-110].

Definition 2.3 For a von Neumann algebra M, we let Sub M be the set of all von
Neumann subalgebras of M ordered by set inclusion; AbSub M be the set of abelian
von Neumann subalgebras of M ordered by set inclusion; and FAbSub M be the set
of all abelian subalgebras of M that contain only finitely many projections, ordered
by set inclusion.

We note that Sub M is a complete lattice, with meets given by intersections. The
join of a family (S;);e; of subalgebras is the weak closure of the algebra generated by
the algebras S;, i € I. Analogously, AbSub M is a complete meet semilattice where
every subset that is closed under finite joins has a join, and FFAbSub M is a complete
meet semilattice where every meet is essentially finite.

Definition 2.4 For an oML L, we let Sub L be the set of all subalgebras of L;
BSub L be the set of Boolean subalgebras of L, and FBSub L be the set of finite
Boolean subalgebras of L, all partially ordered by set inclusion. If L is complete we
let C'Sub L be the set of complete subalgebras of L, meaning subalgebras that are
closed under arbitrary joins and meets from L, and CBSub L be the set of complete
Boolean subalgebras of L. Again, these are considered as posets, partially ordered by
set inclusion.

For a von Neumann algebra M we can use the associative, but not necessarily
commutative, product on M to define a commutative, but not necessarily associative
product o on M, called the Jordan product, by setting

1
aob= §(ab—|—ba).

Suppose ¢ is a map between von Neumann algebras that is linear, bijective,
and preserves the involution (adjoint) *. We say ¢ is a x-isomorphism if it satisfies
p(ab) = p(a)p(b); a x-antiisomorphism if it satisfies p(ab) = ¢(b)p(a); and a Jordan
isomorphism if it satisfies ¢(aob) = p(a)op(b). The following is well known [T, [I7].

Proposition 2.5 Every Jordan isomorphism n : M — N between von Neumann
algebras M, N can be decomposed as the sum of a *-isomorphism and a *-anti-
1somorphism.



More concretely, there are central projections Pl, P, € M and Ql, Qg € N such
that M and NV are unitarily equivalent to MP, & MPy and NQ, ON Q-, respectively,
and 7| p, MP, — NQ; is a s-isomorphism, while Nl b, : MPy, = NQ, is a %
antiisomorphism.

It follows from [2] that there is a von Neumann algebra that is not *-isomorphic
to its opposite, hence these two von Neumann algebras are Jordan isomorphic, but not
*_isomorphic. So there can be two different associative noncommutative products on a
weakly closed set of operators, giving different von Neumann algebras, but the same
Jordan structure. So the associative noncommutative product on a von Neumann
algebra cannot be recovered from the lattice of its subalgebras as a von Neumann
algebra and its opposite will have precisely the same subalgebras. However, we will
see that in the absence of type I summands, the Jordan structure can be recovered.
The following result [8, Theorem 8.1.1] will be of key importance. We note that the
uniqueness in the version of this result given below follows from the spectral theorem.

Theorem 2.6 Suppose M, N are von Neumann algebras without type I summands.
Then for any OML-isomorphism v : Proj M — Proj N there is a unique Jordan
isomorphism W : M — N with VU(p) = ¢(p) for each projection p of M.

The reader should consult [1l [7, 10, 11, [I7] for basics on von Neumann algebras,
and [12] for omLs.

3 Main result

Lemma 3.1 Let M be a von Neumann algebra. Then there is an order-isomorphism
U FAbSub M — FBSub (Proj M) defined by setting VS = S N Proj M.

Proof. It follows from [Il, Theorem 2.104] that the projections of any abelian
subalgebra of M form a Boolean subalgebra of Proj M. So V¥ is indeed a map
from FAbSub M to FBSub (Proj M). Clearly ¥ is order-preserving. Suppose
US C UT. As S is a von Neumann algebra § = (Proj §)”, and similarly for 7.
Therefore S = (VS)” C (VT)” =T, showing ¥ is an order-embedding,.

Suppose B is a finite Boolean algebra of projections in M with atoms p1, ..., pn,
and consider the map A : C* — M defined by setting A(A1,...,A,) = >} Aipi. One
easily sees A is a normal, unital s-isomorphism, so by [I, Lemma 2.100] its image
S is a von Neumann subalgebra of M. Clearly S is an abelian, has finitely many
projections, and S = B. So WV is onto. O

Remark 3.2 While not needed for our results, it is natural to consider several
questions related to the above result. It is easy to see that as above there is
an order-embedding ¥ : Sub M — CSub (Proj M) that preserves all meets.
A simple example with M being the bounded operators on C? shows this map
need not preserve joins or be onto. A more difficult argument, using the notion



of Bade subalgebras and results from [I4], shows there is an order-isomorphism
U AbSub M — CBSub (Proj M). The result above follows from this more
general one, but is not needed here.

Lemma 3.3 For oMLs L, M, each order-isomorphism p : FBSub L — FBSub M
extends uniquely to an isomorphism [ : BSub(L) — BSub(M).

Proof.  We define an ideal of FBSub L to be a downset I of FFBSub L where
any two elements of I have a join, and this join belongs to /. For any element x of
BSub L, we have | NFBSub L = {z € FBSub L : z C z} is an ideal of FBSub L
and the join of this ideal in BSub L is equal to . Further, each ideal of FF'BSub L is of
this form as can be easily seen from the compactness of finitely generated subalgebras
in a subalgebra lattice.

Define i by setting i(x) = \ p[r 4 NFBSub L]. This join is well defined
as the image under the isomorphism p of an ideal is an ideal. Clearly i is order
preserving. Suppose f(z) < f(y). Then for each z € x| NFBSub L we have
w(z) <\ plyd NEFBSub L]. Compactness then yields z < y for each such z, giving
x < y. Thus p is an order-embedding. To see i1 is onto, note each element w of
BSub M is the join of an ideal J of FBSub M. The preimage p~'[J] is an ideal of
FBsub L, so has a join z in BSub L. Then ji(x) = w, showing [ is onto.

Clearly i extends p. If i is another isomorphism from BSub L to BSub M
extending i, then i preserves joins, so fi(x) = \/ ulz) NFBSub L] = p(z). O

We are ready to provide our main result.

Theorem 3.4 Suppose M, N are von Neumann algebras without type I summands
and f : AbSub M — AbSub N is an order-isomorphism. Then there is a unique
Jordan isomorphism F : M — N with f(S) equal to the image F[S] for each S.

Proof. Consider a series of mappings, starting with the given

AbSub M L> AbSub N

We then restrict this to FFADSub M. Note that the members of FAbSub M are
precisely those members of AbSub M that have only finitely many elements be-
neath them, and similarly for FAbSub N. Thus this restriction ¢ is also an order-
isomorphism.

FAbSub M ——s FAbSub \.

Lemma B1] gives order-isomorphisms Wy, : FAbSub M — FBSub (Proj M)
and Uy : FAbSub N' — FBSub (Proj N) given by ¥, (S) = SN Proj M and
U (T) =T N Proj N. Tt follows there is a unique order-isomorphism % as below
with h(S N Proj M) = g(S) N Proj N for each S € FAbSub M.

FBSub (Proj M) . FBSub (Proj N).
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Then by Lemma this extends uniquely to an order-isomorphism

BSub (Proj M) SN BSub (Proj N).

The main result of [9] says that if L, M are oMLs without any 4-element blocks
(a block is a maximal Boolean subalgebra), then for any order-isomorphism
a : BSub L — BSub M there is a unique OML-isomorphism S : L — M with
a(D) = B[D] for each Boolean subalgebra D of L. As M, N are not factors of type
I, there are no 4-element blocks in Proj M or Proj N. So this gives a unique map
k as shown below with j(D) = k[D] for each Boolean subalgebra D of Proj M.

k
Proj M —— Proj N.

Finally, Theorem gives a unique Jordan isomorphism F' as below extending k.
F
M — N.

Claim 1 : If S € FAbSub M then f(S)N Proj N = F[S] N Proj N.

Proof : To see this, note that for such S,

f(8)NProj N = ¢(S)N Proj N
= (SN Proj M)
Jj(§ N Proj M)
k[S N Proj M|
= F[SN Proj M]

= F[S|NProj N

The first equality follows as g is the restriction of f; the second by the definition of
h; the third as j extends h; the fourth by the definition of k; the fifth as F' extends
k: and the sixth as F restricts to a bijection between Proj M and Proj N'. O

Claim 2 : If S € AbSub M, then F[S] € AbSub N.

Proof : As F'is Jordan and § is abelian, by [I7, pg. 187] the restriction F|S
preserves the associative product. By [I pg. 189] F' is a unital order isomorphism,
so it preserves monotone joins, and as S is a von Neumann subalgebra of M, the
identical embedding of S into M preserves monotone joins. So the composite F|S
preserves monotone joins, hence is a normal unital one-one x-homomorphism of S
into N. So by [I, Lemma 2.100] the image F[S] is a von Neumann subalgebra of A/
that is clearly abelian. O

Claim 3 : If S € AbSub M, then f(S) = FIS].
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Proof : A projection p belongs to F[S] if, and only if, it belongs to F[U] for some
U C Swithtd € FAbSub M. The proof is essentially that of Lemma[3.1l By Claim 1,
this is equivalent to p belonging to f(U) for some U C S with U € FAbSub M. As
the members of FFAbSub M are exactly the members of AbSub M with finitely many
elements beneath them, it follows from f being an order-isomorphism that 7 = F (i)
for some U C S with U € FAbSub M if, and only if, T C f(S) and T € FAbSub N.
So p belonging to F[S] is equivalent to p belonging to 7 for some T C f(S) with
T € FAbSub N, so equivalent to p belonging to f(S). By Claim 2, f(S) and
FI[S] are von Neumann subalgebras of A/, and they contain the same projections, so

f(S) = F[S]. O.

To conclude the proof of the theorem, it remains to show uniqueness. Suppose
G : M — N is a Jordan isomorphism with f(S) = G[S] for each S € AbSub M.
Using the spectral theorem, it follows that two Jordan isomorphisms from M to N
agreeing on the projections must be equal. So it is enough to show that F' and G
agree on Proj M. From the uniqueness of the result in [9] it is enough to show
F[D] = G[D] for each Boolean subalgebra D of Proj M, and by the uniqueness in
Lemma it is enough to show this for finite Boolean subalgebras D of Proj M.
Using Lemma B] it is then enough to show F[S N Proj M] = G[S N Proj M|
for each § € FFAbSub M, and this is a direct consequence of the assumption that
F[S] = G[S]. This shows F' = G, and concludes the proof of the theorem. O

4 Conclusions

There remain several directions for further research. First, it would be of interest
to see if the Jordan structure of a C*-algebra is determined by its poset of abelian
C*-subalgebras. In this direction we remark that it is known that the lattice of C*-
subalgebras of an abelian C*-algebra determines the C*-algebra [13] Theorem 11].
Perhaps [I5] may also be related to this question.

For a different direction, one might consider the matter of adding additional
information to the poset AbSub M in hopes of recovering the full von Neumann
structure of M, rather than just its Jordan structure. This seems very closely related
to the subject of orientation theory, very nicely described in [I]. From the perspective
of the topos approach, the natural question becomes whether orientations can be
encoded by presheaves (contravariant, Set-valued functors) over AbSub M, or maybe
by covariant functors.
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